## Some new problems

Problem 1. Read through section 4.20 in the text and do exercises 1, 8, 9 in section 4.19 (page 191) and exercises $2,3,19,21,28$ in section 4.21 (page 194-196)

Problem 2. True or False: Let $f(x)=(x-1)^{\frac{2}{3}}$. Since $f(0)=1$ and $f(2)=1$, there is some point $c \in(0,2)$ with $f^{\prime}(c)=0$.

Answer. False. One might be tempted to apply the mean value theorem, but it doesn't apply since $f$ is not differentiable on $(0,2)\left(f^{\prime}(1)\right.$ does not exist).

Here's a plot of $y=(x-1)^{\frac{2}{3}}$.


Problem 3. Prove:
(a) If $f$ satisfies $|f(s)-f(t)| \leq|s-t|$ for all $s, t$, then $f$ is continuous.

Answer. The statement " $f$ is continuous at the number $t$ " means that for all $\epsilon>0$ there exists a $\delta>0$ so that if $|s-t|<\delta$ then $|f(s)-f(t)|<\epsilon$. So, let $\epsilon>0$ be given. Choose $\delta=\epsilon$. Then if $|s-t|<\delta$ we have $|s-t|<\epsilon$. Since $|f(s)-f(t)|<|s-t|$, we have $|f(s)-f(t)|<\epsilon$ as needed.
(b) If $f$ satisfies $|f(s)-f(t)| \leq|s-t|^{2}$ for all $s, t$, then $f$ is constant.

Answer. Since $|f(s)-f(t)| \leq|s-t|^{2}$, we have $|f(x+h)-f(x)| \leq|h|^{2}$. Therefore,

$$
\left|\frac{f(x+h)-f(x)}{h}\right| \leq|h| \Rightarrow-|h| \leq \frac{f(x+h)-f(x)}{h} \leq|h| .
$$

So, by the squeeze theorem,

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=0 .
$$

Therefore, $f$ is constant.

Problem 4. It is hard, or maybe even impossible, to determine

$$
\int_{-\frac{\sqrt{\pi}}{2}}^{-\frac{\sqrt{\pi}}{2}} \cos \left(x^{2}\right) d x
$$

exactly. But $g(x)=\cos \left(x^{2}\right)$ can be approximated by a polynomial. Your problem: find a polynomial $p(x)=a x^{4}+b x^{3}+c x^{2}+d x+e$ that satisfies $p(0)=$ $g(0), p^{\prime}(0)=g^{\prime}(0), p^{\prime \prime}(0)=g^{\prime \prime}(0), p^{\prime \prime \prime}(0)=g^{\prime \prime \prime}(0)$, and $p^{\prime \prime \prime \prime}(0)=g^{\prime \prime \prime \prime}(0)$. Use a computer to graph $g$ and $p$ in the same picture. Approximate $\int_{-\frac{\sqrt{\pi}}{2}}^{-\frac{\sqrt{\pi}}{2}} \cos \left(x^{2}\right) d x$ by computing

$$
\int_{-\frac{\sqrt{\pi}}{2}}^{-\frac{\sqrt{\pi}}{2}} p(x) d x
$$

instead.
Answer. For $g(x)=\cos \left(x^{2}\right)$, we have

$$
\begin{aligned}
g(x) & =\cos \left(x^{2}\right) & g(0) & =1 \\
g^{\prime}(x) & =-2 x \sin \left(x^{2}\right) & g^{\prime}(0) & =0 \\
g^{\prime \prime}(x) & =-4 x^{2} \cos \left(x^{2}\right)-2 \sin \left(x^{2}\right) & g^{\prime \prime}(0) & =0 \\
g^{(3)}(x) & =8 x^{3} \sin \left(x^{2}\right)-12 x \cos \left(x^{2}\right) & g^{(3)}(0) & =0 \\
g^{(4)}(x) & =16 x^{4} \cos \left(x^{2}\right)+48 x^{2} \sin \left(x^{2}\right)-12 \cos \left(x^{2}\right) & g^{(4)}(0) & =- \\
g^{(5)}(x) & =-32 x^{5} \sin \left(x^{2}\right)+160 x^{3} \cos \left(x^{2}\right)+120 x \sin \left(x^{2}\right) & g^{(5)}(0) & =0
\end{aligned}
$$

If $p(x)=a x^{4}+b x^{3}+c x^{2}+d x+e$, then

$$
\begin{array}{rlrl}
p(x) & =a x^{4}+b x^{3}+c x^{2}+d x+e & p(0) & =e \\
p^{\prime}(x) & =4 a x^{3}+3 b x^{2}+2 c x+d & p^{\prime}(0) & =d \\
p^{\prime \prime}(x) & =12 a x^{2}+6 b x+2 c & p^{\prime \prime}(0) & =2 c \\
p^{(3)}(x) & =24 a x+6 b & p^{(3)}(0) & =6 b \\
p^{(4)}(x) & =24 a & p^{(4)}(0) & =24 a \\
p^{(5)}(x) & =0 & p^{(5)}(0) & =0
\end{array}
$$

