Problem 1. Read Chapter 1, through section 1.8. (pages 48-61).

(a) In Section 1.5, do exercises 2,3,4,8,9,10, and 11.

Answer. Exercise 2. Let f(x) = 1 + x and g(x) = 1 - x. Then

$$\begin{split} f(2) + g(2) &= 3 + -1 = 2 \\ f(2) - g(2) &= 3 - -1 = 4 \\ f(2)g(2) &= (3)(-1) = -3 \\ \frac{f(2)}{g(2)} &= \frac{3}{-1} = -3 \\ g(f(2)) &= g(3) = 1 - 3 = -2 \\ f(g(2)) &= f(-1) = -1 + 1 = 0 \\ f(a) + g(-a) &= 1 + a + (1 - -a) = 2 + 2a \\ f(t)g(-t) &= (1 + t)(1 + t). \end{split}$$

Answer. Exercise 9. Let

$$f(x) = \sum_{k=0}^{n} c_k x^k = c_0 + c_1 x + c_2 x^2 + \dots + c_k x^k.$$

(a) If $n \ge 1$ and f(0) = 0, the f(x) = xg(x) where g is a polynomial of degree n - 1. To see this, note that for any polynomial, $f(0) = c_0$. So, if f(0) = 0, then $c_0 = 0$. So,

$$f(x) = \sum_{k=1}^{n} c_k x^k = c_1 x + c_2 x^2 + \dots + c_k x^k$$

= $x (c_1 + c_2 x + \dots + c_k x^{k-1})$
 $xg(x)$

where

$$g(x) = (c_1 + c_2 x + \dots + c_k x^{k-1}) = \sum_{k=0}^n c_{k+1} x^k.$$

(b) For each real number a, the function p defined by p(x) = f(x + a) is a polynomial of degree n. To see this, simply substitute x + a for x in f(x), expand the expressions (x + a)^k, and collect the powers of x. More explicitly,

$$p(x) = f(x + a)$$

= $c_0 + c_1(x + a) + c_2(x + a)^2 + \dots + c_n(x + a)^n$
= $c_0 + (c_1x + c_1a) + (c_2x^2 + 2c_2ax + c_2a^2) + (c_3x^3 + 3c_3ax^2 + 3c_3a^2x + c_3a^3)$
+ $\dots + (c_nx^n + nc_nax^{n-1} + \dots + nc_na^{n-1}x + c_na^n)$
= $(c_0 + c_1a + c_2a^2 + c_3a^3 + \dots + c_na^n) + (c_1 + 2c_2a + 3c_3a^2 + \dots + nc_na^{n-1})x +$
+ $(c_2 + 3c_3a + \dots)x^2 + \dots + c_nx^n$

which is a polynomial of degree n also.

(c) If $n \ge 1$ and f(a) = 0, then there exists a polynomial h of degree n-1 with f(x) = (x-a)h(x). To see this, let p(x) = f(x+a). Note that f(x) = p(x-a). Since f(a) = 0, we have p(0) = 0 and since p is a polynomial of degree n, part (a) implies that p factors as

$$p(x) = xq(x)$$

for some polynomial q(x) of degree n-1. Therefore f(x) = p(x-a) = (x-a)q(x-a). Since q(x) is a polynomial of degree n-1, so is h(x) := q(x-a). Thus, we have found a polynomial h of degree n-1 so that

$$f(x) = (x - a)h(x)$$

(d) It follows that if f is a polynomial of degree n, then f(x) = 0 for at most n distinct real numbers. I'll walk through a slow argument of this fact.

