Step functions

Problem 1. Read sections 1.8-1.14 (pages 60-70) in Apostol and do the following exercises:
(a) Exercises 1, 3 in 1.11 on page 63.
(b) Exercises 1, 2, 5, 11, 13-17 in section 1.15 on pages 70-72.

More on abstract functions

Definition 1. Suppose that $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ are functions. We define the composition $g \circ f$ to be the function

$$
g \circ f: X \rightarrow Z
$$

given by $(g \circ f)(x)=g(f(x))$.
Definition 2. For any set X, define the function $\operatorname{id}_{X}: X \rightarrow X$ by $\operatorname{id}_{X}(x)=x$ for all $x \in X$.

Problem 2. Prove that \circ is associative. That is, if $f: X \rightarrow Y, g: Y \rightarrow Z$, and $h: Z \rightarrow W$ are functions, then

$$
(h \circ g) \circ f=h \circ(g \circ f) .
$$

Problem 3. Prove that for any function $f: X \rightarrow Y$, we have

$$
f \circ \mathrm{id}_{X}=f \text { and } \operatorname{id}_{Y} \circ f=f
$$

Definition 3. Let $f: X \rightarrow Y$ be a function. We say that a function $g: Y \rightarrow X$ is a left inverse of f if $g \circ f=\operatorname{id}_{X}$. We say that a function $g: Y \rightarrow X$ is a right inverse of f if $f \circ g=\mathrm{id}_{Y}$. We say that a function $g: Y \rightarrow X$ is an inverse of f if g is both a left and a right inverse of f.

Problem 4. Prove that $f: X \rightarrow Y$ has a left inverse if and only if f is injective.
Problem 5. Prove that $f: X \rightarrow Y$ has a right inverse if and only if f is surjective.

Problem 6. Prove that if $f: X \rightarrow Y$ has a left inverse $g: Y \rightarrow X$ and a right inverse $h: Y \rightarrow X$, then $g=h$.

