Problem 1. Sequences. Find the limit.
(a) $\left\{\frac{(n!)\left(n^{n}\right)}{(2 n)!}\right\}$
(b)

$$
\begin{aligned}
a_{1} & =1 \\
a_{2} & =\frac{1}{2}\left(\sqrt{1}+\sqrt{1-\frac{1}{4}}\right) \\
a_{3} & =\frac{1}{3}\left(\sqrt{1}+\sqrt{1-\frac{1}{9}}+\sqrt{1-\frac{4}{9}}\right) \\
a_{4} & =\frac{1}{4}\left(\sqrt{1}+\sqrt{1-\frac{1}{16}}+\sqrt{1-\frac{4}{16}}+\sqrt{1-\frac{9}{16}}\right) \\
a_{5} & =\frac{1}{5}\left(\sqrt{1}+\sqrt{1-\frac{1}{25}}+\sqrt{1-\frac{4}{25}}+\sqrt{1-\frac{9}{25}}+\sqrt{1-\frac{16}{25}}\right) \\
& \vdots
\end{aligned}
$$

Problem 2. Series. Determine whether they converge absolutely, converge conditionally, or diverge. Give brief, but conclusive, evidence supporting your answers.
(a) $\sum_{n=2}^{\infty} \frac{1}{n\left(\log (n)^{2}\right)}$
(b) $\sum_{n=1}^{\infty} \frac{n!n^{n}}{(2 n)!}$

Problem 2. Continued.
(c) $\sum_{n=1}^{\infty} \frac{1}{n^{1+\frac{1}{n}}}$.
(d) $\sum_{n=1}^{\infty} \log \left(1+\frac{1}{n}\right)$

Problem 3. Continued.

(e) $\sum_{n=2}^{\infty} \log \left(\frac{(2 n-1)(n-1)}{(n)(2 n-3)}\right)$
(f) $\sum_{n=1}^{\infty}\left(\frac{n}{n+1}\right)^{3 n}$

Problem 4. Continued.
(g) $\sum_{k=1}^{\infty} \frac{e^{k} k!}{k^{k}}$
(h) $\sum_{k=1}^{\infty} \frac{k^{k}}{e^{k} k!}$

Problem 5. Prove or disprove:
(a) If $\sum_{n=1}^{\infty} a_{n}$ converges, then $\sum_{n=1}^{\infty} a_{n}^{2}$ converges.
(b) Suppose $a_{n}>0$ for all $n \in \mathbb{N}$ and $\sum_{n=1}^{\infty} a_{n}$ converges. Then $\sum_{n=1}^{\infty} \sin \left(a_{n}\right)$ converges also.

Problem 5. Continued.

(c) If $\left|\frac{a_{n+1}}{a_{n}}\right| \rightarrow \frac{1}{3}$ then for every $k \in \mathbb{N}, \sum_{n=1}^{\infty} n^{k} a_{n}$ converges.
(d) For any sequence $\left\{a_{n}\right\}$ there exists $k \in \mathbb{N}$ so that $\sum_{n=1}^{\infty} \frac{a_{n}}{k^{n}}$ converges.

Problem 6. In 1904, H. Koch introduced the now famous "Koch curve." It is defined as the limit of a sequence of simple curves C_{n} which are defined recursively:

- C_{1} is an equilateral triangle.
- From the curve C_{n-1} we obtain the curve C_{n} by placing a smaller equilateral triangle onto the middle third of each straight side, pointing outward and erasing the base of the new triangle (the old middle third).

Now, let L_{n} be the length of C_{n} (say you start with an equilateral triangle with sides of length one, so $L_{1}=3$). Let A_{n} be the area enclosed by C_{n}. Decide whether $\left\{L_{n}\right\}$ and $\left\{A_{n}\right\}$ converge.

Problem 7. Use the power series for $\arctan (x)$ to approximate π to 5 decimal places. (Hint: The series you get converges too slowly at $x=1$. First check that $4 \arctan \left(\frac{1}{2}\right)+$ $4 \arctan \left(\frac{1}{3}\right)=\pi$ and ...)