If $n \ge 2$, and f(x) = 0 for two distinct values of x, say x = aand x = b, then there exists a polynomial g of degree n - 2 so that f(x) = (x - a)(x - b)g(x). To see this, use the previous part to write f(x) = (x - a)h(x) for a polynomial h of degree n - 1. Then, since f(b) = 0, we have (b - a)h(b) = 0. Since $b - a \ne 0$ if a and b are distinct, we must have h(b) = 0. Then, the previous part says that there exists a polynomial g of degree n - 2 so that h(x) = (x - b)g(x). Then,

$$f(x) = (x - a)(x - b)g(x).$$

Continuing, one sees that if f(x) = 0 for k distinct values of x, say $x = a_1, \ldots, a_k$, then there exists a polynomial g of degree n - k so that

 $f(x) = (x - a_1) \cdots (x - a_k)g(x).$

Note that if the degree of f is n, then f(x) = 0 for at most n distinct values of x. To see this, note that if f(x) = 0 for n > 0 distinct values of x, call them a_1, \ldots, a_n , then

$$f(x) = (x - a_1)(x - a_2) \cdots (x - a_n)g(x)$$

for some polynomial g of degree zero. Since g is a degree zero polynomial, g(x) = c for some constant c and $c \neq 0$ since degree of f is n > 0. So the polynomial f has the form

$$f(x) = c(x - a_1)(x - a_2) \cdots (x - a_n)$$

for some constants a_1, \ldots, a_n and some nonzero constant c. Then, for any number a_{n+1} distinct from a_1, \ldots, a_n , we have $(a_{n+1} - a_i) \neq 0$, so the righthand side $c(x - a_1)(x - a_2) \cdots (x - a_n)$ is not zero at $x = a_{n+1}$. That is, f(x) cannot be zero for any number a_{n+1} distinct from a_1, \ldots, a_n .

Another way to summarize this is to say that if f is a polynomial of degree less than or equal to n and f(x) = 0 for n + 1 distinct values of x, then f(x) = 0 for all x.

- (e) Now suppose that g is a polynomial of $m \ge n$, where n is the degree of the polynomial f. If f(x) = g(x) for m + 1 distinct values of x, then f = g. To see this, note that the function h defined by h(x) = f(x) - g(x) is a polynomial of degree $\le m$. If f(x) = g(x)for m + 1 distinct values of x, then h(x) = 0 for more than m + 1distinct numbers, hence h(x) = 0.
- (b) In Section 1.7, do exercises 1,2,3, and 6.

Functions

Definition 1. We say that a set of ordered pairs $f \subseteq X \times Y$ is a function from X to Y if and only if for all $x \in X$ there exists one and only one $y \in Y$ so that $(x, y) \in f$. We usually write $f : X \to Y$ if $f \subseteq X \times Y$ is a function and we write y = f(x) if $(x, y) \in f$. The set X is called the domain of f and the set Y is called the codomain of f.

It is common to think of a function $f : X \to Y$ a "rule" that associates $x \in X$ to $y \in Y$ whenever y = f(x) and to refer to the set of ordered pairs $f \subseteq X \times Y$ as the graph of the function. By this convention the "rule" is referred to as the function f and the set $graph(f) = \{(x, y) \in X \times Y : f(x) = y\}$ is the graph of f.

Definition 2. Suppose that $f: X \to Y$ is a function.

(a) For any subset $A \subseteq X$, we define the set $f(A) \subseteq Y$ by

$$f(A) = \{ y \in Y : \exists x \in A \text{ with } f(x) = y \}.$$

- (b) We call $f(X) \subseteq Y$ the range of f.
- (c) For any subset $B \subseteq Y$, we define the set $f^{-1}(B) \subseteq X$ by

$$f^{-1}(B) = \{ x \in X : f(x) \in B \}.$$

Problem 2. Suppose that $f: X \to Y$ is a function.

(a) For any $A \subseteq X$ and $B \subseteq X$, compare $f(A \cup B)$ and $f(A) \cup f(B)$.

Answer.

Claim 1. For any $A, B \subseteq X$, we have $f(A \cup B) = f(A) \cup f(B)$.

