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Problem 1. Sequences. Find the limit.

(a)
{
(n!)(nn)

(2n)!

}
Answer:

From the solution to problem 4b, the series
∑ (n!)(nn)

(2n)! converges. Therefore, by the n-th

term test, the terms
{

(n!)(nn)
(2n)!

}
→ 0.
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Problem 1.

(b)

a1 = 1

a2 =
1

2

(
√
1 +

√
1− 1

4

)

a3 =
1

3

(
√
1 +

√
1− 1

9
+

√
1− 4

9

)

a4 =
1

4

(
√
1 +

√
1− 1

16
+

√
1− 4

16
+

√
1− 9

16

)

a5 =
1

5

(
√
1 +

√
1− 1

25
+

√
1− 4

25
+

√
1− 9

25
+

√
1− 16

25

)
...

Answer:

Fix an integer n and let xi = i
n . Define a step function tn : [0, 1] → R by tn(x) =√

1− x2i−1 if xi−1 ≤ x < xi. Then
∫ 1

0
tn = an. Here’s a picture of t20

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Now, f defined by f(x) =
√
1− x2 is integrable on [0, 1] and we have∫ 1

0

√
1− x2dx = inf

n

∫ 1

0
tn = lim

n→∞

∫ 1

0
tn = lim

n→∞
an.

Since
∫ 1
0

√
1− x2dx = π

4 , we have {an} → π
4 .
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Problem 2. Series. Determine whether they converge absolutely, converge conditionally, or
diverge. Give brief, but conclusive, evidence supporting your answers.

(a)
∞∑
n=2

1

n(log(n)2)

Answer:

This series converges by the integral test. Let f(x) = 1
x(log(x))2

. Note that f is decreasing

(f ′(x) = − 2+log(x)
x2(log(x))2

< 0 for x > 1) and∫ n

1
f =

1

log(2)
− 1

log(n)
−→
n→∞

1

log(2)
,

which is finite.

(b)
∞∑
n=1

n!nn

(2n)!

Answer:

We use the ratio test. Note that an = n!nn

(2n)! > 0 and{
an+1

an

}
=

{(
(n+ 1)!(n+ 1)n+1

(2n+ 2)!

)(
(2n)!

n!nn

)}
=

{
(n+ 1)(n+ 1)

(2n+ 2)(2n+ 1)

(
n+ 1

n

)n}
→ e

4
.

Since 0 < e
4 < 1, the series converges.
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Problem 2. Continued.

(c)
∞∑
n=1

1

n1+
1
n

.

Answer:

Note that this is a series of positive terms. We do a limit comparison test with the divergent
harmonic series:

lim
n→∞

1
n
1

n1+ 1
n

= lim
n→∞

n
1
n = lim

n→∞
exp

(
1

n
log(n)

)
= 1.

Since 1 6= 0,∞, we conclude that the series in question diverges.

(d)
∞∑
n=1

log

(
1 +

1

n

)
Answer:

This series diverges: we use a limit comparision with the harmonic series. Note that
log
(
1 + 1

n

)
> 0 and

lim
n→∞

log
(
1 + 1

n

)
1
n

= 1.

Since 1 6= 0,∞, the limit comparison test says that
∑∞

n=1 log
(
1 + 1

n

)
and

∞∑
n=1

1

n
do the

same thing, which is diverge.
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Problem 2. Continued.

(e)
∞∑
n=2

log

(
(2n− 1)(n− 1)

(n)(2n− 3)

)
Answer:

Here, we examine the n-th partial sum:

sn = log

(
(3)(1)

(2)(1)

)
+ log

(
(5)(2)

(3)(3)

)
+ log

(
(7)(3)

(4)(5)

)
+ log

(
(9)(4)

(5)(7)

)
+ · · ·+ log

(
(2n− 1)(n− 1)

(n)(2n− 3)

)
= log

(
(3)(1)(5)(2)(7)(3)(9)(4) · · · (2n− 1)(n− 1)

(2)(1)(3)(3)(4)(5)(5)(7) · · · (n)(2n− 3)

)
= log

(
2n− 1

n

)
.

As n→∞, sn → log(2). That is, the series converges and has the sum log(2).

(f)
∞∑
n=1

(
n

n+ 1

)3n

Answer:

As n → ∞, the n-th term
(

n
n+1

)3n
→ 1

e3
6= 0. Therefore, by the n-th term test, the

series
∑∞

n=1

(
n
n+1

)3n
diverges.
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Problem 2. Continued.

(g)
∞∑
k=1

ekk!

kk

Answer:

Starting with the right inequality of (3) in part (b) of the last problem

kk

ek−1
< k!⇒ ek−1k!

kk
> 1⇒ ekk!

kk
> e.

