Limits

L'Hôpital's rule

Theorem 1 (L'Hôpital's Rule, $\frac{0}{0}$ form, a simple version). Suppose that

$$\lim_{x \to c} f(x) = 0 \text{ and } \lim_{x \to c} g(x) = 0,$$

that f and g are differentiable at c, and that $g'(c) \neq 0$. Then,

$$\lim_{x \to c} \frac{f(x)}{g(x)} = \frac{f'(c)}{g'(c)}.$$

Proof. First note that since f and g are differentiable at c, they are continuous at c. This, together with the hypothesis that $\lim_{x\to c} f(x) = 0$ and $\lim_{x\to c} g(x) = 0$, imply that f(c) = 0 and g(c) = 0. Now,

$$\frac{f'(c)}{g'(c)} = \frac{\lim_{x \to c} \frac{f(x) - f(c)}{x - c}}{\lim_{x \to c} \frac{g(x) - g(c)}{x - c}} = \lim_{x \to c} \frac{f(x) - f(c)}{g(x) - g(c)} = \lim_{x \to c} \frac{f(x)}{g(x)}.$$

Now, suppose in addition to the hypotheses above, that f' and g' are defined and continuous in a neighborhood of c. Then, we have $\frac{f'(c)}{g'(c)} = \lim_{x\to c} \frac{f'(x)}{g'(x)}$ and we can rewrite the conclusion of the theorem above as

$$\lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)}.$$

However, one can say more. Even if $\frac{f'(c)}{g'(c)}$ does not exist¹ one can still conclude that

$$\lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)}$$

provided the right hand side exists. We summarize:

¹There are several reasons that $\frac{f'(c)}{g'(c)}$ might not exist: f'(c) might not exist, g'(c) might not exist, or g'(c) might equal zero.

Theorem 2 (L'Hôpital's Rule, $\frac{0}{0}$ form, strong version). Suppose that

$$\lim_{x \to c} f(x) = 0 \text{ and } \lim_{x \to c} g(x) = 0$$

and suppose that $\lim_{x\to c} \frac{f'(x)}{g'(x)}$ exists (or equals $\pm \infty$), then

$$\lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)}.$$

Proof. We give a proof in the case that $\lim_{x\to c} \frac{f'(x)}{g'(x)}$ exists and is finite. Note that we may set f(c) = 0 and g(c) = 0. Then, for $x \neq c$, f and g are continuous on the interval [c, x] (or the interval [x, c], depending on whether x > c or x < c), and differentiable on the interval (c, x) (or the interval (x, c)). Therefore, we may apply Caucy's mean value theorem to obtain a number d, between x and c with

$$\frac{f'(d)}{g'(d)} = \frac{f(x) - f(c)}{g(x) - g(c)} = \frac{f(x)}{g(x)}.$$

Since as $x \to c$, we have $d \to c$, we conclude that

$$\lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{d \to c} \frac{f'(d)}{g'(d)} = \lim_{x \to c} \frac{f'(x)}{g'(x)}.$$

In the last equality, we have just changed the variable d to the variable x. \Box

Now, we can use this $\frac{0}{0}$ form of L'Hôpital's rule to get another version:

Theorem 3 (L'Hôpital's Rule, $\frac{\infty}{\infty}$ form). Suppose that

$$\lim_{x \to c} f(x) = \pm \infty \text{ and } \lim_{x \to c} g(x) = \pm \infty$$

and suppose that $\lim_{x\to c} \frac{f'(x)}{g'(x)}$ exists (or is $\pm \infty$), then

$$\lim_{x \to c} \frac{f(x)}{g(x)} = \frac{f'(c)}{g'(c)}.$$

Proof. We only provide a proof under the special assumption that $\lim_{x\to c} \frac{f(x)}{g(x)}$ exists and is nonzero, call it L, and that $\lim_{x\to c} \frac{f'(x)}{g'(x)} = M$ is finite.

Consider $L = \lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{\frac{1}{g(x)}}{\frac{1}{f(x)}}$. Since $\lim_{x \to c} \frac{1}{g(x)} = 0$ and $\lim_{x \to c} \frac{1}{f(x)} = 0$;

and

$$\lim_{x \to c} \frac{\frac{d}{dx} \frac{1}{g(x)}}{\frac{d}{dx} \frac{1}{f(x)}} = \lim_{x \to c} \frac{\frac{g'(x)}{(g(x))^2}}{\frac{f'(x)}{(f(x))^2}} = \lim_{x \to c} \frac{(g(x))^2}{(f(x))^2} \frac{f'(x)}{g'(x)} = \frac{M}{L^2}.$$

Therefore, by the $\frac{0}{0}$ form of L'Hôpital's rule, we can conclude that

$$L = \frac{M}{L^2} \Rightarrow L = M.$$

There are many more versions of L'Hôpital's rule. There are versions where $x \to c$ is replaced with $x \to c^-$, $x \to c^+$, $x \to \infty$, or $x \to -\infty$. The proofs above all work for the one sided versions, but you need to modify the argument for the $x \to \pm \infty$ versions.