Proof. Let $A, B \subseteq X$. To prove that $f(A \cup B) \subseteq f(A) \cup f(B)$ let $y \in f(A \cup B)$. This means there exists an element $x \in A \cup B$ with f(x) = y. If $x \in A$, we have $y = f(x) \in f(A) \Rightarrow y \in f(A) \cup f(B)$. If $x \in B$, we have $y = f(x) \in f(B) \Rightarrow y \in f(A) \cup f(B)$.

To prove that $f(A) \cup f(B) \subseteq f(A \cup B)$, let $y \in f(A) \cup f(B)$. If $y \in f(A)$, there exists an element $x \in A$ with f(x) = y. Since $x \in A$, we have $x \in A \cup B$, so $y = f(x) \in f(A \cup B)$. If $y \in f(B)$, there exists an element $x \in B$ with f(x) = y. Since $x \in B$, we have $x \in A \cup B$, so $y = f(x) \in f(A \cup B)$.

(b) For any $A \subseteq X$ and $B \subseteq X$, compare $f(A \cap B)$ and $f(A) \cap f(B)$.

Answer.

Claim 2. For any $A, B \subseteq X$, we have $f(A \cap B) \subseteq f(A) \cap f(B)$.

Proof. Let $A, B \subseteq X$ and let $y \in f(A \cap B)$. This means there exists an element $x \in A \cap B$ with f(x) = y. Since $x \in A$, $y = f(x) \in f(A)$. Since $x \in B$, $y = f(x) \in f(B)$. Together, $y \in f(A)$ and $y \in f(B)$ imply $y \in f(A) \cap f(B)$.

It may be the case that

$$f(A) \cap f(B) \nsubseteq f(A \cap B).$$

Consider an example: Let $X = \{1, 2, 3\}, Y = \{a, b, c\}$ and $f : \{1, 2, 3\} \rightarrow \{a, b, c\}$ be defined by

$$f(1) = a$$
, $f(2) = a$, $f(3) = b$.

For $A = \{1\}$ and $B = \{2\}$, we have

$$f(A \cap B) = f(\emptyset) = \emptyset$$
 and $f(A) \cap f(B) = f(\{1\} \cap f(\{2\}) = \{a\} \cap \{a\} = \{a\}.$

Claim 3. If f is injective, then for any $A, B \subseteq X$, $f(A \cap B = f(A) \cap f(B)$.

Proof. Let $A, B \subseteq X$. We already know that $f(A \cap B) \subseteq f(A) \cap f(B)$. To finish, we need to show that if f is injective then $f(A) \cap f(B) \subseteq f(A \cap B)$.

So, assume f is injective and let $y \in f(A) \cap f(B)$. Since $y \in f(A)$ there exists an element $x \in A$ with f(x) = y. Since $y \in f(B)$ there exists an element $z \in B$ with f(z) = y. Since f is injective and f(x) = f(z), we have x = z. Therefore $x \in A$ and $x = z \in B$, so $x \in A \cap B$. Therefore, $y = f(x) \in f(A \cap B)$.

- (c) For any $C \subseteq Y$ and $D \subseteq Y$, compare $f^{-1}(C \cup D)$ and $f^{-1}(C) \cup f^{-1}(D)$.
- (d) For any $C \subseteq Y$ and $D \subseteq Y$, compare $f^{-1}(C \cap D)$ and $f^{-1}(C) \cap f^{-1}(D)$.

Answer.

Claim 4. For any $C, D \subseteq Y$, we have $f^{-1}(C \cap D) = f^{-1}(C) \cap f^{-1}(D)$.

Proof. Let $C, D \subseteq Y$. To prove that $f^{-1}(C \cap D) \subseteq f^{-1}(C) \cap f^{-1}(D)$, let $x \in f^{-1}(C \cap D)$. This means $f(x) \in C \cap D$. So $f(x) \in C$ and $f(x) \in D$. Since $f(x) \in C$, we have $x \in f^{-1}(C)$. Since $f(x) \in D$, we have $x \in f^{-1}(D)$. Together $x \in f^{-1}(C)$ and $x \in f^{-1}(D)$ imply that $x \in f^{-1}(C) \cap f^{-1}(D)$.

