Problem 1. [2 points each] Compute.
(a) Write $\frac{1}{3+4 i}$ in the form $a+b i$.
(b) Write $-2+2 \sqrt{3} i$ in polar form $z=r e^{i \theta}$.

Problem 2. [4 points] Suppose an aircraft was on a runway in Norfolk Virgina in the morning and six hours later it was on a runway on Midway Island. Prove that the aircraft created at least two sonic booms that day.

Hint: A sonic boom is the sound associated when the pressure waves created by an object traveling through air converge into a single shock wave. This happens when the object travels at speed of sound, about 761 mph . Norfolk and Midway are over 5600 miles apart.

## Problem 3. [2 points each]

(a) Define the number $e$.
(b) Prove that $\lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{x}=e$.

Problem 3. Continued.
(c) Prove that: if $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfies $f^{\prime}=f$ then $f(x)=A e^{x}$ for some constant $A$.

Hint: One of the simplest ways to do it is to prove that $\frac{f(x)}{e^{x}}$ is constant.

Problem 4. [4 points] Consider the three sequence of functions defined by

$$
a_{n}(x)=\frac{\sin (n x)}{n}, \quad b_{n}(x)=\frac{\sin (n x)}{n x}, \text { and } c_{n}(x)=\frac{\sin (n x)}{x} .
$$

Each of the pictures below shows a sketch of the graphs of the first five functions of the one of the sequences. Label each picture with $\left\{a_{n}\right\},\left\{b_{n}\right\}$, or $\left\{c_{n}\right\}$ and say whether the sequence of functions pictured

- converges uniformly on $[-\pi, \pi]$,
- converges pointwise on $[-\pi, \pi]$,
- does not converge on $[-\pi, \pi]$.



Problem 5. [2 points each] It's easy to check that $\frac{1}{n^{2}+n}=\frac{1}{n}-\frac{1}{n+1}$. Use this fact to compute
(a) $\int_{1}^{\infty} \frac{d x}{x^{2}+x}$
(b) $\sum_{n=1}^{\infty} \frac{1}{n^{2}+n}$

## Matching [1 point each]

Problem 6. [1 point each] Below the graph of function $f$ is sketched. Define $g$ by

$$
g(x)=\int_{0}^{x} f(t) d t \text { for } 0 \leq x \leq 6 .
$$


(a) $\int_{0}^{6} f$
(b) $\int_{0}^{6} f^{\prime}$
(c) $g$ has an absolute maximum at
(d) $g(0)$
(e) $g^{\prime}(0)$
(f) $g^{\prime \prime}(0)$
$\begin{array}{lllllllll}\text { Here are the answers (out of order): } & -7.5 & -3 & 0 & 3 & 4 & 6 & 10.2\end{array}$

Problem 7. [2 points each] Let $f(x)=e^{\sin (x)}$ and let $p(x)$ be the degree two Taylor polynomial for $f$ centered at zero.
(a) Find (by any method) the polynomial $p$.
(b) Carefully state Taylor's remainder formula for the difference $f(x)-p(x)$.

## Problem 7.

(c) Compute $\int_{-\frac{1}{2}}^{\frac{1}{2}} p(x) d x$ and use the fact that $\left|f^{\prime \prime \prime}(\theta)\right|<\frac{5}{2}$ for $-\frac{1}{2} \leq \theta \leq \frac{1}{2}$ to find a bound on the error

$$
\left|\int_{-\frac{1}{2}}^{\frac{1}{2}} f(x) d x-\int_{-\frac{1}{2}}^{\frac{1}{2}} p(x) d x\right| .
$$

## EXAM

Final Exam

Math 158: Spring 2014
May 20, 2014

- Make sure you answers are clearly and carefully written.

Proofread!

- Neatness counts.
- There are a total of 34 points on this exam. For your information: $21 / 32 \approx 62 \%, 25 / 35 \approx 73 \%, 31 / 34 \approx 91 \%$


## Success!