Problem 1. L'Hôpital's rule *does not apply* without the assumption that $\lim_{x\to\infty} \frac{f'(x)}{g'(x)}$ exists in either the finite or infinite sense. Give an example where $\lim_{x\to\infty} f(x) = 0$, $\lim_{x\to\infty} g(x) = 0$, $\lim_{x\to\infty} \frac{f(x)}{g(x)}$ exists and is finite and where $\lim_{x\to\infty} \frac{f'(x)}{g'(x)}$ does not exist. Give another example where $\lim_{x\to\infty} f(x) = \pm\infty$, $\lim_{x\to\infty} g(x) = \pm\infty$, $\lim_{x\to\infty} \frac{f(x)}{g(x)}$ exists and is finite and where $\lim_{x\to\infty} \frac{f'(x)}{g'(x)}$ does not exist.

Problem 2. The squeeze theorem will tell you that

$$\lim_{x \to 0} x \sin\left(\frac{1}{x}\right) = 0$$

So, there must exist a number $\delta > 0$ so that if $0 < |x| < \delta$ then

$$\left|x\sin\left(\frac{1}{x}\right)\right| < \frac{1}{1000}.$$

One student, doing a few calculations on a calculator, noticed that $\sin\left(\frac{1}{0.106}\right) = -0.00918417$ and answered that $\delta = .106$ works. Is he correct?

Problem 3. State and prove Cauchy's mean value theorem

Problem 4. True or false. If true, give a rigorous proof using the definition of limits. If false, supply an example showing the statement is false:

(a) If
$$\lim_{x \to c} f(x) = 0$$
 then $\lim_{x \to c} \frac{1}{f(x)} = \infty$.

(b) If
$$\lim_{x \to c} f(x) = \infty$$
 then $\lim_{x \to c} \frac{1}{f(x)} = 0$.

Problem 5. Give an example of two functions f and g satisfying

(a)
$$\lim_{x \to \infty} f(x) = \infty$$
 and $\lim_{x \to \infty} f(x) = \infty$,

(b)
$$\lim_{x \to \infty} \frac{f(x)}{g(x)}$$
 exists and is finite, and

(c)
$$\lim_{x \to \infty} \frac{f'(x)}{g'(x)}$$
 does not exist.

Problem 6. Give an example of two functions f and g (or prove that no such example exists)

- (a) with $\lim_{x\to\infty} f(x) = \lim_{x\to\infty} f(x) = \infty$, $\lim_{x\to\infty} \frac{f(x)}{g(x)}$ exists and is finite, and $\lim_{x\to\infty} \frac{f'(x)}{g'(x)}$ does not exist.
- (b) where neither $\lim_{x\to c} f(x)$ nor $\lim_{x\to c} f(x)$ exist and $\lim_{x\to c} f(x) + g(x)$ exists and is finite.
- (c) where neither $\lim_{x\to c} f(x)$ nor $\lim_{x\to c} f(x)$ exist and $\lim_{x\to c} f(x)g(x)$ exists and is finite.
- (d) for which $\lim_{x\to c} f(x)$ does not exist, $\lim_{x\to c} f(x)$ exists and is finite and $\lim_{x\to c} f(x) + g(x)$ exists and is finite.
- (e) or which $\lim_{x\to c} f(x)$ does not exist, $\lim_{x\to c} f(x)$ exists and is finite and $\lim_{x\to c} f(x)g(x)$ exists and is finite.

Problem 7. Compute

Problem 8. If S is a set and $R \subseteq S \times S$, one may call R a relation on the set S. One says that a is related to b, and writes aRb if the pair $(a, b) \in R$. If R is a relation on A we say that

- R is reflexive if and only if for all $a \in S$, aRa.
- R is symmetric if and only if for all $a, b \in S$, $aRb \Rightarrow bRa$.
- R is transitive if and only if for all $a, b, c \in S$, aRb and $bRc \Rightarrow aRc$.
- R is said to satisfy the trichotomy law if and only if for all $a, b \in S$ exactly one of the following hold: aRb, bRa, or a = b.