To prove that $f^{-1}(C) \cap f^{-1}(D) \subseteq f^{-1}(C \cap D)$, let $x \in f^{-1}(C) \cap f^{-1}(D)$. This means $x \in f^{-1}(C)$ and $x \in f^{-1}(D)$. Since $x \in f^{-1}(C)$, we have $f(x) \in C$. Since $x \in f^{-1}(D)$ we have $f(x) \in D$. Therefore, $f(x) \in C \cap D$. Therefore $x \in f^{-1}(C \cap D)$.

(e) For any $A \subseteq X$, compare $f(X \setminus A)$ and $Y \setminus f(A)$.

Answer. First, we give an example to show that it may be the case that

 $f(X \setminus A) \nsubseteq Y \setminus f(A) \text{ and } Y \setminus f(A) \nsubseteq f(X \setminus A).$

Let $X = \{1, 2, 3\}, Y = \{a, b, c\}$ and $f : \{1, 2, 3\} \rightarrow \{a, b, c\}$ be defined by

 $f(1) = a, \quad f(2) = a, \quad f(3) = b.$

Let $A = \{1\}$. We have

$$f(X \setminus A) = f(\{2,3\}) = \{a,b\} \text{ and } Y \setminus f(A) = Y \setminus \{a\} = \{b,c\}.$$

Claim 5. If $f : X \to Y$ is injective, then for any $A \subseteq X$ we have $f(X \setminus A) \subseteq Y \setminus f(A)$.

Proof. Assume $f : X \to Y$ is injective and $A \subseteq X$. Let $y \in f(X \setminus A)$. This means there exists $x \in X \setminus A$ with f(x) = y. Since f is injective, x is the only element of X with f(x) = y. Since $x \notin A$, there is no element $z \in A$ with f(z) = y. Thus, $y \notin f(A)$. This says $y \in Y \setminus f(A)$, as needed to prove that $f(X \setminus A) \subseteq Y \setminus f(A)$. **Claim 6.** If $f : X \to Y$ is surjective then for any $A \subseteq X$ we have $Y \setminus f(A) \subseteq f(X \setminus A)$.

Proof. Assume $f : X \to Y$ is surjective and $A \subseteq X$. Let $y \in Y \setminus f(A)$. Because f is onto, there exists $x \in X$ with f(x) = y. Note that $x \notin A$ for otherwise $f(x) = y \in f(A)$. Therefore $x \in X \setminus A$. Since f(x) = y, we have $y \in f(X \setminus A)$, as needed to prove that $Y \setminus f(A) \subseteq f(X \setminus A)$. \Box

- (f) For any $C \subseteq Y$, compare $f^{-1}(Y \setminus C)$ and $X \setminus f^{-1}(C)$.
- (g) For any $A \subseteq X$, compare $f^{-1}(f(A))$ and A.

Answer.

Claim 7. For any $A \subseteq X$, we have $A \subseteq f^{-1}(f(A))$.

Proof. Let $x \in A$. Then $f(x) \in f(A)$. Since $f(x) \in f(A)$, the element $x \in f^{-1}(f(A))$.

Note that $f^{-1}(f(A))$ and A need not be equal. For example, let $X = \{1, 2, 3, 4\}$ and $Y = \{a, b, c, d\}$ and define

$$\begin{array}{c} f:X\rightarrow Y\\ 1\mapsto a\\ 2\mapsto b\\ 3\mapsto b\\ 4\mapsto c \end{array}$$

Let $A = \{1, 2\}$. Then

$$f^{-1}(f(A)) = f^{-1}(\{a, b\}) = \{1, 2, 3\} \neq A.$$

Claim 8. If f is injective, then for any $A \subseteq X$, we have $A = f^{-1}(f(A))$.

