EXAM

Midterm Exam
Math 158: Spring 2013
Tuesday, March 17

ANSWERS

Problem 1. Carefully state:
(a) The mean value theorem.

Answer:

Suppose that f is continuous on $[a, b]$ and differentiable on (a, b). Then there exists a number $c \in[a, b]$ with $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$.
(b) L'Hôpital's Rule.

Answer:

Suppose $\lim _{x \rightarrow c} f(x)=\lim _{x \rightarrow c} g(x)=0$ and $\lim _{x \rightarrow c} \frac{f^{\prime}(x)}{g^{\prime}(x)}$ exists. Then $\lim _{x \rightarrow c} \frac{f(x)}{g(x)}$ exists and

$$
\lim _{x \rightarrow c} \frac{f(x)}{g(x)}=\lim _{x \rightarrow c} \frac{f^{\prime}(x)}{g^{\prime}(x)}
$$

(c) The fundamental theorem of calculus.

Answer:

Let f be function that is integrable on the interval $[a, b]$ and let $c \in[a, b]$. Define A : $[a, b] \rightarrow \mathbb{R}$ by $A(x)=\int_{c}^{x} f(t) d t$. If f is continuous at x then A is differentiable at x and $A^{\prime}(x)=f(x)$.

Problem 2. Matching

- $\int_{1}^{\infty} \frac{1}{t^{4}} d t=\frac{1}{3}$
- $\int_{1}^{\infty} \frac{1}{1+t^{4}} d t=\frac{\operatorname{arccoth}(\sqrt{2})}{4 \sqrt{2}}$
- $\int_{1}^{\infty} \frac{t}{1+t^{4}}=\frac{\pi}{8} d t$
- $\int_{0}^{\infty} \frac{t}{e^{t}} d t=1$
- $\int_{0}^{\infty} \frac{t}{e^{t^{2}}} d t=\frac{1}{2}$
- $\int_{0}^{\infty} \frac{1}{e^{t^{2}}} d t=\frac{\sqrt{\pi}}{2}$

Problem 3. The so called Fresnel integral sine function is defined to be

$$
S(x)=\int_{0}^{x} \sin \left(\frac{\pi t^{2}}{2}\right) d t
$$

Which is the graph of S ?

Answer:

By process of elimination, the answer is the one in the top right. Note that $S^{\prime}(0)=\sin (0)=0$, which eliminates the graph on the top left. Moreover, $S^{\prime}(x)=\sin \left(\frac{\pi x^{2}}{2}\right) \geq 0$ for $-\sqrt{2} \leq x \leq$ $\sqrt{2}$, so S is increasing on $[-\sqrt{2}, \sqrt{2}]$. That elimates the two pictures on the bottom.

Problem 4. Here is the unit circle. The shaded sector $A O C$ has area $\frac{t}{2}$. Use the integral formula for arclength to compute the length of the circular arc from A to C.

Answer:
The arc in question is part of the graph of $f(x)=\sqrt{1-x^{2}}$. We compute $\sqrt{1+f^{\prime}(x)^{2}}$:

$$
\begin{aligned}
\sqrt{1+f^{\prime}(x)^{2}} & =\sqrt{1+\left(\frac{-x}{\sqrt{1-x^{2}}}\right)^{2}} \\
& =\sqrt{1+\frac{x^{2}}{1-x^{2}}} \\
& =\sqrt{\frac{1}{1-x^{2}}} \\
& =\frac{1}{\sqrt{1-x^{2}}}
\end{aligned}
$$

The arc is the part of the graph over the interval $[\cos (t), 1]$ so the length of the arc is given by

$$
\begin{aligned}
\int_{\cos (t)}^{1} \frac{1}{\sqrt{1-x^{2}}} & =\arcsin (t)]_{\cos (t)}^{1} \\
& =\arcsin (1)-\arcsin (\cos (t)) \\
& =\frac{\pi}{2}-\arcsin \left(\left(\sin \left(\frac{\pi}{2}-t\right)\right)\right. \\
& =\frac{\pi}{2}-\frac{\pi}{2}+t \\
& =t
\end{aligned}
$$

as expected.

Problem 5.

Consider the region in the first quadrant bound by the unit circle.

If we rotate this region around the y-axis we obtain the upper half of the unit hemisphere.

Your problem: Find the volume of the northern hemisphere of the unit sphere in two different ways:

Problem 5. Continued.

(a) By discs.

Answer:
Rotating a horizontal slice of the quarter circle at y yields a disc of radius $r=x$, which has area $\pi r^{2}=\pi\left(x^{2}\right)=\pi\left(1-y^{2}\right)$. So we have

$$
\begin{aligned}
\text { Volume } & =\int_{0}^{1} \pi\left(1-y^{2}\right) d y \\
& \left.=\pi y-\frac{y^{3}}{3}\right]_{0}^{1} \\
& =\frac{2}{3} \pi .
\end{aligned}
$$

(b) By shells.

Answer:

Rotating a vertical slice of the quarter circle at x yields a cylindrical shell of height $y=$ $\sqrt{1-x^{2}}$ and radius x, which has area $2 \pi r h=2 \pi x \sqrt{1-x^{2}}$. So we have

$$
\begin{aligned}
\text { Volume } & =\int_{0}^{1} 2 \pi x \sqrt{1-x^{2}} d x \\
& \left.=-\frac{2}{3} \pi\left(1-x^{2}\right)^{3 / 2}\right]_{0}^{1} \\
& =\frac{2}{3} \pi
\end{aligned}
$$

