EXAM

Take Home Exam 2
Math 158: Spring 2013
Due: Tuesday, May 13

ANSWERS

Problem 1. Sequences. Find the limit.
(a) $\left\{\frac{(n!)\left(n^{n}\right)}{(2 n)!}\right\}$

Answer:

From the solution to problem 4 b , the series $\sum \frac{(n!)\left(n^{n}\right)}{(2 n)!}$ converges. Therefore, by the n-th term test, the terms $\left\{\frac{(n!)\left(n^{n}\right)}{(2 n)!}\right\} \rightarrow 0$.

Problem 1.

(b)

$$
\begin{aligned}
& a_{1}=1 \\
& a_{2}=\frac{1}{2}\left(\sqrt{1}+\sqrt{1-\frac{1}{4}}\right) \\
& a_{3}=\frac{1}{3}\left(\sqrt{1}+\sqrt{1-\frac{1}{9}}+\sqrt{1-\frac{4}{9}}\right) \\
& a_{4}=\frac{1}{4}\left(\sqrt{1}+\sqrt{1-\frac{1}{16}}+\sqrt{1-\frac{4}{16}}+\sqrt{1-\frac{9}{16}}\right) \\
& a_{5}=\frac{1}{5}\left(\sqrt{1}+\sqrt{1-\frac{1}{25}}+\sqrt{1-\frac{4}{25}}+\sqrt{1-\frac{9}{25}}+\sqrt{1-\frac{16}{25}}\right)
\end{aligned}
$$

Answer:

Fix an integer n and let $x_{i}=\frac{i}{n}$. Define a step function $t_{n}:[0,1] \rightarrow \mathbb{R}$ by $t_{n}(x)=$ $\sqrt{1-x_{i-1}^{2}}$ if $x_{i-1} \leq x<x_{i}$. Then $\int_{0}^{1} t_{n}=a_{n}$. Here's a picture of t_{20}

Now, f defined by $f(x)=\sqrt{1-x^{2}}$ is integrable on $[0,1]$ and we have

$$
\int_{0}^{1} \sqrt{1-x^{2}} d x=\inf _{n} \int_{0}^{1} t_{n}=\lim _{n \rightarrow \infty} \int_{0}^{1} t_{n}=\lim _{n \rightarrow \infty} a_{n}
$$

Since $\int_{0}^{1} \sqrt{1-x^{2}} d x=\frac{\pi}{4}$, we have $\left\{a_{n}\right\} \rightarrow \frac{\pi}{4}$.

Problem 2. Series. Determine whether they converge absolutely, converge conditionally, or diverge. Give brief, but conclusive, evidence supporting your answers.
(a) $\sum_{n=2}^{\infty} \frac{1}{n\left(\log (n)^{2}\right)}$

Answer:

This series converges by the integral test. Let $f(x)=\frac{1}{x(\log (x))^{2}}$. Note that f is decreasing $\left(f^{\prime}(x)=-\frac{2+\log (x)}{x^{2}(\log (x))^{2}}<0\right.$ for $\left.x>1\right)$ and

$$
\int_{1}^{n} f=\frac{1}{\log (2)}-\frac{1}{\log (n)} \underset{n \rightarrow \infty}{\longrightarrow} \frac{1}{\log (2)}
$$

which is finite.
(b) $\sum_{n=1}^{\infty} \frac{n!n^{n}}{(2 n)!}$

Answer:
We use the ratio test. Note that $a_{n}=\frac{n!n^{n}}{(2 n)!}>0$ and

$$
\begin{aligned}
\left\{\frac{a_{n+1}}{a_{n}}\right\} & =\left\{\left(\frac{(n+1)!(n+1)^{n+1}}{(2 n+2)!}\right)\left(\frac{(2 n)!}{n!n^{n}}\right)\right\} \\
& =\left\{\frac{(n+1)(n+1)}{(2 n+2)(2 n+1)}\left(\frac{n+1}{n}\right)^{n}\right\} \\
& \rightarrow \frac{e}{4}
\end{aligned}
$$

Since $0<\frac{e}{4}<1$, the series converges.