Problem 8. Recall, the Fibonacci numbers f_{n} are defined inductively by $f_{0}=0, f_{1}=1$ and $f_{n}=f_{n-1}+f_{n-2}$ for $n>1$. Define the "Fibonacci series" to be the power series

$$
\sum_{n=0}^{\infty} f_{n} x^{n}=x+x^{2}+2 x^{3}+3 x^{4}+5 x^{5}+\cdots
$$

Prove that the Fibonacci series converges for $-\frac{2}{1+\sqrt{5}}<x<\frac{2}{1+\sqrt{5}}$ and for those x for which it converges

$$
\sum_{n=0}^{\infty} f_{n} x^{n}=\frac{x}{1-x-x^{2}} .
$$

Problem 9. When asked to approximate $\int_{0}^{\frac{1}{2}} \sqrt{1+2 x^{3}} d x$, two students responded by correctly approximating $\sqrt{1+2 x^{3}}$ by a Taylor polynomial $\approx 1+x^{3}$ and then computing

$$
\int_{0}^{\frac{1}{2}}\left(1+x^{3}\right) d x=\frac{33}{64}=0.515625 .
$$

When asked to bound the error in their approximations, one student wrote:
Let $f(x)=\sqrt{1+2 x^{3}}$. By Taylor's theorem, the remainder is given by

$$
R_{3}(x):=\sqrt{1+2 x^{3}}-\left(1+x^{3}\right)=\frac{f^{(4)}(c)}{4!}\left(\frac{1}{2}\right)^{4} \text { for some } c \in\left[0, \frac{1}{2}\right]
$$

Since

$$
f^{(4)}(x)=-\frac{180 x^{2}}{\left(1+2 x^{3}\right)^{\frac{3}{2}}}+\frac{972 x^{5}}{\left(1+2 x^{3}\right)^{\frac{5}{2}}}-\frac{1215 x^{8}}{\left(1+2 x^{3}\right)^{\frac{7}{2}}}
$$

has a maximum absolute value of approximately 17.69612 we have

$$
\begin{aligned}
\left\lvert\, \int_{0}^{\frac{1}{2}} \sqrt{1+2 x^{3}}-\int_{0}^{\frac{1}{2}}\right. & \left.\left(1+x^{3}\right) d x\left|\leq \int_{0}^{\frac{1}{2}}\right| \sqrt{1+2 x^{3}}-\left(1+x^{3}\right) \right\rvert\, d x \\
& =\int_{0}^{\frac{1}{2}}\left|R_{3}(x)\right| d x=\frac{1}{2} R_{3}(x) \leq \frac{1}{2}\left(\frac{18}{4!}\left(\frac{1}{2}\right)^{4}\right)=\frac{3}{128}
\end{aligned}
$$

The other student used another method to obtain a better error bound of $\frac{1}{1792}$. Your problem: justify the statement $\int_{0}^{\frac{1}{2}} \sqrt{1+2 x^{3}} \approx \frac{33}{64}=0.515625$ with an error less than $\frac{1}{1792}$.

Problem 10. Here's a remarkable fact:

$$
\lim _{n \rightarrow \infty} \frac{n}{\sqrt[n]{n!}}=e
$$

and an outline of how to prove it.
(a) First show that

$$
\log (1)+\log (2)+\cdots+\log (n-1)<\int_{1}^{n} \log (x) d x<\log (2)+\log (3)+\cdots+\log (n) .
$$

(b) Then show that

$$
\frac{n^{n}}{e^{n-1}}<n!<\frac{(n+1)^{n+1}}{e^{n}}
$$

(c) You should be able to find your way to conclude that $\lim _{n \rightarrow \infty} \frac{n}{\sqrt[n]{n!}}=e$.

EXAM

Take Home Exam 2

Math 158: Spring 2013
Due: Tuesday, May 13

- This exam is due at the beginning of class on Thursday, May 15. But I urge you to complete it by Tuesday, May 13.
- If you use any resources besides your book or your notes, please cite them.
- Make sure you answers are clearly and carefully written.

Neatness counts!

Success!

