Math 157 Fall 2013 Homework 6 - Selected answers

Problem 1. Read Chapter 1, through section 1.8. (pages 48-61).
(a) In Section 1.5, do exercises $2,3,4,8,9,10$, and 11.

Answer. Exercise 2. Let $f(x)=1+x$ and $g(x)=1-x$. Then

$$
\begin{gathered}
f(2)+g(2)=3+-1=2 \\
f(2)-g(2)=3--1=4 \\
f(2) g(2)=(3)(-1)=-3 \\
\frac{f(2)}{g(2)}=\frac{3}{-1}=-3 \\
g(f(2))=g(3)=1-3=-2 \\
f(g(2))=f(-1)=-1+1=0 \\
f(a)+g(-a)=1+a+(1--a)=2+2 a \\
f(t) g(-t)=(1+t)(1+t)
\end{gathered}
$$

Answer. Exercise 9. Let

$$
f(x)=\sum_{k=0}^{n} c_{k} x^{k}=c_{0}+c_{1} x+c_{2} x^{2}+\cdots+c_{k} x^{k}
$$

(a) If $n \geq 1$ and $f(0)=0$, the $f(x)=x g(x)$ where g is a polynomial of degree $n-1$. To see this, note that for any polynomial, $f(0)=c_{0}$. So, if $f(0)=0$, then $c_{0}=0$. So,

$$
\begin{aligned}
f(x) & =\sum_{k=1}^{n} c_{k} x^{k}=c_{1} x+c_{2} x^{2}+\cdots+c_{k} x^{k} \\
& =x\left(c_{1}+c_{2} x+\cdots c_{k} x^{k-1}\right) \\
& x g(x)
\end{aligned}
$$

where

$$
g(x)=\left(c_{1}+c_{2} x+\cdots c_{k} x^{k-1}\right)=\sum_{k=0}^{n} c_{k+1} x^{k}
$$

(b) For each real number a, the function p defined by $p(x)=f(x+a)$ is a polynomial of degree n. To see this, simply substitute $x+a$ for x in $f(x)$, expand the expressions $(x+a)^{k}$, and collect the powers of x. More explicitly,

$$
\begin{aligned}
p(x)= & f(x+a) \\
= & c_{0}+c_{1}(x+a)+c_{2}(x+a)^{2}+\cdots+c_{n}(x+a)^{n} \\
= & c_{0}+\left(c_{1} x+c_{1} a\right)+\left(c_{2} x^{2}+2 c_{2} a x+c_{2} a^{2}\right)+\left(c_{3} x^{3}+3 c_{3} a x^{2}+3 c_{3} a^{2} x+c_{3} a^{3}\right) \\
& \quad+\cdots+\left(c_{n} x^{n}+n c_{n} a x^{n-1}+\cdots+n c_{n} a^{n-1} x+c_{n} a^{n}\right) \\
& \quad\left(c_{0}+c_{1} a+c_{2} a^{2}+c_{3} a^{3}+\cdots+c_{n} a^{n}\right)+\left(c_{1}+2 c_{2} a+3 c_{3} a^{2}+\cdots+n c_{n} a^{n-1}\right) x+ \\
& \quad+\left(c_{2}+3 c_{3} a+\cdots\right) x^{2}+\cdots+c_{n} x^{n}
\end{aligned}
$$

which is a polynomial of degree n also.
(c) If $n \geq 1$ and $f(a)=0$, then there exists a polynomial h of degree $n-1$ with $f(x)=(x-a) h(x)$. To see this, let $p(x)=f(x+a)$. Note that $f(x)=p(x-a)$. Since $f(a)=0$, we have $p(0)=0$ and since p is a polynomial of degree n, part (a) implies that p factors as

$$
p(x)=x q(x)
$$

for some polynomial $q(x)$ of degree $n-1$. Therefore $f(x)=p(x-a)=$ $(x-a) q(x-a)$. Since $q(x)$ is a polynomial of degree $n-1$, so is $h(x):=q(x-a)$. Thus, we have found a polynomial h of degree $n-1$ so that

