EXAM

Final Exam
Math 158: Spring 2014
May 20, 2014

ANSWERS

Problem 1. [2 points each] Compute.

(a) Write $\frac{1}{3+4 i}$ in the form $a+b i$.

Answer:

$$
z^{-1}=\frac{\bar{z}}{|z|^{2}} \text { so } \frac{1}{3+4 i}=\frac{3-4 i}{25}=\frac{3}{25}-\frac{4}{25} i .
$$

(b) Write $-2+2 \sqrt{3} i$ in polar form $z=r e^{i \theta}$.

Answer:

$$
\begin{aligned}
& r=|z|=\sqrt{4+12}=4 \text { and } \theta \text { satisfies } \cos (\theta)=-2 \text { and } \sin (\theta)=2 \sqrt{3} \text { so } \theta=\frac{2 \pi}{3} \text {. Thus } \\
& -2+2 \sqrt{3} i=4 e^{\frac{2 \pi}{3} i} .
\end{aligned}
$$

Problem 2. [4 points] Suppose an aircraft was on a runway in Norfolk Virgina in the morning and six hours later it was on a runway on Midway Island. Prove that the aircraft created at least two sonic booms that day.

Hint: A sonic boom is the sound associated when the pressure waves created by an object traveling through air converge into a single shock wave. This happens when the object travels at speed of sound, about 761 mph . Norfolk and Midway are over 5600 miles apart.

Answer:

By the mean value theorem, there must be some time during the day, say T hours after takeoff, when the aircraft was travelling at

$$
\frac{\text { total distand }}{\text { total time }}>\frac{5600 \mathrm{mi}}{6 \mathrm{hrs}}>900 \mathrm{mi} / \mathrm{hr} .
$$

Since the aircraft begins at time 0 with zero velocity and at time T it is travelling at over 900 $\mathrm{mi} / \mathrm{hr}$, and the speed of sound is between 0 and 900 the intermediate value theorem says that the there was some time before T when the aircraft was travelling at the speed of sound. Again, since the aircraft was travelling at over $900 \mathrm{mi} / \mathrm{hr}$ at time T and then later the aircraft is at rest, the intermediate value theorem again there was some point after T when the aircraft was travelling at the speed of sound.

Problem 3. [2 points each]

(a) Define the number e.

Answer:

The number e is the unique number satisfying $\ln (e)=1$.
(b) Prove that $\lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{x}=e$.

Answer:

First, note that

$$
\lim _{x \rightarrow \infty} \ln \left(1+\frac{1}{x}\right)^{x}=\lim _{x \rightarrow \infty} \frac{\ln \left(1+\frac{1}{x}\right)}{\frac{1}{x}} \stackrel{L}{=} \lim _{x \rightarrow \infty} \frac{\left(\frac{1}{1+\frac{1}{x}}\right)\left(-\frac{1}{x^{2}}\right)}{-\frac{1}{x^{2}}}=\lim _{x \rightarrow \infty}\left(\frac{1}{1+\frac{1}{x}}\right)=1 .
$$

So,

$$
\ln \left(\lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{x}\right)=\lim _{x \rightarrow \infty} \ln \left(\left(1+\frac{1}{x}\right)^{x}\right)=\ln (1) .
$$

Since $\ln \left(\lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{x}\right)=1$ and e is the unique number for which $\ln (e)=1$, we conclude that

$$
\lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{x}=e .
$$

(c) Prove that: if $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfies $f^{\prime}=f$ then $f(x)=A e^{x}$ for some constant A.

Answer:
Suppose that $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfies $f^{\prime}=f$. Since

$$
\left(\frac{f(x)}{e^{x}}\right)^{\prime}=\frac{e^{x} f^{\prime}(x)-f(x) e^{x}}{\left(e^{x}\right)^{2}}=\frac{e^{x} f(x)-f(x) e^{x}}{\left(e^{x}\right)^{2}}=0
$$

we know that $\frac{f(x)}{e^{x}}$ is constant, say $\frac{f(x)}{e^{x}}=A$. Therefore, $f(x)=A e^{x}$.

