EXAM

Challenge Final Exam

Math 158: Spring 2014
May 20, 2014

ANSWERS

Problem 1. Suppose F^{+}is a subset of a field F. There are three "order axioms" that F and F^{+}might satisfy:

A1. If $x, y \in F^{+}$then $x+y \in F^{+}$and $x y \in F^{+}$.
A2. For every nonzero $x \in F$, either $x \in F^{+}$or $-x \in F^{+}$, but not both.
A3. $0 \notin F^{+}$.
The real numbers \mathbb{R} and the positive reals $\mathbb{R}^{+}=\{x \in \mathbb{R}: x>0\}$ satisfy axioms $\mathbf{A 1}, \mathbf{A} 2, \mathbf{A 3}$.
If we define the set $\mathbb{C}^{+}=\{z \in \mathbb{C} \mid \operatorname{Real}(z)>0\}$, then which of the order axioms are violated?

Answer:

- Axiom 1 is violated since you have $1+2 i \in \mathbb{C}^{+}$, but $(1+2 i)(1+2 i)=-3+4 i \notin \mathbb{C}^{+}$.
- Axiom 2 is violated since you have the number $3 i \in \mathbb{C}$, but neither $3 i$ nor $-3 i$ are in \mathbb{C}^{+}.
- Axiom 3 is satisfied since $0 \notin \mathbb{C}^{+}$.

Problem 2. Prove that if $\left\{f_{n}\right\}$ is a sequence of integrable functions that converges uniformly to f on an interval $[a, b]$ then the sequence of numbers $\left\{\int_{a}^{b} f_{n}\right\} \rightarrow \int_{a}^{b} f$.
Answer:
Suppose $\left\{f_{n}\right\} \rightarrow f$ uniformly on $[a, b]$. To prove that $\left\{\int_{a}^{b} f_{n}\right\} \rightarrow \int_{a}^{b} f$, let $\epsilon>0$ be given.
Since $\left\{f_{n}\right\} \rightarrow f$ uniformly on $[a, b]$, there exists $N \in \mathbb{N}$ so that if $n \geq N,\left|f_{n}(x)-f(x)\right|<\frac{\epsilon}{b-a}$ for all $x \in[a, b]$. Now for $n \geq N$ we have

$$
\begin{aligned}
\left|\int_{a}^{b} f_{n}(x) d x-\int_{a}^{b} f(x) d x\right| & \leq \int_{a}^{b}\left|f_{n}(x)-f(x)\right| d x \\
& \leq \int_{a}^{b} \frac{\epsilon}{b-a} d x \\
& =\epsilon
\end{aligned}
$$

This proves that $\left\{\int_{a}^{b} f_{n}\right\} \rightarrow \int_{a}^{b} f$.

Problem 3. Prove an "improved" n-th term test for divergence:

$$
\begin{aligned}
& \text { Suppose }\left\{a_{n}\right\} \text { is a sequence of nonnegative numbers and }\left\{n a_{n}\right\} \rightarrow L . \text { If } L \neq 0 \\
& \text { then } \sum_{n=1}^{\infty} a_{n} \text { diverges. }
\end{aligned}
$$

Answer:
By the limit comparison test, if $\lim _{n \rightarrow \infty} n a_{n}=\lim _{n \rightarrow \infty} \frac{a_{n}}{\frac{1}{n}}=L \neq 0$, then the series $\sum_{n=1}^{\infty} a_{n}$ and the series $\sum_{n=1}^{\infty} \frac{1}{n}$ do the same thing, which is diverge.

Problem 4. Let $f: \mathbb{R} \rightarrow \mathbb{R}$. It's not too hard to see that $|f(s)-f(t)|<|s-t|$ for all $s, t \in \mathbb{R}$ then f is continuous. Prove that if $|f(s)-f(t)|<|s-t|^{2}$ for all $s, t \in \mathbb{R}$ then f is constant.

Answer:
Since $|f(s)-f(t)| \leq|s-t|$, we have $|f(x+h)-f(x)| \leq|h|^{2}$. Therefore,

$$
\left|\frac{f(x+h)-f(x)}{h}\right| \leq|h| \Rightarrow-|h| \leq \frac{f(x+h)-f(x)}{h} \leq|h| .
$$

So, by the squeeze theorem,

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=0 .
$$

Therefore, f is constant.

Problem 5. You already know that $\lim _{n \rightarrow \infty} \sum_{k=0}^{n} \frac{1}{k!}=e$ and $\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}=e$. Prove that for every $n \in \mathbb{N}$,

$$
\left(1+\frac{1}{n}\right)^{n} \leq \sum_{k=0}^{n} \frac{1}{k!}
$$

Answer:

We use the binomial theorem to expand

$$
\begin{aligned}
\left(1+\frac{1}{n}\right)^{n} & =1+\binom{n}{1}\left(\frac{1}{n}\right)+\binom{n}{2}\left(\frac{1}{n}\right)^{2}+\cdots\left(\frac{1}{n}\right)^{n} \\
& =1+1+\frac{(n)(n-1)}{(2!)(n)(n)}+\frac{(n)(n-1)(n-2)}{(3!)(n)(n)(n)}+\cdots+\frac{n!}{n!\left(n^{n}\right)} \\
& \leq 1+1+\frac{1}{2!}+\frac{1}{3!}+\cdots+\frac{1}{n!}
\end{aligned}
$$

The last inequality follows from using the fact that for each term, we have $\frac{(n)(n-1)(n-2) \cdots(n-k)}{k!n^{k}}<$ $\frac{1}{k!}$ since $\frac{(n)(n-1)(n-2) \cdots(n-k)}{n^{k}}<\frac{(n)(n) \cdots(n)}{n^{k}}=1$.

Problem 6. Prove that for all $x, 1+x+\frac{1}{2!} x^{2}+\frac{1}{3!} x^{3} \leq e^{x}$.
Note: it is not true that $1+x+\frac{1}{2!} x^{2}+\frac{1}{3!} x^{3}+\frac{1}{4!} x^{4} \leq e^{x}$ for all x.
Answer:
Let $f(x)=e^{x}$. Note that $1+x+\frac{1}{2!} x^{2}+\frac{1}{3!} x^{3}$ is the degree three Taylor approximation for $f(x)$ centered at 0 . By Taylor's theorem

$$
f(x)-\left(1+x+\frac{1}{2!} x^{2}+\frac{1}{3!} x^{3}\right)=\frac{f^{(4) x^{4}}(\theta)}{4!}
$$

for some θ between 0 and x. The result follows from observing that $f^{(4)}(\theta) x^{4}=e^{\theta} x^{4} \geq 0$.