$$
f(x)=(x-a) h(x)
$$

(d) It follows that if f is a polynomial of degree n, then $f(x)=0$ for at most n distinct real numbers. I'll walk through a slow argument of this fact.
If $n \geq 2$, and $f(x)=0$ for two distinct values of x, say $x=a$ and $x=b$, then there exists a polynomial g of degree $n-2$ so that $f(x)=(x-a)(x-b) g(x)$. To see this, use the previous part to write $f(x)=(x-a) h(x)$ for a polynomial h of degree $n-1$. Then, since $f(b)=0$, we have $(b-a) h(b)=0$. Since $b-a \neq 0$ if a and b are distinct, we must have $h(b)=0$. Then, the previous part says that there exists a polynomial g of degree $n-2$ so that $h(x)=(x-b) g(x)$. Then,

$$
f(x)=(x-a)(x-b) g(x) .
$$

Continuing, one sees that if $f(x)=0$ for k distinct values of x, say $x=a_{1}, \ldots, a_{k}$, then there exists a polynomial g of degree $n-k$ so that

$$
f(x)=\left(x-a_{1}\right) \cdots\left(x-a_{k}\right) g(x)
$$

Note that if the degree of f is n, then $f(x)=0$ for at most n distinct values of x. To see this, note that if $f(x)=0$ for $n>0$ distinct values of x, call them a_{1}, \ldots, a_{n}, then

$$
f(x)=\left(x-a_{1}\right)\left(x-a_{2}\right) \cdots\left(x-a_{n}\right) g(x)
$$

for some polynomial g of degree zero. Since g is a degree zero polynomial, $g(x)=c$ for some constant c and $c \neq 0$ since degree of f is $n>0$. So the polynomial f has the form

$$
f(x)=c\left(x-a_{1}\right)\left(x-a_{2}\right) \cdots\left(x-a_{n}\right)
$$

for some constants a_{1}, \ldots, a_{n} and some nonzero constant c. Then, for any number a_{n+1} distinct from a_{1}, \ldots, a_{n}, we have $\left(a_{n+1}-a_{i}\right) \neq 0$, so the righthand side $c\left(x-a_{1}\right)\left(x-a_{2}\right) \cdots\left(x-a_{n}\right)$ is not zero at $x=a_{n+1}$. That is, $f(x)$ cannot be zero for any number a_{n+1} distinct from a_{1}, \ldots, a_{n}.
Another way to summarize this is to say that if f is a polynomial of degree less than or equal to n and $f(x)=0$ for $n+1$ distinct values of x, then $f(x)=0$ for all x.
(e) Now suppose that g is a polynomial of $m \geq n$, where n is the degree of the polynomial f. If $f(x)=g(x)$ for $m+1$ distinct values of x, then $f=g$. To see this, note that the function h defined by $h(x)=f(x)-g(x)$ is a polynomial of degree $\leq m$. If $f(x)=g(x)$ for $m+1$ distinct values of x, then $h(x)=0$ for more than $m+1$ distinct numbers, hence $h(x)=0$.
(b) In Section 1.7, do exercises 1,2,3, and 6 .

Functions

Definition 1. We say that a set of ordered pairs $f \subseteq X \times Y$ is a function from X to Y if and only if for all $x \in X$ there exists one and only one $y \in Y$ so that $(x, y) \in f$. We usually write $f: X \rightarrow Y$ if $f \subseteq X \times Y$ is a function and we write $y=f(x)$ if $(x, y) \in f$. The set X is called the domain of f and the set Y is called the codomain of f.

It is common to think of a function $f: X \rightarrow Y$ a "rule" that associates $x \in X$ to $y \in Y$ whenever $y=f(x)$ and to refer to the set of ordered pairs $f \subseteq X \times Y$ as the graph of the function. By this convention the "rule" is referred to as the function f and the set $\operatorname{graph}(f)=\{(x, y) \in X \times Y: f(x)=y\}$ is the graph of f.

Definition 2. Suppose that $f: X \rightarrow Y$ is a function.
(a) For any subset $A \subseteq X$, we define the set $f(A) \subseteq Y$ by

$$
f(A)=\{y \in Y: \exists x \in A \text { with } f(x)=y\}
$$

(b) We call $f(X) \subseteq Y$ the range of f.
(c) For any subset $B \subseteq Y$, we define the set $f^{-1}(B) \subseteq X$ by

$$
f^{-1}(B)=\{x \in X: f(x) \in B\}
$$

Problem 2. Suppose that $f: X \rightarrow Y$ is a function.
(a) For any $A \subseteq X$ and $B \subseteq X$, compare $f(A \cup B)$ and $f(A) \cup f(B)$.