For example, < defines a relation on the real numbers that is transitive, and satisfies the trichotomy law, but < is neither reflexive nor symmetric. The

relation < is not reflexive since, for example, it is not true that 2 < 2. The relation < is not symmetric since, for example, 1 < 8 but it is not true that 8 < 1.

For another example, consider the following relation on the set \mathbb{Z} :

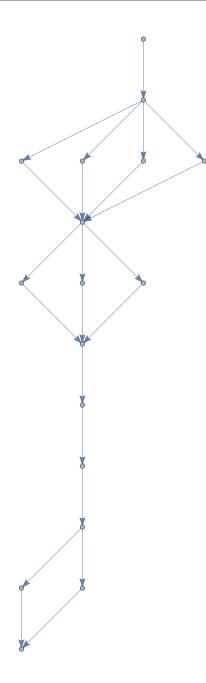
a|b if and only if b is divisible by a.

One can check that this relation is reflexive, symmetric, and transitive, but does not satisfy the trichotomy law.

Now, for your problem: consider a new relation \ll on the set of functions. Let us define

$$f \ll g$$
 if and only if $\lim_{x \to \infty} \frac{f(x)}{g(x)} = 0.$

- (a) Which apply to \ll : reflexive, symmetric, transitive, trichotomy law?
- (b) Label the vertices in the picture below according to the rule: there should be a directed path from f to g whenever $f \ll g$.



Here are the labels:

- $\exp(x)$
- $\log(x)$
- $\log(\log(x)$
- x
- $(\exp(x))^{\frac{1}{50}}$
- $(\exp(x))^{50}$
- $\exp(x^{\frac{1}{50}})$
- $\exp(x^{50})$
- x⁵⁰
- $x^{\frac{1}{50}}$
- 50*x*
- $\exp(50x)$
- $\log(e^{50x})$
- $\log(x^{50})$
- $\log(50x)$
- $\log\left(x^{\frac{1}{50}}\right)$
- $(\log(x))^{\frac{1}{50}}$

Volume and arclength

Problem 9. Review the computations of the *n* dimensional volume of an *n* dimensional sphere of radius *R* for n = 2, 3, 4.

- (a) Go on and find the volumes of 5, 6, and 7 dimensional spheres of radius R.
- (b) Make a conjecture about the formula for the n dimensional volume of an n dimensional sphere.
- (c) Try to prove your conjecture.

Problem 10 (Challenge). Review the derivation for the arclength of a curve as an integral and compute the circumference of the unit circle.

(a) If we redefine the notion of distance between two points in the plane, we get a different formula for the arclength of a curve. For example, the " d_n distance" between two points $P = (x_1, y_1)$ and $Q = (x_2, y_2)$ is defined to be

$$d_n(P,Q) = (|x_2 - x_1|^n + |y_2 - y_1|^n)^{\frac{1}{n}}$$
 for $n \ge 1$.

In this terminology, the "ordinary" distance is the d_2 distance. Give a formula for the arclength of a curve as an integral using the d_n distance.

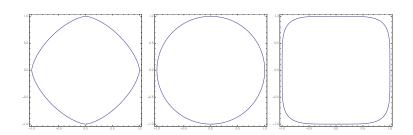
(b) The unit circle C is defined to be the set of all points in \mathbb{R}^2 whose distance from the origin O is one:

$$C = \{P \in \mathbb{R}^2 : d(P, O) = 1\} = \{(x, y) \in \mathbb{R}^2 : \sqrt{x^2 + y^2} = 1\}$$
$$= \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}.$$

Define C_n to be the set of all points in \mathbb{R}^2 whose d_n distance from the origin O is one:

$$C_n = \{ P \in \mathbb{R}^2 : d_n(P, O) = 1 \} = \{ (x, y) \in \mathbb{R}^2 : (|x|^n + |y|^n)^{\frac{1}{n}} = 1 \}$$
$$= \{ (x, y) \in \mathbb{R}^2 : x^n + y^n = 1 \}.$$

Sketch pictures of C_n for several n. Here is a picture of $C_{\frac{3}{2}}$, C_2 (the ordinary circle), and C_5 :



(c) Now define $\pi(n)$ to be arclength of the upper half of the unit circle C_n . This gives a different universal constant for each n. Do some computations, say compute $\pi_1, \pi_{\frac{3}{2}}, \pi_3, \pi_{100}$, and $\lim_{n\to\infty} \pi_n$, to get some idea of the range of values of π .