Math 157 Fall 2013

Problem 1. Read the rest of chapter I (through page 43).
Problem 2. Find the least upper bound of the set $\left\{\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \ldots\right\}$. Prove your answer.

Answer. 1 is the least upper bound for this set. Every element of this set has the form $\frac{n}{n+1}$ for some $n \in \mathbb{N}$. Since $n<n+1, \frac{n}{n+1}<\frac{n+1}{n+1}=1$, so 1 is an upper bound. To see that 1 is the least upper bound, let $x<1$. We will show that x is not an upper bound for this set. Note that $\frac{x}{1-x}$ is a real number, so by the Archimidean property, there is a natural number

$$
n>\frac{x}{1-x}=\frac{1}{1-x}-\frac{1-x}{1-x}=\frac{1}{1-x}-1
$$

Then

$$
n+1>\frac{1}{1-x} \Rightarrow \frac{1}{n+1}<1-x
$$

Subtracting a smaller number from yields a larger result so

$$
1-\frac{1}{n+1}>1-(1-x)=x
$$

Since $1-\frac{1}{n+1}=\frac{n}{n+1}$, we've shown that

$$
\frac{n}{n+1}>x
$$

Thus, any number $x<1$ is not an upper bound for the given set.
Problem 3. True or False:
(a) $p \Rightarrow(q \vee r) \equiv(p \wedge \neg q) \Rightarrow r$
(b) $(p \wedge q) \Rightarrow r \equiv(p \wedge \neg r) \Rightarrow \neg q$.

Problem 4. Prove that

$$
\text { If } a, b, c>0 \text { and } a+b+c=1 \text { then }(1-a)(1-b)(1-c) \geq 8 a b c
$$

Answer. First note that for any $x, y \in \mathbb{R}$, we have $(x+y)^{2} \geq 4 x y$ since $(x+y)^{2}-4 x y=(x-y)^{2} \geq 0$. Dividing by 4 and taking square roots yields

$$
\frac{x+y}{2} \geq \sqrt{x y}
$$

Now, begin with $(1-a)(1-b)(1-c)$ and use $a+b+c=1$ to get

$$
\begin{aligned}
(1-a)(1-b)(1-c) & =(b+c)(a+c)(a+b) \\
& =8\left(\frac{b+c}{2}\right)\left(\frac{a+c}{2}\right)\left(\frac{a+b}{2}\right) \\
& \geq 8 \sqrt{b c} \sqrt{a c} \sqrt{a b} \\
& =8 a b c
\end{aligned}
$$

Math 157 Fall 2013 Homework 5 - selected answers

Problem 5. n ! may be defined inductively for $n=0,1,2, \ldots$ by

- $0!=1$ and
- $n!=n \times(n-1)$!

For $n, k=0,1,2, \ldots$, define $\binom{n}{k}$ by

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!}
$$

Prove that

$$
\binom{n+1}{k}=\binom{n}{k-1}+\binom{n}{k}
$$

Answer. We give a direct proof using the definition:

$$
\begin{aligned}
\binom{n}{k-1}+\binom{n}{k} & =\frac{n!}{(n-k+1)!(k-1)!}+\frac{n!}{(n-k!) k!} \\
& =\frac{(n!)(k)+(n!)(n-k+1)}{(n-k+1)!k!} \\
& =\frac{(n!)(n+1)}{(n-k+1)!k!} \\
& =\frac{(n+1)!}{n+1-k)!(k!)} \\
& =\binom{n+1}{k!}
\end{aligned}
$$

Problem 6. Prove that for all $x \in \mathbb{R}, 0 \leq|x|-x \leq 2|x|$.
Problem 7. Prove that for all $n \in \mathbb{N}, \sum_{k=1}^{n} 2 k-1=n^{2}$.
Answer. We use a proof by induction. For $n=1$, the statement is that $2(1)-1=1^{2}$, which is true.

$$
\begin{aligned}
& \text { Now assume that } \sum_{k=1}^{n} 2 k-1=n^{2} . \text { Consider } \sum_{k=1}^{n+1} 2 k-1 \text { : } \\
& \qquad \begin{aligned}
\sum_{k=1}^{n+1} 2 k-1 & =\left(\sum_{k=1}^{n} 2 k-1\right)+(2(n+1)-1) \\
& =n^{2}+2(n+1)-1 \\
& =n^{2}+2 n+1 \\
& =(n+1)^{2}
\end{aligned}
\end{aligned}
$$

This completes a proof by mathematical induction.