Problem 2. Continued.

(c) $\sum_{n=1}^{\infty} \frac{1}{n^{1+\frac{1}{n}}}$.

Answer:

Note that this is a series of positive terms. We do a limit comparison test with the divergent harmonic series:

$$
\lim _{n \rightarrow \infty} \frac{\frac{1}{n}}{\frac{1}{n^{1+\frac{1}{n}}}}=\lim _{n \rightarrow \infty} n^{\frac{1}{n}}=\lim _{n \rightarrow \infty} \exp \left(\frac{1}{n} \log (n)\right)=1
$$

Since $1 \neq 0, \infty$, we conclude that the series in question diverges.
(d) $\sum_{n=1}^{\infty} \log \left(1+\frac{1}{n}\right)$

Answer:
This series diverges: we use a limit comparision with the harmonic series. Note that $\log \left(1+\frac{1}{n}\right)>0$ and

$$
\lim _{n \rightarrow \infty} \frac{\log \left(1+\frac{1}{n}\right)}{\frac{1}{n}}=1
$$

Since $1 \neq 0, \infty$, the limit comparison test says that $\sum_{n=1}^{\infty} \log \left(1+\frac{1}{n}\right)$ and $\sum_{n=1}^{\infty} \frac{1}{n}$ do the same thing, which is diverge.

Problem 2. Continued.

(e) $\sum_{n=2}^{\infty} \log \left(\frac{(2 n-1)(n-1)}{(n)(2 n-3)}\right)$

Answer:

Here, we examine the n-th partial sum:

$$
\begin{aligned}
s_{n} & =\log \left(\frac{(3)(1)}{(2)(1)}\right)+\log \left(\frac{(5)(2)}{(3)(3)}\right)+\log \left(\frac{(7)(3)}{(4)(5)}\right)+\log \left(\frac{(9)(4)}{(5)(7)}\right)+\cdots+\log \left(\frac{(2 n-1)(n-1)}{(n)(2 n-3)}\right) \\
& =\log \left(\frac{(3)(1)(5)(2)(7)(3)(9)(4) \cdots(2 n-1)(n-1)}{(2)(1)(3)(3)(4)(5)(5)(7) \cdots(n)(2 n-3)}\right) \\
& =\log \left(\frac{2 n-1}{n}\right) .
\end{aligned}
$$

As $n \rightarrow \infty, s_{n} \rightarrow \log (2)$. That is, the series converges and has the sum $\log (2)$.
(f) $\sum_{n=1}^{\infty}\left(\frac{n}{n+1}\right)^{3 n}$

Answer:

As $n \rightarrow \infty$, the n-th term $\left(\frac{n}{n+1}\right)^{3 n} \rightarrow \frac{1}{e^{3}} \neq 0$. Therefore, by the n-th term test, the series $\sum_{n=1}^{\infty}\left(\frac{n}{n+1}\right)^{3 n}$ diverges.

Problem 2. Continued.

(g) $\sum_{k=1}^{\infty} \frac{e^{k} k!}{k^{k}}$

Answer:
Starting with the right inequality of (3) in part (b) of the last problem

$$
\frac{k^{k}}{e^{k-1}}<k!\Rightarrow \frac{e^{k-1} k!}{k^{k}}>1 \Rightarrow \frac{e^{k} k!}{k^{k}}>e
$$

Therefore,

$$
\left\{\frac{e^{k} k!}{k^{k}}\right\} \nrightarrow 0
$$

and the series diverges by the n-th term test.
(h) $\sum_{k=1}^{\infty} \frac{k^{k}}{e^{k} k!}$

Answer:
Note that

$$
\sum_{k} \frac{1}{k} \text { diverges } \Rightarrow \sum_{k} \frac{1}{e k} \text { diverges } \Rightarrow \sum_{k=1}^{\infty} \frac{k^{k}}{e^{k} k!} \text { diverges. }
$$

The last implication follows from the ordinary comparison test and the inequality:

$$
\frac{1}{e k}<\frac{k^{k}}{e^{k} k!}
$$

which is obtained by dividing $(k-1)!<\frac{k^{k}}{e^{k-1}}$ (which is the left hand part of (3) in part (b) of the last problem) by $\frac{1}{(k!)(e)}$.

