Math 158 Limits and applications of the Integral

Limits
L’Hopital’s rule
Theorem 1 (L’Hopital’s Rule, % form, a simple version). Suppose that

lim f(z) =0 and lim g(z) = 0,

r—C Tr—cC

that f and g are differentiable at ¢, and that ¢'(c) # 0. Then,

f@) 1)
Sig@) gl

Proof. First note that since f and g are differentiable at ¢, they are continu-
ous at ¢. This, together with the hypothesis that lim f(z) = 0 and lim g(x) =
Tr—c Tr—cC

0, imply that f(c¢) =0 and g(c) = 0. Now,

fi(e) _ dimg, HEEHE L @)= fe) | f@)
g lim,.,. g(wi:z(c) z—e g(x) — g(c)  =—e g(x)
]
are

Now, suppose in addition to the hypotheses above, that f’ and g¢
(

/
defined and continuous in a neighborhood of ¢. Then, we have / :(z)

lim,,_,. g :((;Cg and we can rewrite the conclusion of the theorem above as

~

Q

lim f(x) _ lim Jz)

T—c g(x)  zoe g/(x) '

!
However, one can say more. Even if £ '((3 does not exist! one can still conclude

that )
lim @ = lim )

T—C g(x) 2o g’(x)
provided the right hand side exists. We summarize:

518 might not exist: f’(c) might not exist, ¢’(¢) might

not exist, or ¢’(¢) might equal zero.

IThere are several reasons that
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Theorem 2 (L’Hopital’s Rule, % form, strong version). Suppose that

lim f(z) =0 and limg(z) =0

Tr—rC Tr—C
[
and suppose that lim = exists (or equals +00), then
Tr—cC g (I‘)

lim M = lim )
z—c ¢ :L‘) T—e g’(;c)'

/!

x
Proof. We give a proof in the case that lim f/(
r—cC g T

that we may set f(c¢) = 0 and g(¢) = 0. Then, for x # ¢, f and g are
continuous on the interval [c, ] (or the interval [z, |, depending on whether
x > cor x < c), and differentiable on the interval (c,z) (or the interval
(x,c)). Therefore, we may apply Caucy’s mean value theorem to obtain a
number d, between x and ¢ with

f'ld) _ flz) = flo) _ fl=)

g(d)  g(z)—glc) glz)

Since as x — ¢, we have d — ¢, we conclude that

lim @ = lim 1) = lim fz)

roe g(z) — dme g/(d) e g'(a)

exists and is finite. Note

In the last equality, we have just changed the variable d to the variable z. [J
Now, we can use this % form of L’Hopital’s rule to get another version:

Theorem 3 (L’Hopital’s Rule, 2 form). Suppose that

lim f(x) = 400 and lim g(x) = +00

Tr—cC r—C

!

and suppose that lim exists (or is £00), then

T—cC g’(x)
fx) _ [le)

@ T g0
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Proof. We only provide a proof under the special assumption that lim @
/ z=e g(1)
exists and is nonzero, call it L, and that lim f(z) = M is finite.
T—cC g’(:):)
1
702 1
Consider L = lim —= f(z) = lim 1) Since lim —— = 0 and lim —— = 0;
T—c g(qj) ame s z—c g( ) T—c f( )
and . -
1 g T
. drg@) _ . @ . (@) fl(x) M
ML L T e T )P ) L
da f(x) (f(x))?
Therefore, by the Y o form of L’Hopital’s rule, we can conclude that
M
L= I3 = L= M.
m

There are many more versions of L’Hopital’s rule. There are versions
where x — ¢ is replaced with + — ¢=,  — ¢*, x — 00, or z — —o0. The
proofs above all work for the one sided versions, but you need to modify the
argument for the xr — 400 versions.

Problem 1. L’Hopital’s rule does not apply without the assumption that

!/

lim = (@) exists in either the finite or infinite sense. Give an example where
T—00 g €T
/
lim f(z) =0, lim g(z) = 0, lim J(@) exists and is finite and where lim f()
T—C T—C T—00 g(q;) T—r00 g’(l‘)
does not exist. Give another example where lim f(x) = 400, lim g(z) = +o0,
Tr—rC Tr—rcC
/
lim /(@) exists and is finite and where lim f,(x) does not exist.
2L o) 2% @)

Problem 2. The squeeze theorem will tell you that

1
lim z sin (—) = 0.
x—0 x

So, there must exist a number 6 > 0 so that if 0 < || < ¢ then

1 1
T sin 1000

One student, doing a few calculations on a calculator, noticed that sin ( 0 106) =
—0.00918417 and answered that 0 = .106 works. Is he correct?
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Problem 3. State and prove Cauchy’s mean value theorem

Problem 4. True or false. If true, give a rigorous proof using the definition
of limits. If false, supply an example showing the statement is false:

(a) If lim f(z) = 0 then lim S 0.

