Some new problems

Problem 1. Read through section 4.20 in the text and do exercises 1, 8, 9 in section 4.19 (page 191) and exercises 2, 3, 19, 21, 28 in section 4.21 (page 194-196)

Problem 2. True or False: Let $f(x) = (x-1)^{\frac{2}{3}}$. Since f(0) = 1 and f(2) = 1, there is some point $c \in (0, 2)$ with f'(c) = 0.

Problem 3. Prove:

- (a) If f satisfies $|f(s) f(t)| \le |s t|$ for all s, t, then f is continuous.
- (b) If f satisfies $|f(s) f(t)| \le |s t|^2$ for all s, t, then f is constant.

Problem 4. It is hard, or maybe even impossible, to determine

$$\int_{-\frac{\sqrt{\pi}}{2}}^{-\frac{\sqrt{\pi}}{2}}\cos(x^2)dx$$

exactly. But $g(x) = \cos(x^2)$ can be approximated by a polynomial. Your problem: find a polynomial $p(x) = ax^4 + bx^3 + cx^2 + dx + e$ that satisfies p(0) = g(0), p'(0) = g'(0), p''(0) = g''(0), and p'''(0) = g'''(0). Use a computer to graph g and p in the same picture. Approximate $\int_{-\frac{\sqrt{\pi}}{2}}^{-\frac{\sqrt{\pi}}{2}} \cos(x^2) dx$ by computing

$$\int_{-\frac{\sqrt{\pi}}{2}}^{-\frac{\sqrt{\pi}}{2}} p(x) dx$$

instead.

Problem 5. Suppose that f(4) = 0, g(4) = 0, f'(4) = 7, and g'(4) = -1. Prove that $\lim_{x \to 4} \frac{f(x)}{q(x)}$ exists and compute it.

Some review problems

Problem 6. Let f be a function defined on an open neighborhood of c. Define the statement "f is differentiable at c" and the number f'(c).

Problem 7. Prove that if f is differentiable at x = c then f is continuous at x = c.

Problem 8. Prove that if $f : \mathbb{R} \to \mathbb{R}$ is differentiable and $f(c) \ge f(x)$ for all $x \in \mathbb{R}$, then f'(c) = 0.

Problem 9. Prove that if f'(x) > 0 for all $x \in (0, 1)$, then f is increasing on (0, 1).