EXAM

Challenge Final Exam

Math 158: Spring 2014

May 20, 2014

ANSWERS

- **Problem 1.** Suppose F^+ is a subset of a field F. There are three "order axioms" that F and F^+ might satisfy:
- A1. If $x, y \in F^+$ then $x + y \in F^+$ and $xy \in F^+$.
- A2. For every nonzero $x \in F$, either $x \in F^+$ or $-x \in F^+$, but not both.
- A3. $0 \notin F^+$.

The real numbers \mathbb{R} and the positive reals $\mathbb{R}^+ = \{x \in \mathbb{R} : x > 0\}$ satisfy axioms A1, A2, A3.

If we define the set $\mathbb{C}^+ = \{z \in \mathbb{C} \mid \text{Real}(z) > 0\}$, then which of the order axioms are violated? *Answer*:

- Axiom 1 is violated since you have $1 + 2i \in \mathbb{C}^+$, but $(1 + 2i)(1 + 2i) = -3 + 4i \notin \mathbb{C}^+$.
- Axiom 2 is violated since you have the number $3i \in \mathbb{C}$, but neither 3i nor -3i are in \mathbb{C}^+ .
- Axiom 3 is satisfied since $0 \notin \mathbb{C}^+$.

Problem 2. Prove that if $\{f_n\}$ is a sequence of integrable functions that converges uniformly to f on an interval [a, b] then the sequence of numbers $\left\{\int_a^b f_n\right\} \to \int_a^b f$.

Answer:

Suppose $\{f_n\} \to f$ uniformly on [a, b]. To prove that $\left\{\int_a^b f_n\right\} \to \int_a^b f$, let $\epsilon > 0$ be given. Since $\{f_n\} \to f$ uniformly on [a, b], there exists $N \in \mathbb{N}$ so that if $n \ge N$, $|f_n(x) - f(x)| < \frac{\epsilon}{b-a}$ for all $x \in [a, b]$. Now for $n \ge N$ we have

$$\left| \int_{a}^{b} f_{n}(x) \, dx - \int_{a}^{b} f(x) \, dx \right| \leq \int_{a}^{b} \left| f_{n}(x) - f(x) \right| \, dx$$
$$\leq \int_{a}^{b} \frac{\epsilon}{b-a} \, dx$$
$$= \epsilon.$$

This proves that $\left\{\int_a^b f_n\right\} \to \int_a^b f$.

Problem 3. Prove an "improved" *n*-th term test for divergence:

Suppose
$$\{a_n\}$$
 is a sequence of nonnegative numbers and $\{na_n\} \to L$. If $L \neq 0$
then $\sum_{n=1}^{\infty} a_n$ diverges.

Answer:

By the limit comparison test, if $\lim_{n \to \infty} na_n = \lim_{n \to \infty} \frac{a_n}{\frac{1}{n}} = L \neq 0$, then the series $\sum_{n=1}^{\infty} a_n$ and the series $\sum_{n=1}^{\infty} \frac{1}{n}$ do the same thing, which is diverge.

Problem 4. Let $f : \mathbb{R} \to \mathbb{R}$. It's not too hard to see that |f(s) - f(t)| < |s - t| for all $s, t \in \mathbb{R}$ then f is continuous. Prove that if $|f(s) - f(t)| < |s - t|^2$ for all $s, t \in \mathbb{R}$ then f is constant

is constant.

Answer:

Since $|f(s) - f(t)| \le |s - t|$, we have $|f(x + h) - f(x)| \le |h|^2$. Therefore,

$$\left|\frac{f(x+h) - f(x)}{h}\right| \le |h| \Rightarrow -|h| \le \frac{f(x+h) - f(x)}{h} \le |h|.$$

So, by the squeeze theorem,

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = 0.$$

Therefore, f is constant.

Problem 5. You already know that $\lim_{n \to \infty} \sum_{k=0}^{n} \frac{1}{k!} = e$ and $\lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n = e$. Prove that for every $n \in \mathbb{N}$, $\left(1 + \frac{1}{n}\right)^n \leq \sum_{k=0}^{n} \frac{1}{k!}$

Answer:

We use the binomial theorem to expand

$$\left(1+\frac{1}{n}\right)^n = 1 + \binom{n}{1}\left(\frac{1}{n}\right) + \binom{n}{2}\left(\frac{1}{n}\right)^2 + \dots \left(\frac{1}{n}\right)^n$$

$$= 1 + 1 + \frac{(n)(n-1)}{(2!)(n)(n)} + \frac{(n)(n-1)(n-2)}{(3!)(n)(n)(n)} + \dots + \frac{n!}{n!(n^n)}$$

$$\le 1 + 1 + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{n!}.$$

The last inequality follows from using the fact that for each term, we have $\frac{(n)(n-1)(n-2)\cdots(n-k)}{k!n^k} < \frac{1}{k!}$ since $\frac{(n)(n-1)(n-2)\cdots(n-k)}{n^k} < \frac{(n)(n)\cdots(n)}{n^k} = 1.$

Problem 6. Prove that for all x, $1 + x + \frac{1}{2!}x^2 + \frac{1}{3!}x^3 \le e^x$.

Note: it is not true that $1 + x + \frac{1}{2!}x^2 + \frac{1}{3!}x^3 + \frac{1}{4!}x^4 \le e^x$ for all x.

Answer:

Let $f(x) = e^x$. Note that $1 + x + \frac{1}{2!}x^2 + \frac{1}{3!}x^3$ is the degree three Taylor approximation for f(x) centered at 0. By Taylor's theorem

$$f(x) - \left(1 + x + \frac{1}{2!}x^2 + \frac{1}{3!}x^3\right) = \frac{f^{(4)x^4}(\theta)}{4!}$$

for some θ between 0 and x. The result follows from observing that $f^{(4)}(\theta)x^4 = e^{\theta}x^4 \ge 0$.