
Math 158 Limits and applications of the Integral

Limits

L’Hôpital’s rule

Theorem 1 (L’Hôpital’s Rule, 0
0

form, a simple version). Suppose that

lim
x→c

f(x) = 0 and lim
x→c

g(x) = 0,

that f and g are differentiable at c, and that g′(c) 6= 0. Then,

lim
x→c

f(x)

g(x)
=
f ′(c)

g′(c)
.

Proof. First note that since f and g are differentiable at c, they are continu-
ous at c. This, together with the hypothesis that lim

x→c
f(x) = 0 and lim

x→c
g(x) =

0, imply that f(c) = 0 and g(c) = 0. Now,

f ′(c)

g′(c)
=

limx→c
f(x)−f(c)

x−c

limx→c
g(x)−g(c)

x−c

= lim
x→c

f(x)− f(c)

g(x)− g(c)
= lim

x→c

f(x)

g(x)
.

Now, suppose in addition to the hypotheses above, that f ′ and g′ are
defined and continuous in a neighborhood of c. Then, we have f ′(c)

g′(c)
=

limx→c
f ′(x)
g′(x)

and we can rewrite the conclusion of the theorem above as

lim
x→c

f(x)

g(x)
= lim

x→c

f ′(x)

g′(x)
.

However, one can say more. Even if f ′(c)
g′(c)

does not exist1 one can still conclude
that

lim
x→c

f(x)

g(x)
= lim

x→c

f ′(x)

g′(x)

provided the right hand side exists. We summarize:

1There are several reasons that f ′(c)
g′(c) might not exist: f ′(c) might not exist, g′(c) might

not exist, or g′(c) might equal zero.
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Theorem 2 (L’Hôpital’s Rule, 0
0

form, strong version). Suppose that

lim
x→c

f(x) = 0 and lim
x→c

g(x) = 0

and suppose that lim
x→c

f ′(x)

g′(x)
exists (or equals ±∞), then

lim
x→c

f(x)

g(x)
= lim

x→c

f ′(x)

g′(x)
.

Proof. We give a proof in the case that lim
x→c

f ′(x)

g′(x)
exists and is finite. Note

that we may set f(c) = 0 and g(c) = 0. Then, for x 6= c, f and g are
continuous on the interval [c, x] (or the interval [x, c], depending on whether
x > c or x < c), and differentiable on the interval (c, x) (or the interval
(x, c)). Therefore, we may apply Caucy’s mean value theorem to obtain a
number d, between x and c with

f ′(d)

g′(d)
=
f(x)− f(c)

g(x)− g(c)
=
f(x)

g(x)
.

Since as x→ c, we have d→ c, we conclude that

lim
x→c

f(x)

g(x)
= lim

d→c

f ′(d)

g′(d)
= lim

x→c

f ′(x)

g′(x)
.

In the last equality, we have just changed the variable d to the variable x.

Now, we can use this 0
0

form of L’Hôpital’s rule to get another version:

Theorem 3 (L’Hôpital’s Rule, ∞∞ form). Suppose that

lim
x→c

f(x) = ±∞ and lim
x→c

g(x) = ±∞

and suppose that lim
x→c

f ′(x)

g′(x)
exists (or is ±∞), then

lim
x→c

f(x)

g(x)
=
f ′(c)

g′(c)
.
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Proof. We only provide a proof under the special assumption that lim
x→c

f(x)

g(x)

exists and is nonzero, call it L, and that lim
x→c

f ′(x)

g′(x)
= M is finite.

Consider L = lim
x→c

f(x)

g(x)
= lim

x→c

1
g(x)

1
f(x)

. Since lim
x→c

1

g(x)
= 0 and lim

x→c

1

f(x)
= 0;

and

lim
x→c

d
dx

1
g(x)

d
dx

1
f(x)

= lim
x→c

g′(x)
(g(x))2

f ′(x)
(f(x))2

== lim
x→c

(g(x))2

(f(x))2
f ′(x)

g′(x)
=
M

L2
.