Answer.

Claim 1. For any $A, B \subseteq X$, we have $f(A \cup B)=f(A) \cup f(B)$.
Proof. Let $A, B \subseteq X$. To prove that $f(A \cup B) \subseteq f(A) \cup f(B)$ let $y \in$ $f(A \cup B)$. This means there exists an element $x \in A \cup B$ with $f(x)=y$. If $x \in A$, we have $y=f(x) \in f(A) \Rightarrow y \in f(A) \cup f(B)$. If $x \in B$, we have $y=f(x) \in f(B) \Rightarrow y \in f(A) \cup f(B)$.
To prove that $f(A) \cup f(B) \subseteq f(A \cup B)$, let $y \in f(A) \cup f(B)$. If $y \in f(A)$, there exists an element $x \in A$ with $f(x)=y$. Since $x \in A$, we have $x \in A \cup B$, so $y=f(x) \in f(A \cup B)$. If $y \in f(B)$, there exists an element $x \in B$ with $f(x)=y$. Since $x \in B$, we have $x \in A \cup B$, so $y=f(x) \in f(A \cup B)$.
(b) For any $A \subseteq X$ and $B \subseteq X$, compare $f(A \cap B)$ and $f(A) \cap f(B)$.

Answer.

Claim 2. For any $A, B \subseteq X$, we have $f(A \cap B) \subseteq f(A) \cap f(B)$.
Proof. Let $A, B \subseteq X$ and let $y \in f(A \cap B)$. This means there exists an element $x \in A \cap B$ with $f(x)=y$. Since $x \in A, y=f(x) \in f(A)$. Since $x \in B, y=f(x) \in f(B)$. Together, $y \in f(A)$ and $y \in f(B)$ imply $y \in f(A) \cap f(B)$.

It may be the case that

$$
f(A) \cap f(B) \nsubseteq f(A \cap B)
$$

Consider an example: Let $X=\{1,2,3\}, Y=\{a, b, c\}$ and $f:\{1,2,3\} \rightarrow$ $\{a, b, c\}$ be defined by

$$
f(1)=a, \quad f(2)=a, \quad f(3)=b
$$

For $A=\{1\}$ and $B=\{2\}$, we have
$f(A \cap B)=f(\emptyset)=\emptyset$ and $f(A) \cap f(B)=f(\{1\} \cap f(\{2\})=\{a\} \cap\{a\}=\{a\}$.
Claim 3. If f is injective, then for any $A, B \subseteq X, f(A \cap B=f(A) \cap f(B)$.
Proof. Let $A, B \subseteq X$. We already know that $f(A \cap B) \subseteq f(A) \cap f(B)$. To finish, we need to show that if f is injective then $f(A) \cap f(B) \subseteq f(A \cap B)$.

So, assume f is injective and let $y \in f(A) \cap f(B)$. Since $y \in f(A)$ there exists an element $x \in A$ with $f(x)=y$. Since $y \in f(B)$ there exists an element $z \in B$ with $f(z)=y$. Since f is injective and $f(x)=f(z)$, we have $x=z$. Therefore $x \in A$ and $x=z \in B$, so $x \in A \cap B$. Therefore, $y=f(x) \in f(A \cap B)$.
(c) For any $C \subseteq Y$ and $D \subseteq Y$, compare $f^{-1}(C \cup D)$ and $f^{-1}(C) \cup f^{-1}(D)$.
(d) For any $C \subseteq Y$ and $D \subseteq Y$, compare $f^{-1}(C \cap D)$ and $f^{-1}(C) \cap f^{-1}(D)$.

Answer.