Problem 3. Prove or disprove:
(a) If $\sum_{n=1}^{\infty} a_{n}$ converges, then $\sum_{n=1}^{\infty} a_{n}^{2}$ converges.

Answer:
This statement is false. For example, $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{1}{\sqrt{n}}$ converges but $\sum_{n=1}^{\infty}\left((-1)^{n+1} \frac{1}{\sqrt{n}}\right)^{2}=$ $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges.
(b) Suppose $a_{n}>0$ for all $n \in \mathbb{N}$ and $\sum_{n=1}^{\infty} a_{n}$ converges. Then $\sum_{n=1}^{\infty} \sin \left(a_{n}\right)$ converges also.

Answer:

This is true. If $\sum_{n=1}^{\infty} a_{n}$ then $a_{n} \rightarrow 0$, so there exists a natural number N so that if $n \geq N$, $a_{n}<\pi$. Then, for $n>N$, both a_{n} and $\sin \left(a_{n}\right)$ are positive and the limit comparison test applies. Since $\left\{a_{n}\right\} \rightarrow 0$, we have

$$
\left\{\frac{\sin a_{n}}{a_{n}}\right\} \rightarrow 1
$$

and we can conclude that $\sum_{n=1}^{\infty} \sin \left(a_{n}\right)$ converges also.

Problem 3. Continued.

(c) If $\left|\frac{a_{n+1}}{a_{n}}\right| \rightarrow \frac{1}{3}$ then for every $k \in \mathbb{N}, \sum_{n=1}^{\infty} n^{k} a_{n}$ converges.

Answer:

True. Apply the ratio test to $\sum_{n=1}^{\infty}\left|n^{k} a_{n}\right|$:

$$
\frac{(n+1)^{k}\left|a_{n+1}\right|}{n^{k}\left|a_{n}\right|}=\left(\frac{n+1}{n}\right)^{k}\left|\frac{a_{n+1}}{a_{n}}\right| \rightarrow \text { (1) }\left(\frac{1}{3}\right)=\frac{1}{3} .
$$

(d) For any sequence $\left\{a_{n}\right\}$ there exists $k \in \mathbb{N}$ so that $\sum_{n=1}^{\infty} \frac{a_{n}}{k^{n}}$ converges.

Answer:

This is False. $\sum_{n=1}^{\infty} \frac{n!}{k^{n}}$ diverges by the ratio test since

$$
\frac{\frac{(n+1)!}{k^{n+1}}}{\frac{n!}{k^{n}}}=\frac{(n+1) k}{n} \rightarrow \infty
$$

for every number k.

Problem 4. In 1904, H. Koch introduced the now famous "Koch curve." It is defined as the limit of a sequence of simple curves C_{n} which are defined recursively:

- C_{1} is an equilateral triangle.
- From the curve C_{n-1} we obtain the curve C_{n} by placing a smaller equilateral triangle onto the middle third of each straight side, pointing outward and erasing the base of the new triangle (the old middle third).

Now, let L_{n} be the length of C_{n} (say you start with an equilateral triangle with sides of length one, so $L_{1}=3$). Let A_{n} be the area enclosed by C_{n}. Decide whether $\left\{L_{n}\right\}$ and $\left\{A_{n}\right\}$ converge.

Answer:
Here's a picture of $C_{1}, C_{2}, C_{3}, C_{4}$:

