- **Problem 1.** Suppose F^+ is a subset of a field F. There are three "order axioms" that F and F^+ might satisfy:
- **A1.** If $x, y \in F^+$ then $x + y \in F^+$ and $xy \in F^+$.
- A2. For every nonzero $x \in F$, either $x \in F^+$ or $-x \in F^+$, but not both.
- **A3.** $0 \notin F^+$.

The real numbers \mathbb{R} and the positive reals $\mathbb{R}^+ = \{x \in \mathbb{R} : x > 0\}$ satisfy axioms A1, A2, A3.

If we define the set $\mathbb{C}^+ = \{z \in \mathbb{C} \mid \text{Real}(z) > 0\}$, then which of the order axioms are violated? *Answer*: **Problem 2.** Prove that if $\{f_n\}$ is a sequence of integrable functions that converges uniformly to f on an interval [a, b] then the sequence of numbers $\left\{\int_a^b f_n\right\} \to \int_a^b f$.

Problem 3. Prove an "improved" *n*-th term test for divergence:

Suppose $\{a_n\}$ is a sequence of nonnegative numbers and $\{na_n\} \to L$. If $L \neq 0$ then $\sum_{n=1}^{\infty} a_n$ diverges.

Problem 4. Let $f : \mathbb{R} \to \mathbb{R}$. It's not too hard to see that |f(s) - f(t)| < |s - t| for all $s, t \in \mathbb{R}$ then f is continuous. Prove that if $|f(s) - f(t)| < |s - t|^2$ for all $s, t \in \mathbb{R}$ then f is constant.

Problem 5. You already know that $\lim_{n \to \infty} \sum_{k=0}^{n} \frac{1}{k!} = e$ and $\lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n = e$. Prove that for every $n \in \mathbb{N}$, $\left(1 + \frac{1}{n}\right)^n \le \sum_{k=0}^{n} \frac{1}{k!}$

Problem 6. Prove that for all x, $1 + x + \frac{1}{2!}x^2 + \frac{1}{3!}x^3 \le e^x$.

Note: it is *not* true that
$$1 + x + \frac{1}{2!}x^2 + \frac{1}{3!}x^3 + \frac{1}{4!}x^4 \le e^x$$
 for all x .

EXAM

Challenge Final Exam

Math 158: Spring 2014

May 20, 2014

- Make sure you answers are clearly and carefully written. Proofread!
- Neatness counts.
- There are a total of 34 points on this exam. For your information: $21/32 \approx 62\%$, $25/35 \approx 73\%$, $31/34 \approx 91\%$

Success!