Problem 1 (Section I 3.5 Exercise 5). First, let me record what I will use. By applying Theorem 1.22 with $a=0$, we know that if $b>0$ and $c<0$, then $b c<0$. This proves that if $a>0$ and $b>0$, then the quotient $\frac{a}{b}>0$ (otherwise, if $c=\frac{a}{b}<0$, the product $c b=a<0$). Also, by exercise 4, we know that if $a>0$, then $\frac{1}{a}>0$.

Now suppose that $0<a<b$. This means that $a>0, b>0$ and $0<b-a$. Since $0<a$ and $0<b$ we know $0<a b$. Since $0<b-a$ and $0<a b$, we have

$$
0<\frac{b-a}{a b}=\frac{1}{a}-\frac{1}{b} .
$$

This proves that $\frac{1}{b}<\frac{1}{a}$. Also, since $0<b$, we have $0<\frac{1}{b}$, so we get $0<\frac{1}{b}<\frac{1}{a}$.
Problem 2 (Section I 3.12 Exercise 1). Suppose $x<y$. Let $z=\frac{x+y}{2}$. Then $x<z<y$. To see this, first note that

$$
x<y \Rightarrow \frac{x}{2}<\frac{y}{2}
$$

Then,

$$
x=\frac{x}{2}+\frac{x}{2}<\frac{x}{2}+\frac{y}{2}=z
$$

and

$$
z=\frac{x}{2}+\frac{y}{2}<\frac{y}{2}+\frac{y}{2}=y
$$

Problem 3 (Section I 3.12 Exercise 3). Let $x>0$. Since \mathbb{N} is unbounded, there exists $n \in \mathbb{N}$ with $\frac{1}{x}<n$. Then, $\frac{1}{n}<x$.

Problem 4 (Section I 3.12, part of Exercise 7). I will prove that if x is rational and y is irrational, then $x+y$ is irrational.

First, I'll prove that $x, y \in \mathbb{Q} \Rightarrow x-y \in \mathbb{Q}$. To prove this, suppose $x=\frac{a}{b}$ for some $a, b \in \mathbb{Z}$ with $b \neq 0$ and $y=\frac{c}{d}$ for some $c, d \in \mathbb{Z}$ with $d \neq 0$. Then $x-y=\frac{a d-b c}{b d}$. Since $a, b, c, d \in \mathbb{Z}$, so is $a d-b c$ and $b d$. Since $b, d \neq 0$, the product $b d \neq 0$. So, $x-y=\frac{a d-b c}{b d} \in \mathbb{Q}$.

Now if $x+y$ is rational and x is rational, then the difference $x+y-y=x$ is rational also. Therefore, if x is rational and y is irrational, it's impossible for $x+y$ to be rational.

Problem 5. $\sqrt{3}$ is irrational. So is $-\sqrt{3}$. But the sum $\sqrt{3}-\sqrt{3}=0$ is rational.