Proof. We only need to show that if f is injective, then $f^{-1}(f(A)) \subseteq A$. So assume f is injective and let $x \in f^{-1}(f(A))$. This means that $f(x) \in f(A)$. Therefore, there exists an element $z \in A$ with f(z) = f(x). Since f is injective, z = x and we see that $x \in A$.

(h) For any $C \subseteq Y$, compare $f(f^{-1}(C))$ and C.

Here "compare" means decide whether \subseteq , \supseteq , =, or none apply.

Definition 3. Suppose that $f: X \to Y$ is a function.

(a) We say that f is *injective* or *one to one* if and only if

 $\forall x \in X \forall z \in X (f(x) = f(z) \Rightarrow x = z).$

(b) We say that f is *surjective* or *onto* if and only if

$$\forall y \in Y \exists x \in X \ (f(x) = y).$$

(c) We say that f is *bijective* if f is both injective and surjective.

We may call an injective function an *injection*, a surjective function a *surjection*, and a bijective function a *bijection*.

Problem 3. Which apply: injective, surjective, or bijective?

(a) Define $f : \mathbb{N} \to \mathbb{N}$ by f(n) = 2n for every $n \in \mathbb{N}$.

Answer. The function f is injective but not surjective. To see that f is injective, suppose f(n) = f(k). This means 2n = 2k, which implies n = k. To see that f is not surjective, note that $1 \notin f(\mathbb{N})$ since $1 \neq 2n$ for any $n \in \mathbb{N}$.

(b) Define $g: \mathbb{N} \setminus \{0, 1\} \to \mathbb{N}$ by g(n) = n - 1 for every $n \in \mathbb{N}$.

Answer. Here, g is bijective. To see that g is injective, assume g(n) = g(k). This means n - 1 = k - 1 which implies n = k. To see that g is surjective, let $y \in \mathbb{N}$, then $n = y + 1 \in \mathbb{N} \setminus \{0, 1\}$ and g(n) = g(y + 1) = y + 1 - 1 = y.

(c) Let $X = \{$ functions $\phi : \mathbb{N} \to \mathbb{N} \}$. Define a function $G : X \to \mathbb{N}$ by $G(\phi) = \phi(3)$ for all $\phi \in X$.

Answer. This function G is surjective but not injective. To see that it is surjective, let $y \in \mathbb{N}$. Then for the constant function $\phi : \mathbb{N} \to \mathbb{N}$ defined by $\phi(n) = y$, we have $G(\phi) = \phi(3) = y$.

To see that G is not surjective consider the constant function the constant function $\phi : \mathbb{N} \to \mathbb{N}$ defined by $\phi(n) = 6$ and the function $f : \mathbb{N} \to \mathbb{N}$ defined by f(n) = 2n. Here,

$$\phi \neq f$$
 and $G(\phi) = \phi(3) = 6$ and $G(f) = f(3) = 6$.

(d) Let $X = \{$ functions $\phi : \mathbb{N} \to \{0, 1\} \}$ and let $Y = \{$ subsets of $\mathbb{N} \}$. Define a function $H : X \to Y$ by $H(f) = f^{-1}(\{1\})$.

Answer. The function H is bijective. To see that H is injective, assume that H(f) = H(g) for functions $f, g : \mathbb{N} \to \{0, 1\}$. The assumption that H(f) = H(g) means that $f^{-1}(\{1\}) = g^{-1}(\{1\})$. So, for all $n \in f^{-1}(\{1\})$, we have f(n) = 1 = g(n). If $n \notin f^{-1}(\{1\})$, we must have f(n) = 0 and g(n) = 0. Therefore, for all $n \in \mathbb{N}$, f(n) = g(n). That is, f = g.

To see that H is surjective, let $Y \subset \mathbb{N}$. Define a function $f : \mathbb{N} \to \mathbb{N}$ by f(n) = 1 if $n \in Y$ and f(n) = 0 if $n \notin Y$. Then $H(f) = f^{-1}(\{1\}) = Y$.