Step functions

Problem 1. Read sections 1.8-1.14 (pages 60-70) in Apostol and do the following exercises:
(a) Exercises 1, 3 in 1.11 on page 63.
(b) Exercises 1, 2, 5, 11, 13-17 in section 1.15 on pages 70-72.

More on abstract functions

Definition 1. Suppose that $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ are functions. We define the composition $g \circ f$ to be the function

$$
g \circ f: X \rightarrow Z
$$

given by $(g \circ f)(x)=g(f(x))$.
Definition 2. For any set X, define the function $\operatorname{id}_{X}: X \rightarrow X$ by $\operatorname{id}_{X}(x)=x$ for all $x \in X$.

Problem 2. Prove that \circ is associative. That is, if $f: X \rightarrow Y, g: Y \rightarrow Z$, and $h: Z \rightarrow W$ are functions, then

$$
(h \circ g) \circ f=h \circ(g \circ f)
$$

Answer. We check: for $x \in X$, we have
$(h \circ g) \circ f(x)=(h \circ g)(f(x))=h(g(f(x)))$ and $h \circ(g \circ f)(x)=h(g \circ f)(x)=h(g(f(x)))$.
Problem 3. Prove that for any function $f: X \rightarrow Y$, we have

$$
f \circ \operatorname{id}_{X}=f \text { and } \operatorname{id}_{Y} \circ f=f
$$

Answer. To see that f and $f \circ \mathrm{id}_{X}$ are the same functions, we check that they assign the same values to every element in the domain. For any $x \in X$, we have,

$$
f \circ \operatorname{id}_{X}(x)=f\left(\operatorname{id}_{X}(x)\right)=f(x)
$$

Similarly, we check that f and $\operatorname{id}_{Y} \circ f$ assign the same values to every element in the domain. For any $x \in X$, we have

$$
\operatorname{id}_{Y} \circ f(x)=\operatorname{id}_{Y}(f(x))=f(x)
$$

Definition 3. Let $f: X \rightarrow Y$ be a function. We say that a function $g: Y \rightarrow X$ is a left inverse of f if $g \circ f=\operatorname{id}_{X}$. We say that a function $g: Y \rightarrow X$ is a right inverse of f if $f \circ g=\mathrm{id}_{Y}$. We say that a function $g: Y \rightarrow X$ is an inverse of f if g is both a left and a right inverse of f.

Problem 4. Prove that $f: X \rightarrow Y$ has a left inverse if and only if f is injective.
Answer. To prove that if $f: X \rightarrow Y$ has a left inverse, it must be injective suppose that $g: Y \rightarrow X$ satisfies $g f=\mathrm{id}: X \rightarrow X$ and let $x, x^{\prime} \in X$ satisfy $f(x)=f\left(x^{\prime}\right)$. Apply g to get $g(f(x))=g\left(f\left(x^{\prime}\right)\right)$. Since $g f=$ id $: X \rightarrow X$, we have $x=x^{\prime}$ as needed.

Conversely, if f is injective, choose a fixed element $x_{0} \in X$ and define a $g: Y \rightarrow X$ by

$$
g(y)= \begin{cases}x & \text { if } g(x)=y \\ x_{0} & \text { if } y \text { is not in } f(X)\end{cases}
$$

The function g is well defined because f is injective. By construction, we have $g f=\mathrm{id}_{A}$.

Problem 5. Prove that $f: X \rightarrow Y$ has a right inverse if and only if f is surjective.

Answer. To see that if f has a right inverse, then it must be surjective, suppose that $g: Y \rightarrow X$ and $f g=\mathrm{id}_{Y}$. For every $y \in Y, y=f g(y)=f(g(y))$. Therefore, for every $y \in Y$, there exists an $x \in X$ (namely, $x=g(y)$) with $f(x)=y$. This says f is surjective.

Conversely, if f is surjective, define $g: Y \rightarrow X$ as follows: for every $y \in Y$, choose an element $x \in X$ with $f(x)=y$. This is possible since f is surjective. Define $g(y)=x$. Then, $f g(y)=f(x)=y$, so g is a right inverse for f.

Problem 6. Prove that if $f: X \rightarrow Y$ has a left inverse $g: Y \rightarrow X$ and a right inverse $h: Y \rightarrow X$, then $g=h$.

Answer. To see that if f has both a left and a right inverse, then they are the same, suppose that $g, h: Y \rightarrow X$ and $f g=\operatorname{id}_{Y}$ and $h f=\mathrm{id}_{X}$. We have $h f=\mathrm{id}_{X} \Rightarrow(h f) g=g \Rightarrow h(f g)=g \Rightarrow h\left(\mathrm{id}_{Y}\right)=g \Rightarrow h=g$.