Therefore, {
ekk!

kk

}
9 0

and the series diverges by the n-th term test.

(h)
∞∑
k=1

kk

ekk!

Answer:

Note that ∑
k

1

k
diverges ⇒

∑
k

1

ek
diverges ⇒

∞∑
k=1

kk

ekk!
diverges.

The last implication follows from the ordinary comparison test and the inequality:

1

ek
<

kk

ekk!

which is obtained by dividing (k − 1)! <
kk

ek−1
(which is the left hand part of (3) in part

(b) of the last problem) by 1
(k!)(e) .
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Problem 3. Prove or disprove:

(a) If
∞∑
n=1

an converges, then
∞∑
n=1

a2n converges.

Answer:

This statement is false. For example,
∞∑
n=1

(−1)n+1 1√
n

converges but
∞∑
n=1

(
(−1)n+1 1√

n

)2

=

∞∑
n=1

1

n
diverges.

(b) Suppose an > 0 for all n ∈ N and
∞∑
n=1

an converges. Then
∞∑
n=1

sin (an) converges also.

Answer:

This is true. If
∞∑
n=1

an then an → 0, so there exists a natural number N so that if n ≥ N ,

an < π. Then, for n > N , both an and sin (an) are positive and the limit comparison test
applies. Since {an} → 0, we have {

sin an
an

}
→ 1

and we can conclude that
∞∑
n=1

sin (an) converges also.
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Problem 3. Continued.

(c) If
∣∣∣∣an+1

an

∣∣∣∣→ 1

3
then for every k ∈ N,

∞∑
n=1

nkan converges.

Answer:

True. Apply the ratio test to
∞∑
n=1

|nkan|:

(n+ 1)k|an+1|
nk|an|

=

(
n+ 1

n

)k ∣∣∣∣an+1

an

∣∣∣∣→ (1)

(
1

3

)
=

1

3
.

(d) For any sequence {an} there exists k ∈ N so that
∞∑
n=1

an
kn

converges.

Answer:

This is False.
∞∑
n=1

n!

kn
diverges by the ratio test since

(n+1)!
kn+1

n!
kn

=
(n+ 1)k

n
→∞

for every number k.
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Problem 4. In 1904, H. Koch introduced the now famous “Koch curve.” It is defined as the
limit of a sequence of simple curves Cn which are defined recursively:

• C1 is an equilateral triangle.

• From the curve Cn−1 we obtain the curve Cn by placing a smaller equilateral triangle
onto the middle third of each straight side, pointing outward and erasing the base of the
new triangle (the old middle third).

Now, let Ln be the length of Cn (say you start with an equilateral triangle with sides of length
one, so L1 = 3). LetAn be the area enclosed by Cn. Decide whether {Ln} and {An} converge.

Answer:
Here’s a picture of C1, C2, C3, C4:

, , ,

First, we show that the perimeter tends to infinity. Consider C1 which has perimeter L1 = 3.
Since we get C2 from C1 by replacing each edge by four smaller edges, 1

3 as long, we have
L2 = 4

3L1 =
(
4
3

)
3 Then, we get C3 from C2 by replacing each edge of C2 by four edges 1

3 as
long giving L3 =

4
3L2 =

(
4
3

)2
3. Iterating, we find that

Ln =

(
4

3

)n−1
3,

and as n→∞, we see that {Ln} → ∞.
Now, let us consider area. We can compute An by adding the areas of little triangles to the area
of An−1. The number of triangles we add to get Cn from Cn−1 equals the number of sides of
Cn−1. To determine the number of sides, note that C1 has 3, C2 has (3)(4), C3 has (3)(42), and
in general, the number of sides of Ck is 3(4)k−1. So, we have

An = An−1 + (3)(4n−2)(the area of each little triangle added).

To figure out the area of each little triangle added, note that those added at step k are 1
9 the size

of those added at step k − 1. So, we can determine An recursively

An = A1 +

(
1

3
A1 +

1

3

(
4

9

)
A1 +

1

3

(
4

9

)2

A1 + · · ·+
1

3

(
4

9

)n−2
A1

)

As n→∞, what is in parentheses becomes a convergent geometric series with ratio r = 4
9 and

we have

lim
n→∞

An = A1 +
1
3A1

1− 4
9

=
8

5
A1 =

2
√
3

10
.
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Problem 5. Use the power series for arctan(x) to approximate π to 5 decimal places. (Hint:
The series you get converges too slowly at x = 1. First check that 4 arctan

(
1
2

)
+

4arctan
(
1
3

)
= π and ...)

Answer:
Recall that tan(x+ y) = tan(x)+tan(y)

1−tan(x) tan(y) . So,

tan

(
arctan

(
1

2

)
+ arctan

(
1

3

))
=

1
2 + 1

3

1−
(
1
2

) (
1
3

) =
5
6
5
6

= 1.

