Problem 1. Read Chapter 1, through section 1.8. (pages 48-61).
(a) In Section 1.5, do exercises 2,3,4,8,9,10, and 11.
(b) In Section 1.7, do exercises $1,2,3$, and 6 .

Functions

Definition 1. We say that a set of ordered pairs $f \subseteq X \times Y$ is a function from X to Y if and only if for all $x \in X$ there exists one and only one $y \in Y$ so that $(x, y) \in f$. We usually write $f: X \rightarrow Y$ if $f \subseteq X \times Y$ is a function and we write $y=f(x)$ if $(x, y) \in f$. The set X is called the domain of f and the set Y is called the codomain of f.

It is common to think of a function $f: X \rightarrow Y$ a "rule" that associates $x \in X$ to $y \in Y$ whenever $y=f(x)$ and to refer to the set of ordered pairs $f \subseteq X \times Y$ as the graph of the function. By this convention the "rule" is referred to as the function f and the set $\operatorname{graph}(f)=\{(x, y) \in X \times Y: f(x)=y\}$ is the graph of f.

Definition 2. Suppose that $f: X \rightarrow Y$ is a function.
(a) For any subset $A \subseteq X$, we define the set $f(A) \subseteq Y$ by

$$
f(A)=\{y \in Y: \exists x \in A \text { with } f(x)=y\} .
$$

(b) We call $f(X) \subseteq Y$ the range of f.
(c) For any subset $B \subseteq Y$, we define the set $f^{-1}(B) \subseteq X$ by

$$
f^{-1}(B)=\{x \in X: f(x) \in B\}
$$

Problem 2. Suppose that $f: X \rightarrow Y$ is a function.
(a) For any $A \subseteq X$ and $B \subseteq X$, compare $f(A \cup B)$ and $f(A) \cup f(B)$.
(b) For any $A \subseteq X$ and $B \subseteq X$, compare $f(A \cap B)$ and $f(A) \cap f(B)$.
(c) For any $C \subseteq Y$ and $D \subseteq Y$, compare $f^{-1}(C \cup D)$ and $f^{-1}(C) \cup f^{-1}(D)$.
(d) For any $C \subseteq Y$ and $D \subseteq Y$, compare $f^{-1}(C \cap D)$ and $f^{-1}(C) \cap f^{-1}(D)$.
(e) For any $A \subseteq X$, compare $f(X \backslash A)$ and $Y \backslash f(A)$.
(f) For any $C \subseteq Y$, compare $f^{-1}(Y \backslash C)$ and $X \backslash f^{-1}(C)$.
(g) For any $A \subseteq X$, compare $f^{-1}(f(A))$ and A.
(h) For any $C \subseteq Y$, compare $f\left(f^{-1}(C)\right)$ and C.

Here "compare" means decide whether \subseteq, \supseteq, $=$, or none apply.
Definition 3. Suppose that $f: X \rightarrow Y$ is a function.
(a) We say that f is injective or one to one if and only if

$$
\forall x \in X \forall z \in X(f(x)=f(z) \Rightarrow x=z)
$$

(b) We say that f is surjective or onto if and only if

$$
\forall y \in Y \exists x \in X(f(x)=y)
$$

(c) We say that f is bijective if f is both injective and surjective.

We may call an injective function an injection, a surjective function a surjection, and a bijective function a bijection.

Problem 3. Which apply: injective, surjective, or bijective?
(a) Define $f: \mathbb{N} \rightarrow \mathbb{N}$ by $f(n)=2 n$ for every $n \in \mathbb{N}$.
(b) Define $g: \mathbb{N} \backslash\{0,1\} \rightarrow \mathbb{N}$ by $g(n)=n-1$ for every $n \in \mathbb{N}$.
(c) Let $X=\{$ functions $\phi: \mathbb{N} \rightarrow \mathbb{N}\}$. Define a function $G: X \rightarrow \mathbb{N}$ by $G(\phi)=\phi(3)$ for all $\phi \in X$.
(d) Let $X=\{$ functions $\phi: \mathbb{N} \rightarrow\{0,1\}\}$ and let $Y=\{$ subsets of $\mathbb{N}\}$. Define a function $H: X \rightarrow Y$ by $H(f)=f^{-1}(\{1\})$.

