Problem 1. Suppose F^{+}is a subset of a field F. There are three "order axioms" that F and F^{+}might satisfy:

A1. If $x, y \in F^{+}$then $x+y \in F^{+}$and $x y \in F^{+}$.
A2. For every nonzero $x \in F$, either $x \in F^{+}$or $-x \in F^{+}$, but not both.
A3. $0 \notin F^{+}$.
The real numbers \mathbb{R} and the positive reals $\mathbb{R}^{+}=\{x \in \mathbb{R}: x>0\}$ satisfy axioms $\mathbf{A 1}, \mathbf{A} 2, \mathbf{A 3}$.
If we define the set $\mathbb{C}^{+}=\{z \in \mathbb{C} \mid \operatorname{Real}(z)>0\}$, then which of the order axioms are violated?
Answer:

Problem 2. Prove that if $\left\{f_{n}\right\}$ is a sequence of integrable functions that converges uniformly to f on an interval $[a, b]$ then the sequence of numbers $\left\{\int_{a}^{b} f_{n}\right\} \rightarrow \int_{a}^{b} f$.
Answer:

Problem 3. Prove an "improved" n-th term test for divergence:
Suppose $\left\{a_{n}\right\}$ is a sequence of nonnegative numbers and $\left\{n a_{n}\right\} \rightarrow L$. If $L \neq 0$ then $\sum_{n=1}^{\infty} a_{n}$ diverges.

Answer:

Problem 4. Let $f: \mathbb{R} \rightarrow \mathbb{R}$. It's not too hard to see that $|f(s)-f(t)|<|s-t|$ for all $s, t \in \mathbb{R}$ then f is continuous. Prove that if $|f(s)-f(t)|<|s-t|^{2}$ for all $s, t \in \mathbb{R}$ then f is constant.

Answer:

Problem 5. You already know that $\lim _{n \rightarrow \infty} \sum_{k=0}^{n} \frac{1}{k!}=e$ and $\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}=e$. Prove that for every $n \in \mathbb{N}$,

$$
\left(1+\frac{1}{n}\right)^{n} \leq \sum_{k=0}^{n} \frac{1}{k!}
$$

Answer:

Problem 6. Prove that for all $x, 1+x+\frac{1}{2!} x^{2}+\frac{1}{3!} x^{3} \leq e^{x}$.
Note: it is not true that $1+x+\frac{1}{2!} x^{2}+\frac{1}{3!} x^{3}+\frac{1}{4!} x^{4} \leq e^{x}$ for all x. Answer:

EXAM

Challenge Final Exam

Math 158: Spring 2014
May 20, 2014
\qquad

- Make sure you answers are clearly and carefully written.

Proofread!

- Neatness counts.
- There are a total of 34 points on this exam. For your information: $21 / 32 \approx 62 \%, 25 / 35 \approx 73 \%, 31 / 34 \approx 91 \%$

Success!