Claim 4. For any $C, D \subseteq Y$, we have $f^{-1}(C \cap D)=f^{-1}(C) \cap f^{-1}(D)$.
Proof. Let $C, D \subseteq Y$. To prove that $f^{-1}(C \cap D) \subseteq f^{-1}(C) \cap f^{-1}(D)$, let $x \in f^{-1}(C \cap D)$. This means $f(x) \in C \cap D$. So $f(x) \in C$ and $f(x) \in D$. Since $f(x) \in C$, we have $x \in f^{-1}(C)$. Since $f(x) \in D$, we have $x \in f^{-1}(D)$. Together $x \in f^{-1}(C)$ and $x \in f^{-1}(D)$ imply that $x \in f^{-1}(C) \cap f^{-1}(D)$.
To prove that $f^{-1}(C) \cap f^{-1}(D) \subseteq f^{-1}(C \cap D)$, let $x \in f^{-1}(C) \cap f^{-1}(D)$. This means $x \in f^{-1}(C)$ and $x \in f^{-1}(D)$. Since $x \in f^{-1}(C)$, we have $f(x) \in C$. Since $x \in f^{-1}(D)$ we have $f(x) \in D$. Therefore, $f(x) \in C \cap D$. Therefore $x \in f^{-1}(C \cap D)$.
(e) For any $A \subseteq X$, compare $f(X \backslash A)$ and $Y \backslash f(A)$.

Answer. First, we give an example to show that it may be the case that

$$
f(X \backslash A) \nsubseteq Y \backslash f(A) \text { and } Y \backslash f(A) \nsubseteq f(X \backslash A)
$$

Let $X=\{1,2,3\}, Y=\{a, b, c\}$ and $f:\{1,2,3\} \rightarrow\{a, b, c\}$ be defined by

$$
f(1)=a, \quad f(2)=a, \quad f(3)=b
$$

Let $A=\{1\}$. We have

$$
f(X \backslash A)=f(\{2,3\})=\{a, b\} \text { and } Y \backslash f(A)=Y \backslash\{a\}=\{b, c\}
$$

Claim 5. If $f: X \rightarrow Y$ is injective, then for any $A \subseteq X$ we have $f(X \backslash A) \subseteq Y \backslash f(A)$.

Proof. Assume $f: X \rightarrow Y$ is injective and $A \subseteq X$. Let $y \in f(X \backslash A)$. This means there exists $x \in X \backslash A$ with $f(x)=y$. Since f is injective, x is the only element of X with $f(x)=y$. Since $x \notin A$, there is no element $z \in A$ with $f(z)=y$. Thus, $y \notin f(A)$. This says $y \in Y \backslash f(A)$, as needed to prove that $f(X \backslash A) \subseteq Y \backslash f(A)$.

Claim 6. If $f: X \rightarrow Y$ is surjective then for any $A \subseteq X$ we have $Y \backslash f(A) \subseteq f(X \backslash A)$.

Proof. Assume $f: X \rightarrow Y$ is surjective and $A \subseteq X$. Let $y \in Y \backslash f(A)$. Because f is onto, there exists $x \in X$ with $f(x)=y$. Note that $x \notin A$ for otherwise $f(x)=y \in f(A)$. Therefore $x \in X \backslash A$. Since $f(x)=y$, we have $y \in f(X \backslash A)$, as needed to prove that $Y \backslash f(A) \subseteq f(X \backslash A)$.
(f) For any $C \subseteq Y$, compare $f^{-1}(Y \backslash C)$ and $X \backslash f^{-1}(C)$.
(g) For any $A \subseteq X$, compare $f^{-1}(f(A))$ and A.

Answer.

Claim 7. For any $A \subseteq X$, we have $A \subseteq f^{-1}(f(A))$.
Proof. Let $x \in A$. Then $f(x) \in f(A)$. Since $f(x) \in f(A)$, the element $x \in f^{-1}(f(A))$.

Note that $f^{-1}(f(A))$ and A need not be equal. For example, let $X=$ $\{1,2,3,4\}$ and $Y=\{a, b, c, d\}$ and define

$$
\begin{aligned}
f: X & \rightarrow Y \\
1 & \mapsto a \\
2 & \mapsto b \\
3 & \mapsto b \\
4 & \mapsto c
\end{aligned}
$$

Let $A=\{1,2\}$. Then

$$
f^{-1}(f(A))=f^{-1}(\{a, b\})=\{1,2,3\} \neq A
$$

Claim 8. If f is injective, then for any $A \subseteq X$, we have $A=f^{-1}(f(A))$.
Proof. We only need to show that if f is injective, then $f^{-1}(f(A)) \subseteq A$. So assume f is injective and let $x \in f^{-1}(f(A))$. This means that $f(x) \in f(A)$. Therefore, there exists an element $z \in A$ with $f(z)=f(x)$. Since f is injective, $z=x$ and we see that $x \in A$.
(h) For any $C \subseteq Y$, compare $f\left(f^{-1}(C)\right)$ and C.

