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Problem 1. [2 points each] Compute.

(a) Write
1

3 + 4i
in the form a+ bi.

Answer:

z−1 = z̄
|z|2 so

1

3 + 4i
= 3−4i

25 = 3
25 −

4
25 i.

(b) Write −2 + 2
√
3i in polar form z = reiθ.

Answer:

r = |z| =
√
4 + 12 = 4 and θ satisfies cos(θ) = −2 and sin(θ) = 2

√
3 so θ = 2π

3 . Thus
−2 + 2

√
3i = 4e

2π
3
i.

Problem 2. [4 points] Suppose an aircraft was on a runway in Norfolk Virgina in the morning
and six hours later it was on a runway on Midway Island. Prove that the aircraft

created at least two sonic booms that day.

Hint: A sonic boom is the sound associated when the pressure waves created by an object
traveling through air converge into a single shock wave. This happens when the object travels
at speed of sound, about 761 mph. Norfolk and Midway are over 5600 miles apart.

Answer:
By the mean value theorem, there must be some time during the day, say T hours after takeoff,
when the aircraft was travelling at

total distand
total time

>
5600mi

6hrs
> 900mi/hr.

Since the aircraft begins at time 0 with zero velocity and at time T it is travelling at over 900
mi/hr, and the speed of sound is between 0 and 900 the intermediate value theorem says that the
there was some time before T when the aircraft was travelling at the speed of sound. Again,
since the aircraft was travelling at over 900mi/hr at time T and then later the aircraft is at
rest, the intermediate value theorem again there was some point after T when the aircraft was
travelling at the speed of sound.



Final Exam : May 20, 2014 2

Problem 3. [2 points each]

(a) Define the number e.

Answer:

The number e is the unique number satisfying ln(e) = 1.

(b) Prove that lim
x→∞

(
1 +

1

x

)x
= e.

Answer:

First, note that

lim
x→∞

ln

(
1 +

1

x

)x
= lim

x→∞

ln
(
1 + 1

x

)
1
x

L
= lim

x→∞

(
1

1+ 1
x

) (
− 1
x2

)
− 1
x2

= lim
x→∞

(
1

1 + 1
x

)
= 1.

So,

ln

(
lim
x→∞

(
1 +

1

x

)x)
= lim

x→∞
ln

((
1 +

1

x

)x)
= ln(1).

Since ln
(
limx→∞

(
1 + 1

x

)x)
= 1 and e is the unique number for which ln(e) = 1, we

conclude that

lim
x→∞

(
1 +

1

x

)x
= e.

(c) Prove that: if f : R→ R satisfies f ′ = f then f(x) = Aex for some constant A.

Answer:

Suppose that f : R→ R satisfies f ′ = f . Since(
f(x)

ex

)′
=
exf ′(x)− f(x)ex

(ex)2
=
exf(x)− f(x)ex

(ex)2
= 0

we know that
f(x)

ex
is constant, say

f(x)

ex
= A. Therefore, f(x) = Aex.
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Problem 4. [4 points] Consider the three sequence of functions defined by

an(x) =
sin(nx)

n
, bn(x) =

sin(nx)

nx
, and cn(x) =

sin(nx)

x
.

Each of the pictures below shows a sketch of the graphs of the first five functions of the one of
the sequences. Label each picture with {an}, {bn}, or {cn} and say whether the sequence of
functions pictured

• converges uniformly on [−π, π],

• converges pointwise on [−π, π],

• does not converge on [−π, π].

-Π -
Π

2

Π

2

Π

-2

2

4

6

{cn} does not converge on [−π, π].

Note that {cn(0)} = {n} does not converge.

-Π -
Π

2

Π

2

Π

1

2

1

{bn} converges pointwise on [−π, π].

Note that {bn} → f where f(x) = 0 for x 6= 0 and
f(0) = 1. Since {bn} is a sequence of continuous
functions, if it converged uniformly, the limit would
have to be continuous, which it is not.

-Π -
Π

2

Π

2

Π

-1

1

{an} converges uniformly on [−π, π].

Note that |an| < 1
n for all x ∈ [π, π].
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Problem 5. [2 points each] It’s easy to check that
1

n2 + n
=

1

n
− 1

n+ 1
. Use this fact to

compute

(a)
∫ ∞

1

dx

x2 + x

Answer: ∫ ∞
1

dx

x2 + x
=

∫ ∞
1

(
1

x
− 1

x+ 1

)
= lim

B→∞

∫ B

1

(
1

x
− 1

x+ 1

)
= lim

B→∞
ln(B)− ln(B + 1) + ln(2)

= lim
B→∞

ln(
B

B + 1
+ ln(2)

= ln(2).