Problem 4. [4 points] Consider the three sequence of functions defined by

$$
a_{n}(x)=\frac{\sin (n x)}{n}, \quad b_{n}(x)=\frac{\sin (n x)}{n x}, \text { and } c_{n}(x)=\frac{\sin (n x)}{x} .
$$

Each of the pictures below shows a sketch of the graphs of the first five functions of the one of the sequences. Label each picture with $\left\{a_{n}\right\},\left\{b_{n}\right\}$, or $\left\{c_{n}\right\}$ and say whether the sequence of functions pictured

- converges uniformly on $[-\pi, \pi]$,
- converges pointwise on $[-\pi, \pi]$,
- does not converge on $[-\pi, \pi]$.

$\left\{b_{n}\right\}$ converges pointwise on $[-\pi, \pi]$.
Note that $\left\{b_{n}\right\} \rightarrow f$ where $f(x)=0$ for $x \neq 0$ and $f(0)=1$. Since $\left\{b_{n}\right\}$ is a sequence of continuous functions, if it converged uniformly, the limit would have to be continuous, which it is not.

Problem 5. [2 points each] It's easy to check that $\frac{1}{n^{2}+n}=\frac{1}{n}-\frac{1}{n+1}$. Use this fact to compute
(a) $\int_{1}^{\infty} \frac{d x}{x^{2}+x}$

Answer:

$$
\begin{aligned}
\int_{1}^{\infty} \frac{d x}{x^{2}+x} & =\int_{1}^{\infty}\left(\frac{1}{x}-\frac{1}{x+1}\right) \\
& =\lim _{B \rightarrow \infty} \int_{1}^{B}\left(\frac{1}{x}-\frac{1}{x+1}\right) \\
& =\lim _{B \rightarrow \infty} \ln (B)-\ln (B+1)+\ln (2) \\
& =\lim _{B \rightarrow \infty} \ln \left(\frac{B}{B+1}+\ln (2)\right. \\
& =\ln (2) .
\end{aligned}
$$

(b) $\sum_{n=1}^{\infty} \frac{1}{n^{2}+n}$

Answer:
Look at the n-th partial sum of $\sum_{n=1}^{\infty} \frac{1}{n^{2}+n}=\sum_{n=1}^{\infty} \frac{1}{n}-\frac{1}{n+1}$

$$
\begin{aligned}
s_{n} & =\left(\frac{1}{1}-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\cdots+\left(\frac{1}{n}-\frac{1}{n+1}\right) \\
& =\frac{1}{1}-\frac{1}{n+1}
\end{aligned}
$$

and we see that $\left\{s_{n}\right\} \rightarrow 1$.

Matching [1 point each]

Problem 6. [1 point each] Below the graph of function f is sketched. Define g by

$$
g(x)=\int_{0}^{x} f(t) d t \text { for } 0 \leq x \leq 6 .
$$

(a) $\int_{0}^{6} f=10.2$ This is the exact answer, I approximated it by inspection, then took the answer from the list.
(b) $\int_{0}^{6} f^{\prime}=-3$ by the fundamental theorem of calculus $\int_{0}^{6} f^{\prime}=f(6)-f(0)=3-6$.
(c) g has an absolute maximum at 4. By looking at where f is positive and where f is negative, we see that g increases to 4 , then decreases (then increases again near 6 , but just a bit).
(d) $g(0)=\int_{0}^{0} f=0$.
(e) $g^{\prime}(0)=6$ by FTC $g^{\prime}(0)=f(0)=6$
(f) $g^{\prime \prime}(0)=f^{\prime}(0)=-7 \cdot 5$. Again, this answer is exact, but I approximated by inspection and then took the answer from the list.
$\begin{array}{lllllllll}\text { Here are the answers (out of order): } & -7.5 & -3 & 0 & 3 & 4 & 6 & 10.2\end{array}$

Problem 7. [2 points each] Let $f(x)=e^{\sin (x)}$ and let $p(x)$ be the degree two Taylor polynomial for f centered at zero.
(a) Find (by any method) the polynomial p.

