Problem 1. Let $s:[1,7] \rightarrow \mathbb{R}$ and $t:[1,7] \rightarrow \mathbb{R}$ be step functions given by

$$
s(x)=\left\{\begin{array}{ll}
3 & \text { if } 1<x<3 \\
5 & \text { if } 3<x<5 \\
4 & \text { if } 5<x<7
\end{array} \quad t(x)= \begin{cases}2 & \text { if } 1<x<2 \\
1 & \text { if } 2<x<4 \\
3 & \text { if } 4<x<6 \\
2 & \text { if } 6<x<7\end{cases}\right.
$$

(a) Sketch the graphs of s and t.

Answer.

(b) Describe $s+t$ and sketch its graph.

$$
(s+t)(x)= \begin{cases}5 & \text { if } 1<x<2 \\ 4 & \text { if } 2<x<3 \\ 6 & \text { if } 3<x<4 \\ 8 & \text { if } 4<x<5 \\ 7 & \text { if } 5<x<6 \\ 6 & \text { if } 6<x<7\end{cases}
$$

(c) Find a partition of $[1,7]$ for which s, t, and $s+t$ are constant on its open subintervals.

Answer. $\mathcal{P}=\{1,2,3,4,5,6,7\}$.
(d) Compute the integrals $\int_{1}^{7} s$, and $\int_{1}^{7} t, \int_{1}^{7} s+t$.

Answer.

$$
\begin{gathered}
\int_{1}^{7} s=3(2)+5(2)+4(2)=24 \\
\int_{1}^{7} t=2(1)+1(2)+3(2)+2(1)=12 \\
\int_{1}^{7} s+t=5(1)+4(1)+6(1)+8(1)+7(1)+6(1)=36
\end{gathered}
$$

(e) You should have found that $\int_{1}^{7} s+t=\int_{1}^{7} s+\int_{1}^{7} t$. Give a step by step arithmetic argument to show explicitly that

$$
\int_{1}^{7} s+t=\int_{1}^{7} s+\int_{1}^{7} t
$$

Answer. We use the partition $\mathcal{P}=\{1,2,3,4,5,6,7\}$ and compute

$$
\begin{aligned}
& \quad \int_{1}^{7} s+\int_{1}^{7} t \\
& =(3(2-1)+3(3-2)+5(4-3)+5(5-4)+4(6-5)+4(7-6)) \\
& +(2(2-1)+1(3-2)+1(4-3)+3(5-4)+3(6-5)+2(7-6)) \\
& =((3+2)(2-1)+(3+1)(3-2)+(5+1)(4-3)+(5+3)(5-4)+(4+3)(6-5)+(4+2)(7-6)) \\
& \quad=\int_{a}^{7} s+t
\end{aligned}
$$

Problem 2. Read sections 1.16-1.17 in Apostol.
Problem 3. Let $f:[0,1] \rightarrow \mathbb{R}$ be given by

$$
f(x)= \begin{cases}1 & \text { if } x \in \mathbb{Q} \\ 2 & \text { if } x \in[0,1] \backslash \mathbb{Q}\end{cases}
$$

Compute $\bar{I}(f)$ and $\underline{I}(f)$, the upper and lower integrals of f over the interval $[0,1]$.

Answer. Let

$$
S=\left\{\int_{0}^{1} s: s \text { is a step function with } s \leq f\right\}
$$

Suppose s is a step function satisfying $s \leq f$. Since there are rational numbers in every open interval, $s \leq 1$ so $\int_{0}^{1} s=1$. So, 1 is an upper bound for S. Since the constant function 1 is a step function less than f and $\int_{0}^{1} s=1,1 \in S$. We conclude that $\underline{I}(f)=\sup S=1$.

Let

$$
T=\left\{\int_{0}^{1} t: t \text { is a step function with } f \leq t\right\} .
$$

Suppose t is a step function satisfying $f \leq t$. Since there are irrational numbers in every open interval, $2 \leq t$ so $\int_{0}^{1} t \geq 2$. Thus 2 is a lower bound for T. Since the constant function 2 is a step function satisfying $2 \leq f$, the number $2=\int_{0}^{1} 2 \in T$. We conclude that $\bar{I}(f)=\inf T=2$.

Problem 4. Read sections 1.18-1.27 in Apostol.
Problem 5. Let $f(x)=x^{2}$ and $g(x)=2 x+1$.
(a) Sketch a picture of the graphs of f, g, and $f+g$ over the interval $[0,2]$.

Answer.

(b) Compute $\int_{0}^{2} f, \int_{0}^{2} g$, and $\int_{0}^{2} f+g$.

Answer. For $\int_{0}^{2} x^{2}$, we use the fact that for any $p \in \mathbb{N}$, we have $\int_{0}^{b} x^{p}=$ $\frac{b^{p+1}}{p+1}$. So,

$$
\int_{0}^{2} x^{2}=\frac{2^{3}}{3}=\frac{8}{3}
$$

To compute $\int_{0}^{2} 2 x+1$, use the fact that the integral computes the area of the ordinate set and observe that the ordinate set is comprised of a triangle of area height 4 and width 2 on top of a rectangle of width 2 and height 1. So,

$$
\int_{0}^{2} 2 x+1=6
$$

For the last integral, we use the fact that the integral is additive over sums:

$$
\int_{0}^{2} x^{2}+2 x+1=\int_{0}^{2} x^{2}+\int_{0}^{2} 2 x+1=\frac{8}{3}+6
$$