First, we show that the perimeter tends to infinity. Consider C_{1} which has perimeter $L_{1}=3$. Since we get C_{2} from C_{1} by replacing each edge by four smaller edges, $\frac{1}{3}$ as long, we have $L_{2}=\frac{4}{3} L_{1}=\left(\frac{4}{3}\right) 3$ Then, we get C_{3} from C_{2} by replacing each edge of C_{2} by four edges $\frac{1}{3}$ as long giving $L_{3}=\frac{4}{3} L_{2}=\left(\frac{4}{3}\right)^{2} 3$. Iterating, we find that

$$
L_{n}=\left(\frac{4}{3}\right)^{n-1} 3
$$

and as $n \rightarrow \infty$, we see that $\left\{L_{n}\right\} \rightarrow \infty$.
Now, let us consider area. We can compute A_{n} by adding the areas of little triangles to the area of A_{n-1}. The number of triangles we add to get C_{n} from C_{n-1} equals the number of sides of C_{n-1}. To determine the number of sides, note that C_{1} has $3, C_{2}$ has $(3)(4), C_{3}$ has $(3)\left(4^{2}\right)$, and in general, the number of sides of C_{k} is $3(4)^{k-1}$. So, we have

$$
A_{n}=A_{n-1}+(3)\left(4^{n-2}\right)(\text { the area of each little triangle added }) .
$$

To figure out the area of each little triangle added, note that those added at step k are $\frac{1}{9}$ the size of those added at step $k-1$. So, we can determine A_{n} recursively

$$
A_{n}=A_{1}+\left(\frac{1}{3} A_{1}+\frac{1}{3}\left(\frac{4}{9}\right) A_{1}+\frac{1}{3}\left(\frac{4}{9}\right)^{2} A_{1}+\cdots+\frac{1}{3}\left(\frac{4}{9}\right)^{n-2} A_{1}\right)
$$

As $n \rightarrow \infty$, what is in parentheses becomes a convergent geometric series with ratio $r=\frac{4}{9}$ and we have

$$
\lim _{n \rightarrow \infty} A_{n}=A_{1}+\frac{\frac{1}{3} A_{1}}{1-\frac{4}{9}}=\frac{8}{5} A_{1}=\frac{2 \sqrt{3}}{10} .
$$

Problem 5. Use the power series for $\arctan (x)$ to approximate π to 5 decimal places. (Hint: The series you get converges too slowly at $x=1$. First check that $4 \arctan \left(\frac{1}{2}\right)+$ $4 \arctan \left(\frac{1}{3}\right)=\pi$ and ...)
Answer:
Recall that $\tan (x+y)=\frac{\tan (x)+\tan (y)}{1-\tan (x) \tan (y)}$. So,

$$
\tan \left(\arctan \left(\frac{1}{2}\right)+\arctan \left(\frac{1}{3}\right)\right)=\frac{\frac{1}{2}+\frac{1}{3}}{1-\left(\frac{1}{2}\right)\left(\frac{1}{3}\right)}=\frac{\frac{5}{6}}{\frac{5}{6}}=1 .
$$

Thus, $\arctan \left(\frac{1}{2}\right)+\arctan \left(\frac{1}{3}\right)=\frac{\pi}{4}$.
If we want to approximate π accurate to five decimal places, we need to approximate the sum $4 \arctan \left(\frac{1}{2}\right)+4 \arctan \left(\frac{1}{3}\right)$ with an error less than .000005 . We have

$$
4 \arctan \left(\frac{1}{2}\right)=4\left(\frac{1}{2}\right)-\frac{4}{3}\left(\frac{1}{2}\right)^{3}+\frac{4}{5}\left(\frac{1}{2}\right)^{5}-\frac{4}{7}\left(\frac{1}{2}\right)^{7}+\cdots
$$

which is a convergent alternating series of terms of decreasing magnitude, hence can be approximated by $4\left(\frac{1}{2}\right)-\frac{4}{3}\left(\frac{1}{2}\right)^{3}+\cdots-\frac{4}{15}\left(\frac{1}{2}\right)^{15}$ with an error less than $\frac{4}{17}\left(\frac{1}{2}\right)^{17}=\frac{1}{557056}<.0000002$. Likewise,

$$
4 \arctan \left(\frac{1}{3}\right)=4\left(\frac{1}{3}\right)-\frac{4}{3}\left(\frac{1}{3}\right)^{3}+\frac{4}{5}\left(\frac{1}{3}\right)^{5}-\frac{4}{7}\left(\frac{1}{3}\right)^{7}+\cdots
$$