(b)
∞∑
n=1

1

n2 + n

Answer:

Look at the n-th partial sum of
∞∑
n=1

1

n2 + n
=

∞∑
n=1

1

n
− 1

n+ 1

sn =

(
1

1
− 1

2

)
+

(
1

2
− 1

3

)
+ · · ·+

(
1

n
− 1

n+ 1

)
=

1

1
− 1

n+ 1

and we see that {sn} → 1.
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Matching [1 point each]
Problem 6. [1 point each] Below the graph of function f is sketched. Define g by

g(x) =

∫ x

0
f(t)dt for 0 ≤ x ≤ 6.

1 2 3 4 5 6

-3

-2

-1

1

2

3

4

5

6

7

(a)
∫ 6

0
f = 10.2 This is the exact answer, I approximated it by inspection, then took the

answer from the list.

(b)
∫ 6

0
f ′ = −3 by the fundamental theorem of calculus

∫ 6

0
f ′ = f(6)− f(0) = 3− 6.

(c) g has an absolute maximum at 4. By looking at where f is positive and where f is
negative, we see that g increases to 4, then decreases (then increases again near 6, but just
a bit).

(d) g(0) =
∫ 0

0 f = 0.

(e) g′(0) = 6 by FTC g′(0) = f(0) = 6

(f) g′′(0) = f ′(0) = −7.5. Again, this answer is exact, but I approximated by inspection and
then took the answer from the list.

Here are the answers (out of order): −7.5 − 3 0 3 4 6 10.2
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Problem 7. [2 points each] Let f(x) = esin(x) and let p(x) be the degree two Taylor polyno-
mial for f centered at zero.

(a) Find (by any method) the polynomial p.

Answer:

The power series for f is

exp(sin(x)) = exp

(
x− x3

3!
+ · · ·

)
= 1 +

(
x− x3

3!
+ · · ·

)
+

1

2!

(
x− x3

3!
+ · · ·

)2

++
1

3!

(
x− x3

3!
+ · · ·

)3

+ · · ·

= 1 + x+
x2

2
− x4

8
+ · · ·

Therefore, the degree two Taylor polynomial for f is

p(x) = 1 + x+
x2

2
.

(b) Carefully state Taylor’s remainder formula for the difference f(x)− p(x).

Answer:

Taylor’s theorem says that for any x, there exists a number θ between 0 and x with

esin(x) −
(
1 + x+

x2

2

)
=
f ′′′(θ)x3

3!
.

(c) Compute
∫ 1

2

− 1
2

p(x) dx and use the fact that |f ′′′(θ)| < 5
2 for −1

2 ≤ θ ≤
1
2 to find a bound

on the error ∣∣∣∣∣
∫ 1

2

− 1
2

f(x) dx−
∫ 1

2

− 1
2

p(x) dx

∣∣∣∣∣ .
Answer:

We compute ∫ 1
2

− 1
2

p(x) dx = x+
x2

2
+
x3

6

] 1
2

− 1
2

=
25

24
.

And we bound the error:∣∣∣∣∣
∫ 1

2

− 1
2

p(x) dx−
∫ 1

2

− 1
2

f(x) dx

∣∣∣∣∣ ≤
∫ 1

2

− 1
2

|f(x)− p(x)| dx

≤
∫ 1

2

− 1
2

∣∣∣∣f ′′′(θ)x3

3!

∣∣∣∣ dx ≤ ∫ 1
2

− 1
2

(
5

2

)(
1

2

)3( 1

3!

)
dx =

5

96
.
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Problem 7. Here’s a footnote to problem 7.
It’s not possible to find an antiderivative for esin(x) in terms of elementary functions, but the

method outlined in this problem is a very good way to approximate
∫ 1

2

− 1
2

esin(x) dx.

In the picture below, the graph of f (the solid cuve) is sketched with the graph of p (the dashed

curve) and it looks like
∫ 1

2

− 1
2

p(x) might be a very good approximation for
∫ 1

2

− 1
2

esin(x) dx.

-

3

2

-1 -

1

2

1

2

1
3

2

1

2

3

In fact, although the bound on the error found above is 5
96 = .0520833 . . ., the actual error∣∣∣∣∣

∫ 1
2

− 1
2

f(x) dx−
∫ 1

2

− 1
2

p(x) dx

∣∣∣∣∣ is less than .002. Using the fourth order Taylor polynomial 1 +

x + x2

2 −
x4

8 yields 1997
1920 for an approximation of

∫ 1
2

− 1
2

f(x) dx, which is accurate to over 6

decimal places.