Thus, arctan
(
1
2

)
+ arctan

(
1
3

)
= π

4 .
If we want to approximate π accurate to five decimal places, we need to approximate the sum
4 arctan

(
1
2

)
+ 4arctan

(
1
3

)
with an error less than .000005. We have

4 arctan

(
1

2

)
= 4

(
1

2

)
− 4

3

(
1

2

)3

+
4

5

(
1

2

)5

− 4

7

(
1

2

)7

+ · · ·

which is a convergent alternating series of terms of decreasing magnitude, hence can be approxi-
mated by 4

(
1
2

)
− 4

3

(
1
2

)3
+· · ·− 4

15

(
1
2

)15 with an error less than 4
17

(
1
2

)17
= 1

557056 < .0000002.
Likewise,

4 arctan

(
1

3

)
= 4

(
1

3

)
− 4

3

(
1

3

)3

+
4

5

(
1

3

)5

− 4

7

(
1

3

)7

+ · · ·

is a convergent alternating series of terms of decreasing magnitude, hence can be approximated
by 4

(
1
3

)
− 4

3

(
1
3

)3
+ · · ·+− 4

11

(
1
3

)11 with an error less than 4
13

(
1
3

)13
= 4

20726199 < .0000002.
Therefore, the sum

4

(
1

2

)
− 4

3

(
1

2

)3

+ · · · − 4

15

(
1

2

)15

+ 4

(
1

3

)
− 4

3

(
1

3

)3

+ · · · − 4

11

(
1

3

)11

=
13964621526980227

4445076601405440
= 3.141592998 . . .

is an approximation of π accurate to five decimal places.

Remark: Here’s a computation about the accuracy of this approximation, in case more details
are desired:∣∣∣∣∣
(
4

(
1

2

)
+ · · · − 4

15

(
1

2

)15

+ 4

(
1

3

)
+ · · · − 4

11

(
1

3

)11
)
− π

∣∣∣∣∣
=

∣∣∣∣∣
(
4

(
1

2

)
+ · · · − 4

15

(
1

2

)15

+ 4

(
1

3

)
+ · · · − 4

11

(
1

3

)11
)
−
(
4 arctan

(
1

3

)
+ 4arctan

(
1

2

))∣∣∣∣∣
≤

∣∣∣∣∣4
(
1

2

)
+ · · · − 4

15

(
1

2

)15

− 4 arctan

(
1

3

)∣∣∣∣∣+
∣∣∣∣∣4
(
1

3

)
+ · · · − 4

11

(
1

3

)11

− 4 arctan

(
1

2

)∣∣∣∣∣
< .000002 + .0000002

< .0000005

So 3.141592998 is an approximation of π accurate to at least five decimal places (it is, in fact,
accurate to six decimal places).
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Problem 6. Recall, the Fibonacci numbers fn are defined inductively by f0 = 0, f1 = 1 and
fn = fn−1+fn−2 for n > 1. Define the “Fibonacci series” to be the power series

∞∑
n=0

fnx
n = x+ x2 + 2x3 + 3x4 + 5x5 + · · ·

Prove that the Fibonacci series converges for − 2

1 +
√
5
< x <

2

1 +
√
5

and for those x for

which it converges
∞∑
n=0

fnx
n =

x

1− x− x2
.

Answer:
First we check that x2f(x) + xf(x)− f(x) = −x.

x2f(x) + xf(x)− f(x) = x2
∞∑
n=0

fnx
n + x

∞∑
n=0

fnx
n −

∞∑
n=0

fnx
n

=

∞∑
n=2

fn−2x
n +

∞∑
n=1

fn−1x
n −

∞∑
n=0

fnx
n

=
∞∑
n=2

fn−2x
n +

(
x+

∞∑
n=2

fn−1x
n

)
−

(
x+ x2 +

∞∑
n=2

fnx
n

)

= x2 − (x+ x2) +

∞∑
n=2

(fn−1 + fn − fn+1)x
n

= −x.

The computation above shows that if the series converges to f(x), then f must satisfy

x2f(x) + xf(x)− f(x) = −x⇒ f(x) =
x

1− (x2 + x)
.

Now, consider the geometric series
∞∑
n=0

xr with ratio r = x2 + x. This series converges and has

the sum x
1−(x2+x) for

|r| < 1⇔ |x2 + x| < 1⇔ −φ < x <
1

φ

where φ is the famous golden ratio φ = 1+
√
5

2 and 1
φ = 2

1+
√
5
= 1−

√
5

2 .