is a convergent alternating series of terms of decreasing magnitude, hence can be approximated by $4\left(\frac{1}{3}\right)-\frac{4}{3}\left(\frac{1}{3}\right)^{3}+\cdots+-\frac{4}{11}\left(\frac{1}{3}\right)^{11}$ with an error less than $\frac{4}{13}\left(\frac{1}{3}\right)^{13}=\frac{4}{20726199}<.0000002$. Therefore, the sum

$$
\begin{aligned}
4\left(\frac{1}{2}\right)-\frac{4}{3}\left(\frac{1}{2}\right)^{3}+\cdots-\frac{4}{15}\left(\frac{1}{2}\right)^{15}+4\left(\frac{1}{3}\right) & -\frac{4}{3}\left(\frac{1}{3}\right)^{3}+\cdots-\frac{4}{11}\left(\frac{1}{3}\right)^{11} \\
& =\frac{13964621526980227}{4445076601405440}=3.141592998 \ldots
\end{aligned}
$$

is an approximation of π accurate to five decimal places.
Remark: Here's a computation about the accuracy of this approximation, in case more details are desired:

$$
\begin{aligned}
& \left|\left(4\left(\frac{1}{2}\right)+\cdots-\frac{4}{15}\left(\frac{1}{2}\right)^{15}+4\left(\frac{1}{3}\right)+\cdots-\frac{4}{11}\left(\frac{1}{3}\right)^{11}\right)-\pi\right| \\
& =\left|\left(4\left(\frac{1}{2}\right)+\cdots-\frac{4}{15}\left(\frac{1}{2}\right)^{15}+4\left(\frac{1}{3}\right)+\cdots-\frac{4}{11}\left(\frac{1}{3}\right)^{11}\right)-\left(4 \arctan \left(\frac{1}{3}\right)+4 \arctan \left(\frac{1}{2}\right)\right)\right| \\
& \leq\left|4\left(\frac{1}{2}\right)+\cdots-\frac{4}{15}\left(\frac{1}{2}\right)^{15}-4 \arctan \left(\frac{1}{3}\right)\right|+\left|4\left(\frac{1}{3}\right)+\cdots-\frac{4}{11}\left(\frac{1}{3}\right)^{11}-4 \arctan \left(\frac{1}{2}\right)\right| \\
& <.000002+.0000002 \\
& <.0000005
\end{aligned}
$$

So 3.141592998 is an approximation of π accurate to at least five decimal places (it is, in fact, accurate to six decimal places).

Problem 6. Recall, the Fibonacci numbers f_{n} are defined inductively by $f_{0}=0, f_{1}=1$ and $f_{n}=f_{n-1}+f_{n-2}$ for $n>1$. Define the "Fibonacci series" to be the power series

$$
\sum_{n=0}^{\infty} f_{n} x^{n}=x+x^{2}+2 x^{3}+3 x^{4}+5 x^{5}+\cdots
$$

Prove that the Fibonacci series converges for $-\frac{2}{1+\sqrt{5}}<x<\frac{2}{1+\sqrt{5}}$ and for those x for which it converges

$$
\sum_{n=0}^{\infty} f_{n} x^{n}=\frac{x}{1-x-x^{2}}
$$

Answer:

First we check that $x^{2} f(x)+x f(x)-f(x)=-x$.

$$
\begin{aligned}
x^{2} f(x)+x f(x)-f(x) & =x^{2} \sum_{n=0}^{\infty} f_{n} x^{n}+x \sum_{n=0}^{\infty} f_{n} x^{n}-\sum_{n=0}^{\infty} f_{n} x^{n} \\
& =\sum_{n=2}^{\infty} f_{n-2} x^{n}+\sum_{n=1}^{\infty} f_{n-1} x^{n}-\sum_{n=0}^{\infty} f_{n} x^{n} \\
& =\sum_{n=2}^{\infty} f_{n-2} x^{n}+\left(x+\sum_{n=2}^{\infty} f_{n-1} x^{n}\right)-\left(x+x^{2}+\sum_{n=2}^{\infty} f_{n} x^{n}\right) \\
& =x^{2}-\left(x+x^{2}\right)+\sum_{n=2}^{\infty}\left(f_{n-1}+f_{n}-f_{n+1}\right) x^{n} \\
& =-x .
\end{aligned}
$$

