Problem 1. Read Chapter 1, through section 1.8. (pages 48-61).

- (a) In Section 1.5, do exercises 2,3,4,8,9,10, and 11.
- (b) In Section 1.7, do exercises 1,2,3, and 6.

Functions

Definition 1. We say that a set of ordered pairs $f \subseteq X \times Y$ is a function from X to Y if and only if for all $x \in X$ there exists one and only one $y \in Y$ so that $(x, y) \in f$. We usually write $f : X \to Y$ if $f \subseteq X \times Y$ is a function and we write y = f(x) if $(x, y) \in f$. The set X is called the domain of f and the set Y is called the codomain of f.

It is common to think of a function $f: X \to Y$ a "rule" that associates $x \in X$ to $y \in Y$ whenever y = f(x) and to refer to the set of ordered pairs $f \subseteq X \times Y$ as the graph of the function. By this convention the "rule" is referred to as the function f and the set $graph(f) = \{(x, y) \in X \times Y : f(x) = y\}$ is the graph of f.

Definition 2. Suppose that $f: X \to Y$ is a function.

(a) For any subset $A \subseteq X$, we define the set $f(A) \subseteq Y$ by

 $f(A) = \{ y \in Y : \exists x \in A \text{ with } f(x) = y \}.$

- (b) We call $f(X) \subseteq Y$ the range of f.
- (c) For any subset $B \subseteq Y$, we define the set $f^{-1}(B) \subseteq X$ by

$$f^{-1}(B) = \{ x \in X : f(x) \in B \}.$$

Problem 2. Suppose that $f: X \to Y$ is a function.

- (a) For any $A \subseteq X$ and $B \subseteq X$, compare $f(A \cup B)$ and $f(A) \cup f(B)$.
- (b) For any $A \subseteq X$ and $B \subseteq X$, compare $f(A \cap B)$ and $f(A) \cap f(B)$.
- (c) For any $C \subseteq Y$ and $D \subseteq Y$, compare $f^{-1}(C \cup D)$ and $f^{-1}(C) \cup f^{-1}(D)$.
- (d) For any $C \subseteq Y$ and $D \subseteq Y$, compare $f^{-1}(C \cap D)$ and $f^{-1}(C) \cap f^{-1}(D)$.
- (e) For any $A \subseteq X$, compare $f(X \setminus A)$ and $Y \setminus f(A)$.
- (f) For any $C \subseteq Y$, compare $f^{-1}(Y \setminus C)$ and $X \setminus f^{-1}(C)$.
- (g) For any $A \subseteq X$, compare $f^{-1}(f(A))$ and A.

(h) For any $C \subseteq Y$, compare $f(f^{-1}(C))$ and C.

Here "compare" means decide whether \subseteq , \supseteq , =, or none apply.

Definition 3. Suppose that $f: X \to Y$ is a function.

(a) We say that f is *injective* or *one to one* if and only if

$$\forall x \in X \forall z \in X (f(x) = f(z) \Rightarrow x = z)$$

(b) We say that f is *surjective* or *onto* if and only if

$$\forall y \in Y \exists x \in X \, (f(x) = y).$$

(c) We say that f is *bijective* if f is both injective and surjective.

We may call an injective function an *injection*, a surjective function a *surjection*, and a bijective function a *bijection*.

Problem 3. Which apply: injective, surjective, or bijective?

- (a) Define $f : \mathbb{N} \to \mathbb{N}$ by f(n) = 2n for every $n \in \mathbb{N}$.
- (b) Define $g: \mathbb{N} \setminus \{0, 1\} \to \mathbb{N}$ by g(n) = n 1 for every $n \in \mathbb{N}$.
- (c) Let $X = \{$ functions $\phi : \mathbb{N} \to \mathbb{N} \}$. Define a function $G : X \to \mathbb{N}$ by $G(\phi) = \phi(3)$ for all $\phi \in X$.
- (d) Let $X = \{$ functions $\phi : \mathbb{N} \to \{0, 1\} \}$ and let $Y = \{$ subsets of $\mathbb{N} \}$. Define a function $H : X \to Y$ by $H(f) = f^{-1}(\{1\})$.