Some new problems

Problem 1. Read through section 4.20 in the text and do exercises 1, 8, 9 in section 4.19 (page 191) and exercises $2,3,19,21,28$ in section 4.21 (page 194-196)
Problem 2. True or False: Let $f(x)=(x-1)^{\frac{2}{3}}$. Since $f(0)=1$ and $f(2)=1$, there is some point $c \in(0,2)$ with $f^{\prime}(c)=0$.

Problem 3. Prove:
(a) If f satisfies $|f(s)-f(t)| \leq|s-t|$ for all s, t, then f is continuous.
(b) If f satisfies $|f(s)-f(t)| \leq|s-t|^{2}$ for all s, t, then f is constant.

Problem 4. It is hard, or maybe even impossible, to determine

$$
\int_{-\frac{\sqrt{\pi}}{2}}^{-\frac{\sqrt{\pi}}{2}} \cos \left(x^{2}\right) d x
$$

exactly. But $g(x)=\cos \left(x^{2}\right)$ can be approximated by a polynomial. Your problem: find a polynomial $p(x)=a x^{4}+b x^{3}+c x^{2}+d x+e$ that satisfies $p(0)=$ $g(0), p^{\prime}(0)=g^{\prime}(0), p^{\prime \prime}(0)=g^{\prime \prime}(0), p^{\prime \prime \prime}(0)=g^{\prime \prime \prime}(0)$, and $p^{\prime \prime \prime \prime}(0)=g^{\prime \prime \prime \prime}(0)$. Use a computer to graph g and p in the same picture. Approximate $\int_{-\frac{\sqrt{\pi}}{2}}^{-\frac{\sqrt{\pi}}{2}} \cos \left(x^{2}\right) d x$ by computing

$$
\int_{-\frac{\sqrt{\pi}}{2}}^{-\frac{\sqrt{\pi}}{2}} p(x) d x
$$

instead.
Problem 5. Suppose that $f(4)=0, g(4)=0, f^{\prime}(4)=7$, and $g^{\prime}(4)=-1$. Prove that $\lim _{x \rightarrow 4} \frac{f(x)}{g(x)}$ exists and compute it.

Some review problems

Problem 6. Let f be a function defined on an open neighborhood of c. Define the statement " f is differentiable at c " and the number $f^{\prime}(c)$.

Problem 7. Prove that if f is differentiable at $x=c$ then f is continuous at $x=c$.

Problem 8. Prove that if $f: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable and $f(c) \geq f(x)$ for all $x \in \mathbb{R}$, then $f^{\prime}(c)=0$.

Problem 9. Prove that if $f^{\prime}(x)>0$ for all $x \in(0,1)$, then f is increasing on $(0,1)$.

