Problem 1. Carefully state:
(a) The mean value theorem.
(b) L'Hôpital's Rule.
(c) The fundamental theorem of calculus.

Problem 2. Matching

- $\int_{1}^{\infty} \frac{1}{t^{4}} d t$
- $\frac{1}{3}$
- $\int_{1}^{\infty} \frac{1}{1+t^{4}} d t$
- $\frac{\pi}{8}$
- $\int_{1}^{\infty} \frac{t}{1+t^{4}} d t$
- $\frac{\operatorname{arccoth}(\sqrt{2})}{4 \sqrt{2}}$
- $\int_{0}^{\infty} \frac{t}{e^{t}} d t$
- $\frac{1}{2}$
- $\int_{0}^{\infty} \frac{t}{e^{t^{2}}} d t$
- 1
- $\int_{0}^{\infty} \frac{1}{e^{t^{2}}} d t$
- $\frac{\sqrt{\pi}}{2}$.

Problem 3. The so called Fresnel integral sine function is defined to be

$$
S(x)=\int_{0}^{x} \sin \left(\frac{\pi t^{2}}{2}\right) d t .
$$

Which is the graph of S ?

Problem 4. Here is the unit circle. The shaded sector $A O C$ has area $\frac{t}{2}$. Use the integral formula for arclength to compute the length of the circular arc from A to C.

Problem 5.

Consider the region in the first quadrant bound by the unit circle.

If we rotate this region around the y-axis we obtain the upper half of the unit hemisphere.

Your problem: Find the volume of the northern hemisphere of the unit sphere in two different ways:

Problem 5. Continued.

(a) By discs.
(b) By shells.

EXAM

Midterm Exam

Math 158: Spring 2013
Tuesday, March 17

- Make sure your solutions are clearly and carefully written. Proofread.
- Show your work, but not your scratchwork. Neatness counts.
- Each part of each problem is worth one points for a total of nine possible points.

Success!