Remark: The series
∑∞

n=0 x(x + x2)n differs from the Fibonacci series by a re-arrangement.
However, since (both) converge absolutely, this does not affect the sum. To be rigorous, pick
any number s with 0 < s < 1

φ . Then, the series
∑∞

n=0 s(s
2 + s) converges absolutely at s.

In particular, the re-arrangement
∑∞

n=0 fns
n converges absolutely. Since it’s a power series

centered at 0, it must converge for all x with |x| < s. This holds for all s < 1
φ , therefore the

series
∑∞

n=0 fns
n converges for all x with |x| < 1

φ .
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Problem 7. When asked to approximate
∫ 1

2

0

√
1 + 2x3dx, two students responded by cor-

rectly approximating
√
1 + 2x3 by a Taylor polynomial ≈ 1 + x3 and then com-

puting ∫ 1
2

0
(1 + x3)dx =

33

64
= 0.515625.

When asked to bound the error in their approximations, one student wrote:

Let f(x) =
√
1 + 2x3. By Taylor’s theorem, the remainder is given by

R3(x) :=
√

1 + 2x3 − (1 + x3) =
f (4)(c)

4!

(
1

2

)4

for some c ∈
[
0,

1

2

]
.

Since

f (4)(x) = − 180x2

(1 + 2x3)
3
2

+
972x5

(1 + 2x3)
5
2

− 1215x8

(1 + 2x3)
7
2

has a maximum absolute value of approximately 17.69612 we have∣∣∣∣∣
∫ 1

2

0

√
1 + 2x3 −

∫ 1
2

0
(1 + x3)dx

∣∣∣∣∣ ≤
∫ 1

2

0

∣∣∣√1 + 2x3 − (1 + x3)
∣∣∣ dx

=

∫ 1
2

0
|R3(x)|dx =

1

2
R3(x) ≤

1

2

(
18

4!

(
1

2

)4
)

=
3

128

The other student used another method to obtain a better error bound of
1

1792
. Your problem:

justify the statement
∫ 1

2

0

√
1 + 2x3 ≈ 33

64
= 0.515625 with an error less than

1

1792
.

Answer:
Note that ∫ 1

2

0

√
1 + 2x3 =

∫ 1
2

0

(
1 + x3 − x6

2
+− · · ·

)
dx

=

(
x+

x4

4
− x7

14
+− · · ·

)] 1
2

0

=
1

2
+

1

64
− 1

1792
+− · · ·

Since this is a convergent alternating series with decreasing terms, it can be approximated by
the sum of the first two terms, with an error less than the third. That is∫ 1

2

0

√
1 + 2x3 ≈ 1

2
+

1

64
=

33

64

with an error less than
1

1792
.
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Problem 8. Here’s a remarkable fact:

lim
n→∞

n
n
√
n!

= e

and an outline of how to prove it.

(a) First show that

log(1) + log(2) + · · ·+ log(n− 1) <

∫ n

1
log(x)dx < log(2) + log(3) + · · ·+ log(n).

Answer:

The log function is increasing, which gives for each fixed k ∈ N the inequality

log(k) < log(x) < log(k + 1) for all k < x < k + 1.

Integrating over [k, k + 1] gives

log(k) <

∫ k+1

k
log(x)dx < log(k + 1).

Summing from k = 1 to k = n− 1 gives the result.
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Problem 8. Continued.

(b) Then show that
nn

en−1
< n! <

(n+ 1)n+1

en
.

Answer:

Let’s write the conclusion from part (a) as

log((n− 1)!) <

∫ n

1
log(x)dx < log(n!). (1)

In the center we have∫ n

1
log(x)dx = x log(x)− x

]n
1

= n log(n)− n+ 1 = log(nn)− (n− 1)

Write log(nn) − (n − 1) = log(nn) − log(exp(n − 1)) = log
(
nn

en−1

)
and substitute in

the middle of (1) to get

log((n− 1)!) < log

(
nn

en−1

)
< log(n!). (2)

Since the log function is strictly increasing, log(a) < log(b)⇔ a < b so (2) implies

(n− 1)! <
nn

en−1
< n! (3)

Replacing n by n+ 1 produces

n! <
(n+ 1)(n+1)

en
< (n+ 1)!. (4)

The right part of (3) and the left part of (4) gives the result.

(c) You should be able to find your way to conclude that lim
n→∞

n
n
√
n!

= e.

Answer:

Part (b) and some algebra gives

n

e
<

n
√
n! <

(n+ 1)1+
1
n

e1+
1
n

⇒ ne1+
1
n

(n+ 1)1+
1
n

<
n

n
√
n!
< e.

Since, {
ne1+

1
n

(n+ 1)1+
1
n

}
→ e,

the squeeze theorem gives, lim
n→∞

n
n
√
n!

= e.