Here "compare" means decide whether $\subseteq, \supseteq,=$, or none apply.
Definition 3. Suppose that $f: X \rightarrow Y$ is a function.

Math 157 Fall 2013 Homework 6 - Selected answers

(a) We say that f is injective or one to one if and only if

$$
\forall x \in X \forall z \in X(f(x)=f(z) \Rightarrow x=z)
$$

(b) We say that f is surjective or onto if and only if

$$
\forall y \in Y \exists x \in X(f(x)=y)
$$

(c) We say that f is bijective if f is both injective and surjective.

We may call an injective function an injection, a surjective function a surjection, and a bijective function a bijection.

Problem 3. Which apply: injective, surjective, or bijective?
(a) Define $f: \mathbb{N} \rightarrow \mathbb{N}$ by $f(n)=2 n$ for every $n \in \mathbb{N}$.

Answer. The function f is injective but not surjective. To see that f is injective, suppose $f(n)=f(k)$. This means $2 n=2 k$, which implies $n=k$. To see that f is not surjective, note that $1 \notin f(\mathbb{N})$ since $1 \neq 2 n$ for any $n \in \mathbb{N}$.
(b) Define $g: \mathbb{N} \backslash\{0,1\} \rightarrow \mathbb{N}$ by $g(n)=n-1$ for every $n \in \mathbb{N}$.

Answer. Here, g is bijective. To see that g is injective, assume $g(n)=$ $g(k)$. This means $n-1=k-1$ which implies $n=k$. To see that g is surjective, let $y \in \mathbb{N}$, then $n=y+1 \in \mathbb{N} \backslash\{0,1\}$ and $g(n)=g(y+1)=$ $y+1-1=y$.
(c) Let $X=\{$ functions $\phi: \mathbb{N} \rightarrow \mathbb{N}\}$. Define a function $G: X \rightarrow \mathbb{N}$ by $G(\phi)=\phi(3)$ for all $\phi \in X$.

Answer. This function G is surjective but not injective. To see that it is surjective, let $y \in \mathbb{N}$. Then for the constant function $\phi: \mathbb{N} \rightarrow \mathbb{N}$ defined by $\phi(n)=y$, we have $G(\phi)=\phi(3)=y$.
To see that G is not surjective consider the constant function the constant function $\phi: \mathbb{N} \rightarrow \mathbb{N}$ defined by $\phi(n)=6$ and the function $f: \mathbb{N} \rightarrow \mathbb{N}$ defined by $f(n)=2 n$. Here,

$$
\phi \neq f \text { and } G(\phi)=\phi(3)=6 \text { and } G(f)=f(3)=6
$$

(d) Let $X=\{$ functions $\phi: \mathbb{N} \rightarrow\{0,1\}\}$ and let $Y=\{$ subsets of $\mathbb{N}\}$. Define a function $H: X \rightarrow Y$ by $H(f)=f^{-1}(\{1\})$.

Math 157 Fall 2013 Homework 6 - Selected answers

Answer. The function H is bijective. To see that H is injective, assume that $H(f)=H(g)$ for functions $f, g: \mathbb{N} \rightarrow\{0,1\}$. The assumption that $H(f)=H(g)$ means that $f^{-1}(\{1\})=g^{-1}(\{1\})$. So, for all $n \in f^{-1}(\{1\})$, we have $f(n)=1=g(n)$. If $n \notin f^{-1}(\{1\})$, we must have $f(n)=0$ and $g(n)=0$. Therefore, for all $n \in \mathbb{N}, f(n)=g(n)$. That is, $f=g$.
To see that H is surjective, let $Y \subset \mathbb{N}$. Define a function $f: \mathbb{N} \rightarrow \mathbb{N}$ by $f(n)=1$ if $n \in Y$ and $f(n)=0$ if $n \notin Y$. Then $H(f)=f^{-1}(\{1\})=Y$.

