Problem 1 (Section I 3.5 Exercise 5). First, let me record what I will use. By applying Theorem 1.22 with a = 0, we know that if b > 0 and c < 0, then bc < 0. This proves that if a > 0 and b > 0, then the quotient $\frac{a}{b} > 0$ (otherwise, if $c = \frac{a}{b} < 0$, the product cb = a < 0). Also, by exercise 4, we know that if a > 0, then $\frac{1}{a} > 0$.

Now suppose that 0 < a < b. This means that a > 0, b > 0 and 0 < b - a. Since 0 < a and 0 < b we know 0 < ab. Since 0 < b - a and 0 < ab, we have

$$0 < \frac{b-a}{ab} = \frac{1}{a} - \frac{1}{b}.$$

This proves that $\frac{1}{b} < \frac{1}{a}$. Also, since 0 < b, we have $0 < \frac{1}{b}$, so we get $0 < \frac{1}{b} < \frac{1}{a}$.

Problem 2 (Section I 3.12 Exercise 1). Suppose x < y. Let $z = \frac{x+y}{2}$. Then x < z < y. To see this, first note that

$$x < y \Rightarrow \frac{x}{2} < \frac{y}{2}.$$

Then,

$$x = \frac{x}{2} + \frac{x}{2} < \frac{x}{2} + \frac{y}{2} = z$$

and

$$z = \frac{x}{2} + \frac{y}{2} < \frac{y}{2} + \frac{y}{2} = y.$$

Problem 3 (Section I 3.12 Exercise 3). Let x > 0. Since \mathbb{N} is unbounded, there exists $n \in \mathbb{N}$ with $\frac{1}{x} < n$. Then, $\frac{1}{n} < x$.

Problem 4 (Section I 3.12, part of Exercise 7). I will prove that if x is rational and y is irrational, then x + y is irrational.

First, I'll prove that $x, y \in \mathbb{Q} \Rightarrow x - y \in \mathbb{Q}$. To prove this, suppose $x = \frac{a}{b}$ for some $a, b \in \mathbb{Z}$ with $b \neq 0$ and $y = \frac{c}{d}$ for some $c, d \in \mathbb{Z}$ with $d \neq 0$. Then $x - y = \frac{ad - bc}{bd}$. Since $a, b, c, d \in \mathbb{Z}$, so is ad - bc and bd. Since $b, d \neq 0$, the product $bd \neq 0$. So, $x - y = \frac{ad - bc}{bd} \in \mathbb{Q}$.

Now if x + y is rational and x is rational, then the difference x + y - y = x is rational also. Therefore, if x is rational and y is irrational, it's impossible for x + y to be rational.

Problem 5. $\sqrt{3}$ is irrational. So is $-\sqrt{3}$. But the sum $\sqrt{3} - \sqrt{3} = 0$ is rational.