Answer:

The power series for f is

$$
\begin{aligned}
\exp (\sin (x)) & =\exp \left(x-\frac{x^{3}}{3!}+\cdots\right) \\
& =1+\left(x-\frac{x^{3}}{3!}+\cdots\right)+\frac{1}{2!}\left(x-\frac{x^{3}}{3!}+\cdots\right)^{2}++\frac{1}{3!}\left(x-\frac{x^{3}}{3!}+\cdots\right)^{3}+\cdots \\
& =1+x+\frac{x^{2}}{2}-\frac{x^{4}}{8}+\cdots
\end{aligned}
$$

Therefore, the degree two Taylor polynomial for f is

$$
p(x)=1+x+\frac{x^{2}}{2}
$$

(b) Carefully state Taylor's remainder formula for the difference $f(x)-p(x)$.

Answer:

Taylor's theorem says that for any x, there exists a number θ between 0 and x with

$$
e^{\sin (x)}-\left(1+x+\frac{x^{2}}{2}\right)=\frac{f^{\prime \prime \prime}(\theta) x^{3}}{3!}
$$

(c) Compute $\int_{-\frac{1}{2}}^{\frac{1}{2}} p(x) d x$ and use the fact that $\left|f^{\prime \prime \prime}(\theta)\right|<\frac{5}{2}$ for $-\frac{1}{2} \leq \theta \leq \frac{1}{2}$ to find a bound on the error

$$
\left|\int_{-\frac{1}{2}}^{\frac{1}{2}} f(x) d x-\int_{-\frac{1}{2}}^{\frac{1}{2}} p(x) d x\right|
$$

Answer:

We compute

$$
\left.\int_{-\frac{1}{2}}^{\frac{1}{2}} p(x) d x=x+\frac{x^{2}}{2}+\frac{x^{3}}{6}\right]_{-\frac{1}{2}}^{\frac{1}{2}}=\frac{25}{24}
$$

And we bound the error:

$$
\begin{aligned}
&\left|\int_{-\frac{1}{2}}^{\frac{1}{2}} p(x) d x-\int_{-\frac{1}{2}}^{\frac{1}{2}} f(x) d x\right| \leq \int_{-\frac{1}{2}}^{\frac{1}{2}}|f(x)-p(x)| d x \\
& \leq \int_{-\frac{1}{2}}^{\frac{1}{2}}\left|\frac{f^{\prime \prime \prime}(\theta) x^{3}}{3!}\right| d x \leq \int_{-\frac{1}{2}}^{\frac{1}{2}}\left(\frac{5}{2}\right)\left(\frac{1}{2}\right)^{3}\left(\frac{1}{3!}\right) d x=\frac{5}{96}
\end{aligned}
$$

Problem 7. Here's a footnote to problem 7.
It's not possible to find an antiderivative for $e^{\sin (x)}$ in terms of elementary functions, but the method outlined in this problem is a very good way to approximate $\int_{-\frac{1}{2}}^{\frac{1}{2}} e^{\sin (x)} d x$.
In the picture below, the graph of f (the solid cuve) is sketched with the graph of p (the dashed curve) and it looks like $\int_{-\frac{1}{2}}^{\frac{1}{2}} p(x)$ might be a very good approximation for $\int_{-\frac{1}{2}}^{\frac{1}{2}} e^{\sin (x)} d x$.

In fact, although the bound on the error found above is $\frac{5}{96}=.0520833 \ldots$, the actual error $\left|\int_{-\frac{1}{2}}^{\frac{1}{2}} f(x) d x-\int_{-\frac{1}{2}}^{\frac{1}{2}} p(x) d x\right|$ is less than .002. Using the fourth order Taylor polynomial $1+$ $x+\frac{x^{2}}{2}-\frac{x^{4}}{8}$ yields $\frac{1997}{1920}$ for an approximation of $\int_{-\frac{1}{2}}^{\frac{1}{2}} f(x) d x$, which is accurate to over 6 decimal places.