Matching coefficients, we see that

$$
\begin{aligned}
p(0)=g(0) & \Rightarrow e=1 \\
p^{\prime}(0)=g^{\prime}(0) & \Rightarrow d=0 \\
p^{\prime \prime}(0)=g^{\prime \prime}(0) & \Rightarrow c=0 \\
p^{(3)}(0)=g^{(3)}(0) & \Rightarrow b=0 \\
p^{(4)}(0)=g^{(4)}(0) & \Rightarrow a=-\frac{1}{2}
\end{aligned}
$$

So, the polynomial

$$
p(x)=-\frac{1}{2} x^{4}+1
$$

has the same value and first-through-fourth derivatives as $g(x)=\cos \left(x^{2}\right)$, so we reason that $p(x)$ is a good approximation for $g(x)$ and

$$
\int_{-\frac{\sqrt{\pi}}{2}}^{-\frac{\sqrt{\pi}}{2}} \cos \left(x^{2}\right) d x \approx \int_{-\frac{\sqrt{\pi}}{2}}^{-\frac{\sqrt{\pi}}{2}}\left(-\frac{1}{2} x^{4}+1\right) d x=\sqrt{\pi}-\frac{\pi^{5 / 2}}{160}
$$

Here's a nice picture:


Problem 5. Suppose that $f(4)=0, g(4)=0, f^{\prime}(4)=7$, and $g^{\prime}(4)=-1$. Prove that $\lim _{x \rightarrow 4} \frac{f(x)}{g(x)}$ exists and compute it.

Answer. We begin with $\frac{f^{\prime}(4)}{g^{\prime}(4)}$ :

$$
\begin{aligned}
-7 & =\frac{7}{-1} \\
& =\frac{f^{\prime}(4)}{g^{\prime}(4)} \\
& =\frac{\lim _{h \rightarrow 0} \frac{f(4+h)-f(4)}{h}}{\lim _{h \rightarrow 0} \frac{g(4+h)-g(4)}{h}} \\
& =\lim _{h \rightarrow 0} \frac{f(4+h)-f(4)}{g(4+h)-g(4)} \\
& =\lim _{h \rightarrow 0} \frac{f(4+h)-0}{g(4+h)-0} \\
& =\lim _{h \rightarrow 0} \frac{f(4+h)}{g(4+h)} \\
& =\lim _{x \rightarrow 4} \frac{f(x)}{g(x)} .
\end{aligned}
$$

## Some review problems

Problem 6. Let $f$ be a function defined on an open neighborhood of $c$. Define the statement " $f$ is differentiable at $c$ " and the number $f^{\prime}(c)$.

Answer. We say $f$ is differentiable at $c$ provided the limit

$$
\lim _{h \rightarrow 0} \frac{f(c+h)-f(c)}{h}
$$

exists and is finite. If it does, we define the number $\lim _{h \rightarrow 0} \frac{f(c+h)-f(c)}{h}$ by $f^{\prime}(c)$.
Problem 7. Prove that if $f$ is differentiable at $x=c$ then $f$ is continuous at $x=c$.

Answer. We need to prove that $f(c)=\lim _{x \rightarrow c} f(x)$, or equivalently, that $\lim _{h \rightarrow 0} f(c+h)-f(c)=0$.

Since $f$ is differentiable at $c$ we know $f^{\prime}(c)=\lim _{h \rightarrow 0} \frac{f(c+h)-f(c)}{h}$ exists and is finite. Therefore,

$$
\lim _{h \rightarrow 0} f(c+h)-f(c)=\lim _{h \rightarrow 0}\left(\frac{f(c+h)-f(c)}{h}\right)(h)=\lim _{h \rightarrow 0} f^{\prime}(c) h=0
$$

Problem 8. Prove that if $f: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable and $f(c) \geq f(x)$ for all $x \in \mathbb{R}$, then $f^{\prime}(c)=0$.

## Math 158 Spring 2014

Answer. Suppose that $f(c) \geq f(x)$ for all $x \in \mathbb{R}$. If $\lim _{h \rightarrow 0} \frac{f(c+h)-f(c)}{h}=$ $f^{\prime}(c)>0$, then, there exists a neighborhood of 0 so that for all $h$ in this neighborhood $\frac{f(c+h)-f(c)}{h}>0$. But this is impossible since for some $h$ in this neighborhood we will have $h>0$ and $f(c)>f(c+h)$.

Similarly, if $\lim _{h \rightarrow 0} \frac{f(c+h)-f(c)}{h}=f^{\prime}(c)<0$, then, there exists a neighborhood of 0 so that for all $h$ in this neighborhood $\frac{f(c+h)-f(c)}{h}<0$. But this is impossible since for some $h$ in this neighborhood we will have $h<0$ and $f(c)>f(c+h)$.

Therefore, if $f^{\prime}(c)$ exists, it must equal zero.
Problem 9. Prove that if $f^{\prime}(x)>0$ for all $x \in(0,1)$, then $f$ is increasing on $(0,1)$.

Answer. Suppose $f^{\prime}(x)>0$ for all $x \in(0,1)$. To show that $f$ is increasing on $(0,1)$, choose two numbers $a, b \in(0,1)$ with $a<b$. By the mean value theorem, there exists a number $c \in(a, b)$ with $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$. Since $f^{\prime}(c)>0$ and $b-a>0$ it follows that $f(b)-f(a)>0 \Rightarrow f(a)<f(b)$, as needed to show that $f$ is increasing.