T—C T—C (:E)

1
(b) If lim f(x) = oo then lim —— = 0.

z—c T—c f(q;)

Problem 5. Give an example of two functions f and g satisfying

(a) lim f(z) = oo and lim f(z) = oo,

T—00 T—00

o @)
®) g(x)

(¢) lim 1)

Z—00 g’(x)

exists and is finite, and

does not exist.

Problem 6. Give an example of two functions f and g (or prove that no
such example exists)
a) with lim,_,o f(x) =lim,_ f(x) = oo, lim,_, H@) oxists and is finite,
9(z)
and lim,_, % does not exist.
(b) where neither lim, . f(x) nor lim,_,. f(x) exist and lim, . f(x) + g(x)
exists and is finite.

(¢) where neither lim,_,. f(x) nor lim, .. f(z) exist and lim,_,. f(x)g(x)
exists and is finite.

(d) for which lim, . f(z) does not exist, lim,_,. f(z) exists and is finite
and lim, . f(x) + g(x) exists and is finite.

(e) or which lim,_,. f(x) does not exist, lim,_,. f(x) exists and is finite and
lim, . f(z)g(z) exists and is finite.

Problem 7. Compute
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-1 h(z) —1
(a) lim exp(z) (k) lim T — 2 (:l;)
z—0 x z—0 X
—1— inh
(b) ili% exp(x)x2 x 0 }EIL% smx(x)
log(1 inh(x) —
(c) lim og(l +2) (m) lim e o e (3:2) ’
x—0 X x—0 T
. log(14+2)—=z . sinh(z) — x
W= WM
1 '
() Tim cos(x) (0) Tim arcsin(z)
x—0 x x—0 x
cos(x) — 1 . arcsin(z) — x
(£) lim ——3 (p) lim ——5"—
sin(x) . arcsin(z) — x
) iy 2 (@)t )=
sin(z) — z . arctan(x)
) WM
. sin(x) —z . arctan(z) — x
(1) lim —5— () Jim ——
. .. cosh(x)—1 . arctan(z) — x
)ty == )ty =

Problem 8. If S is a set and R C S x S, one may call R a relation on the
set S. One says that a is related to b, and writes aRb if the pair (a,b) € R.
If R is a relation on A we say that

e R is reflexive if and only if for all a € S, aRa.
e R is symmetric if and only if for all a,b € S, aRb = bRa.
e R is transitive if and only if for all a,b,c € S, aRb and bRc = aRc.

e R is said to satisfy the trichotomy law if and only if for all a,b € §
exactly one of the following hold: aRb, bRa, or a = b.

For example, < defines a relation on the real numbers that is transitive, and
satisfies the trichotomy law, but < is neither reflexive nor symmetric. The
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relation < is not reflexive since, for example, it is not true that 2 < 2. The
relation < is not symmetric since, for example, 1 < 8 but it is not true that
8 < 1.

For another example, consider the following relation on the set Z:

alb if and only if b is divisible by a.

One can check that this relation is reflexive, symmetric, and transitive, but
does not satisfy the trichotomy law.
Now, for your problem: consider a new relation < on the set of functions.
Let us define
f(z)

f < g if and only if lim —= = 0.
z—00 g(1)

(a) Which apply to <: reflexive, symmetric, transitive, trichotomy law ?

(b) Label the vertices in the picture below according to the rule: there
should be a directed path from f to g whenever f < g.
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ff

Here are the labels:
. exp(a)
e log(z)

e log(log(x)

e T
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Volume and arclength

Problem 9. Review the computations of the n dimensional volume of an n
dimensional sphere of radius R for n = 2,3, 4.

(a) Go on and find the volumes of 5, 6, and 7 dimensional spheres of radius
R.

(b) Make a conjecture about the formula for the n dimensional volume of
an n dimensional sphere.

(¢) Try to prove your conjecture.

Problem 10 (Challenge). Review the derivation for the arclength of a curve
as an integral and compute the circumference of the unit circle.

(a) If we redefine the notion of distance between two points in the plane,
we get a different formula for the arclength of a curve. For example,
the “d, distance” between two points P = (z1,y1) and Q = (x9,ys) is
defined to be

1
d,(P,Q) = (Jxa — 1| + |y2 — y1|[")™ for n > 1.

In this terminology, the “ordinary” distance is the dy distance. Give a
formula for the arclength of a curve as an integral using the d,, distance.

(b) The unit circle C' is defined to be the set of all points in R?* whose
distance from the origin O is one:

O ={PeR?:d(P,0) _1}_{953/ ) eR?: \/:L'?—l—y?:l}
={(z,y) eR*: 2* +y* =1}.

Define C,, to be the set of all points in R? whose d,, distance from the
origin O is one:

C,={PecR*:d,(P,0O)=1}

{@y) eR: (al" + y)» =1}
{(z,y) e R* : a" + ¢y = 1}.

Sketch pictures of C,, for several n. Here is a picture of C%, Cy (the
ordinary circle), and Cj:
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(¢) Now define 7(n) to be arclength of the upper half of the unit circle

C,. This gives a different universal constant for each n.

Do some

computations, say compute my, 73, T3, T100, and lim,, .o, 7,, to get some
. 2
idea of the range of values of .