The computation above shows that if the series converges to $f(x)$, then f must satisfy

$$
x^{2} f(x)+x f(x)-f(x)=-x \Rightarrow f(x)=\frac{x}{1-\left(x^{2}+x\right)} .
$$

Now, consider the geometric series $\sum_{n=0}^{\infty} x r$ with ratio $r=x^{2}+x$. This series converges and has the sum $\frac{x}{1-\left(x^{2}+x\right)}$ for

$$
|r|<1 \Leftrightarrow\left|x^{2}+x\right|<1 \Leftrightarrow-\phi<x<\frac{1}{\phi}
$$

where ϕ is the famous golden ratio $\phi=\frac{1+\sqrt{5}}{2}$ and $\frac{1}{\phi}=\frac{2}{1+\sqrt{5}}=\frac{1-\sqrt{5}}{2}$.
Remark: The series $\sum_{n=0}^{\infty} x\left(x+x^{2}\right)^{n}$ differs from the Fibonacci series by a re-arrangement. However, since (both) converge absolutely, this does not affect the sum. To be rigorous, pick any number s with $0<s<\frac{1}{\phi}$. Then, the series $\sum_{n=0}^{\infty} s\left(s^{2}+s\right)$ converges absolutely at s. In particular, the re-arrangement $\sum_{n=0}^{\infty} f_{n} s^{n}$ converges absolutely. Since it's a power series centered at 0 , it must converge for all x with $|x|<s$. This holds for all $s<\frac{1}{\phi}$, therefore the series $\sum_{n=0}^{\infty} f_{n} s^{n}$ converges for all x with $|x|<\frac{1}{\phi}$.

Problem 7. When asked to approximate $\int_{0}^{\frac{1}{2}} \sqrt{1+2 x^{3}} d x$, two students responded by correctly approximating $\sqrt{1+2 x^{3}}$ by a Taylor polynomial $\approx 1+x^{3}$ and then computing

$$
\int_{0}^{\frac{1}{2}}\left(1+x^{3}\right) d x=\frac{33}{64}=0.515625 .
$$

When asked to bound the error in their approximations, one student wrote:
Let $f(x)=\sqrt{1+2 x^{3}}$. By Taylor's theorem, the remainder is given by

$$
R_{3}(x):=\sqrt{1+2 x^{3}}-\left(1+x^{3}\right)=\frac{f^{(4)}(c)}{4!}\left(\frac{1}{2}\right)^{4} \text { for some } c \in\left[0, \frac{1}{2}\right] .
$$

Since

$$
f^{(4)}(x)=-\frac{180 x^{2}}{\left(1+2 x^{3}\right)^{\frac{3}{2}}}+\frac{972 x^{5}}{\left(1+2 x^{3}\right)^{\frac{5}{2}}}-\frac{1215 x^{8}}{\left(1+2 x^{3}\right)^{\frac{7}{2}}}
$$

has a maximum absolute value of approximately 17.69612 we have

$$
\begin{aligned}
& \left|\int_{0}^{\frac{1}{2}} \sqrt{1+2 x^{3}}-\int_{0}^{\frac{1}{2}}\left(1+x^{3}\right) d x\right| \leq \int_{0}^{\frac{1}{2}}\left|\sqrt{1+2 x^{3}}-\left(1+x^{3}\right)\right| d x \\
& =\int_{0}^{\frac{1}{2}}\left|R_{3}(x)\right| d x=\frac{1}{2} R_{3}(x) \leq \frac{1}{2}\left(\frac{18}{4!}\left(\frac{1}{2}\right)^{4}\right)=\frac{3}{128}
\end{aligned}
$$

The other student used another method to obtain a better error bound of $\frac{1}{1792}$. Your problem: justify the statement $\int_{0}^{\frac{1}{2}} \sqrt{1+2 x^{3}} \approx \frac{33}{64}=0.515625$ with an error less than $\frac{1}{1792}$.