Therefore, by the 0
0

form of L’Hôpital’s rule, we can conclude that

L =
M

L2
⇒ L = M.

There are many more versions of L’Hôpital’s rule. There are versions
where x → c is replaced with x → c−, x → c+, x → ∞, or x → −∞. The
proofs above all work for the one sided versions, but you need to modify the
argument for the x→ ±∞ versions.

Problem 1. L’Hôpital’s rule does not apply without the assumption that

lim
x→∞

f ′(x)

g′(x)
exists in either the finite or infinite sense. Give an example where

lim
x→c

f(x) = 0, lim
x→c

g(x) = 0, lim
x→∞

f(x)

g(x)
exists and is finite and where lim

x→∞

f ′(x)

g′(x)
does not exist. Give another example where lim

x→c
f(x) = ±∞, lim

x→c
g(x) = ±∞,

lim
x→∞

f(x)

g(x)
exists and is finite and where lim

x→∞

f ′(x)

g′(x)
does not exist.

Problem 2. The squeeze theorem will tell you that

lim
x→0

x sin

(
1

x

)
= 0.

So, there must exist a number δ > 0 so that if 0 < |x| < δ then∣∣∣∣x sin

(
1

x

)∣∣∣∣ < 1

1000
.

One student, doing a few calculations on a calculator, noticed that sin
(

1
0.106

)
=

−0.00918417 and answered that δ = .106 works. Is he correct?
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Problem 3. State and prove Cauchy’s mean value theorem

Problem 4. True or false. If true, give a rigorous proof using the definition
of limits. If false, supply an example showing the statement is false:

(a) If lim
x→c

f(x) = 0 then lim
x→c

1

f(x)
=∞.

(b) If lim
x→c

f(x) =∞ then lim
x→c

1

f(x)
= 0.

Problem 5. Give an example of two functions f and g satisfying

(a) lim
x→∞

f(x) =∞ and lim
x→∞

f(x) =∞,

(b) lim
x→∞

f(x)

g(x)
exists and is finite, and

(c) lim
x→∞

f ′(x)

g′(x)
does not exist.

Problem 6. Give an example of two functions f and g (or prove that no
such example exists)

(a) with limx→∞ f(x) = limx→∞ f(x) =∞, limx→∞
f(x)
g(x)

exists and is finite,

and limx→∞
f ′(x)
g′(x)

does not exist.

(b) where neither limx→c f(x) nor limx→c f(x) exist and limx→c f(x) + g(x)
exists and is finite.

(c) where neither limx→c f(x) nor limx→c f(x) exist and limx→c f(x)g(x)
exists and is finite.

(d) for which limx→c f(x) does not exist, limx→c f(x) exists and is finite
and limx→c f(x) + g(x) exists and is finite.

(e) or which limx→c f(x) does not exist, limx→c f(x) exists and is finite and
limx→c f(x)g(x) exists and is finite.

Problem 7. Compute
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(a) lim
x→0

exp(x)− 1

x

(b) lim
x→0

exp(x)− 1− x
x2

(c) lim
x→0

log(1 + x)

x

(d) lim
x→0

log(1 + x)− x
x2

(e) lim
x→0

cos(x)− 1

x

(f) lim
x→0

cos(x)− 1

x2

(g) lim
x→0

sin(x)

x

(h) lim
x→0

sin(x)− x
x2

(i) lim
x→0

sin(x)− x
x3

(j) lim
x→0

cosh(x)− 1

x

(k) lim
x→0

cosh(x)− 1

x2

(l) lim
x→0

sinh(x)

x

(m) lim
x→0

sinh(x)− x
x2

(n) lim
x→0

sinh(x)− x
x3

(o) lim
x→0

arcsin(x)

x

(p) lim
x→0

arcsin(x)− x
x2

(q) lim
x→0

arcsin(x)− x
x3

(r) lim
x→0

arctan(x)

x

(s) lim
x→0

arctan(x)− x
x2

(t) lim
x→0

arctan(x)− x
x3

Problem 8. If S is a set and R ⊆ S × S, one may call R a relation on the
set S. One says that a is related to b, and writes aRb if the pair (a, b) ∈ R.
If R is a relation on A we say that

• R is reflexive if and only if for all a ∈ S, aRa.