Answer:

Note that

$$
\begin{aligned}
\int_{0}^{\frac{1}{2}} \sqrt{1+2 x^{3}} & =\int_{0}^{\frac{1}{2}}\left(1+x^{3}-\frac{x^{6}}{2}+-\cdots\right) d x \\
& \left.=\left(x+\frac{x^{4}}{4}-\frac{x^{7}}{14}+-\cdots\right)\right]_{0}^{\frac{1}{2}} \\
& =\frac{1}{2}+\frac{1}{64}-\frac{1}{1792}+-\cdots
\end{aligned}
$$

Since this is a convergent alternating series with decreasing terms, it can be approximated by the sum of the first two terms, with an error less than the third. That is

$$
\int_{0}^{\frac{1}{2}} \sqrt{1+2 x^{3}} \approx \frac{1}{2}+\frac{1}{64}=\frac{33}{64}
$$

with an error less than $\frac{1}{1792}$.

Problem 8. Here's a remarkable fact:

$$
\lim _{n \rightarrow \infty} \frac{n}{\sqrt[n]{n!}}=e
$$

and an outline of how to prove it.
(a) First show that
$\log (1)+\log (2)+\cdots+\log (n-1)<\int_{1}^{n} \log (x) d x<\log (2)+\log (3)+\cdots+\log (n)$.

Answer:

The \log function is increasing, which gives for each fixed $k \in \mathbb{N}$ the inequality

$$
\log (k)<\log (x)<\log (k+1) \text { for all } k<x<k+1 .
$$

Integrating over $[k, k+1]$ gives

$$
\log (k)<\int_{k}^{k+1} \log (x) d x<\log (k+1)
$$

Summing from $k=1$ to $k=n-1$ gives the result.

Problem 8. Continued.

(b) Then show that

$$
\frac{n^{n}}{e^{n-1}}<n!<\frac{(n+1)^{n+1}}{e^{n}}
$$

Answer:

Let's write the conclusion from part (a) as

$$
\begin{equation*}
\log ((n-1)!)<\int_{1}^{n} \log (x) d x<\log (n!) \tag{1}
\end{equation*}
$$

In the center we have

$$
\left.\int_{1}^{n} \log (x) d x=x \log (x)-x\right]_{1}^{n}=n \log (n)-n+1=\log \left(n^{n}\right)-(n-1)
$$

Write $\log \left(n^{n}\right)-(n-1)=\log \left(n^{n}\right)-\log (\exp (n-1))=\log \left(\frac{n^{n}}{e^{n-1}}\right)$ and substitute in the middle of (1) to get

$$
\begin{equation*}
\log ((n-1)!)<\log \left(\frac{n^{n}}{e^{n-1}}\right)<\log (n!) \tag{2}
\end{equation*}
$$

Since the \log function is strictly increasing, $\log (a)<\log (b) \Leftrightarrow a<b$ so (2) implies

$$
\begin{equation*}
(n-1)!<\frac{n^{n}}{e^{n-1}}<n! \tag{3}
\end{equation*}
$$

Replacing n by $n+1$ produces

$$
\begin{equation*}
n!<\frac{(n+1)^{(n+1)}}{e^{n}}<(n+1)!. \tag{4}
\end{equation*}
$$

The right part of (3) and the left part of (4) gives the result.
(c) You should be able to find your way to conclude that $\lim _{n \rightarrow \infty} \frac{n}{\sqrt[n]{n!}}=e$.

Answer:

Part (b) and some algebra gives

$$
\frac{n}{e}<\sqrt[n]{n!}<\frac{(n+1)^{1+\frac{1}{n}}}{e^{1+\frac{1}{n}}} \Rightarrow \frac{n e^{1+\frac{1}{n}}}{(n+1)^{1+\frac{1}{n}}}<\frac{n}{\sqrt[n]{n!}}<e
$$

Since,

$$
\left\{\frac{n e^{1+\frac{1}{n}}}{(n+1)^{1+\frac{1}{n}}}\right\} \rightarrow e
$$

the squeeze theorem gives, $\lim _{n \rightarrow \infty} \frac{n}{\sqrt[n]{n!}}=e$.