• R is symmetric if and only if for all a, b ∈ S, aRb⇒ bRa.

• R is transitive if and only if for all a, b, c ∈ S, aRb and bRc⇒ aRc.

• R is said to satisfy the trichotomy law if and only if for all a, b ∈ S
exactly one of the following hold: aRb, bRa, or a = b.

For example, < defines a relation on the real numbers that is transitive, and
satisfies the trichotomy law, but < is neither reflexive nor symmetric. The
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relation < is not reflexive since, for example, it is not true that 2 < 2. The
relation < is not symmetric since, for example, 1 < 8 but it is not true that
8 < 1.

For another example, consider the following relation on the set Z:

a|b if and only if b is divisible by a.

One can check that this relation is reflexive, symmetric, and transitive, but
does not satisfy the trichotomy law.

Now, for your problem: consider a new relation� on the set of functions.
Let us define

f � g if and only if lim
x→∞

f(x)

g(x)
= 0.

(a) Which apply to �: reflexive, symmetric, transitive, trichotomy law ?

(b) Label the vertices in the picture below according to the rule: there
should be a directed path from f to g whenever f � g.
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Here are the labels:

• exp(x)

• log(x)

• log(log(x)

• x

• (exp(x))
1
50

• (exp(x))50

• exp(x
1
50 )

• exp(x50)

• x50

• x
1
50

• 50x

• exp(50x)

• log(e50x)

• log(x50)

• log(50x)

• log
(
x

1
50

)
• (log(x))

1
50
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Volume and arclength

Problem 9. Review the computations of the n dimensional volume of an n
dimensional sphere of radius R for n = 2, 3, 4.

(a) Go on and find the volumes of 5, 6, and 7 dimensional spheres of radius
R.

(b) Make a conjecture about the formula for the n dimensional volume of
an n dimensional sphere.

(c) Try to prove your conjecture.

Problem 10 (Challenge). Review the derivation for the arclength of a curve
as an integral and compute the circumference of the unit circle.

(a) If we redefine the notion of distance between two points in the plane,
we get a different formula for the arclength of a curve. For example,
the “dn distance” between two points P = (x1, y1) and Q = (x2, y2) is
defined to be

dn(P,Q) = (|x2 − x1|n + |y2 − y1|n)
1
n for n ≥ 1.

In this terminology, the “ordinary” distance is the d2 distance. Give a
formula for the arclength of a curve as an integral using the dn distance.

(b) The unit circle C is defined to be the set of all points in R2 whose
distance from the origin O is one:

C = {P ∈ R2 : d(P,O) = 1} =
{

(x, y) ∈ R2 :
√
x2 + y2 = 1

}
= {(x, y) ∈ R2 : x2 + y2 = 1}.

Define Cn to be the set of all points in R2 whose dn distance from the
origin O is one:

Cn = {P ∈ R2 : dn(P,O) = 1} =
{

(x, y) ∈ R2 : (|x|n + |y|n)
1
n = 1

}
= {(x, y) ∈ R2 : xn + yn = 1}.

Sketch pictures of Cn for several n. Here is a picture of C 3
2
, C2 (the

ordinary circle), and C5:
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(c) Now define π(n) to be arclength of the upper half of the unit circle
Cn. This gives a different universal constant for each n. Do some
computations, say compute π1, π 3

2
, π3, π100, and limn→∞ πn, to get some

idea of the range of values of π.


