Problem 1. Give a rigorous (epsilon-delta) proof that the function f defined by

$$
f(x)=3 x-1
$$

is continuous at 2 .
Problem 2. Give a rigrorous (epsilon-delta) proof that $\lim _{x \rightarrow a} x^{2}=a^{2}$.
Problem 3. Give a rigrorous (epsilon-delta) proof that $\lim _{x \rightarrow 2} \frac{1}{x}=\frac{1}{2}$.
Problem 4. Give a rigorous proof that if f is continuous and $f(p)>0$, there exists a neighborhood of p on which f is positive.

Infinite limits

Definition 1. Let f be a function defined on a neighborhood of a point p except possible at p. The expression

$$
\lim _{x \rightarrow p} f(x)=\infty
$$

means that for every number B, there exists a number δ so that if $0<|x-p|<\delta$ then $f(x)>B$. The expression

$$
\lim _{x \rightarrow p} f(x)=-\infty
$$

means that for every number B, there exists a number δ so that if $0<|x-p|<\delta$ then $f(x)<B$.

Definition 2. Let f be a function defined on an interval (B, ∞). The expression

$$
\lim _{x \rightarrow \infty} f(x)=L
$$

means that for every $\epsilon>0$, there exists a number B so that if $x>B$ then $|f(x)-L|<\epsilon$. The expression

$$
\lim _{x \rightarrow-\infty} f(x)=L
$$

means that for every $\epsilon>0$, there exists a number B so that if $x<B$ then $|f(x)-L|<\epsilon$.

Problem 5. There are many variations of infinite and one-sided limits. It would be tedious to give them all, but it is a very good exercise to carefully state a few of them. Give precise definitions of $\lim _{x \rightarrow p^{+}} f(x)=-\infty$ and $\lim _{x \rightarrow \infty} f(x)=\infty$.

Problem 6. Give an $\epsilon-\delta$ proof that $\lim _{x \rightarrow \infty} \frac{\sin (x)}{\sqrt{x}}=0$.
Problem 7. Give an $\epsilon-\delta$ proof that $\lim _{x \rightarrow 2^{+}} \frac{1}{4-x^{2}}=-\infty$.
Problem 8. Compute:
(a) $\lim _{t \rightarrow 4} \frac{\sqrt{t+5}-3}{\sqrt{2 t+1}-3}$
(b) $\lim _{x \rightarrow 2^{-}} \frac{x^{2}-3 x}{x^{2}-4}$
(c) $\lim _{x \rightarrow 2} \frac{x^{4}-16}{x^{2}-4}=$
(d) $\lim _{x \rightarrow 6} \frac{x-6}{\sqrt{2 x-3}}=$
(e) $\lim _{t \rightarrow \infty} \frac{3 t^{3}+t-5}{4 t^{3}+t^{2}+6}=$
(f) $\lim _{x \rightarrow \infty} \frac{x^{2}-x}{x+10 \sqrt{x}}=$

Problem 9. Use the picture.

(a) $\lim _{x \rightarrow 3^{+}} g(x)=$
(d) $\lim _{x \rightarrow 6}(f+g)(x)=$
(b) $f(3)=$
(e) $(f+g)(6)=$
(c) $\lim _{x \rightarrow 3} f(x)=$
(f) $\lim _{x \rightarrow 4} \frac{f(x)}{g(x)}=$
(g) Is the function $f+g$ continuous at $x=6$? Explain.

Problem 10. Use the picture.

(a) $\lim _{x \rightarrow 6^{+}} h(x)$
(b) $h(6)$
(c) $\lim _{x \rightarrow 6} h(x)$
(d) $h(5)$
(e) $\lim _{x \rightarrow 3^{-}} h(x)$
(f) $\lim _{x \rightarrow 3^{+}} \frac{1}{h(x)}$
(g) $\lim _{x \rightarrow 3^{+}} \frac{x-3}{h(x)}$
(h) $\lim _{r \rightarrow 0} \frac{h(4+r)-2}{r}$
(i) $\lim _{x \rightarrow 3^{-}} h(2 x)$

Problem 11. Suppose that $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfies $|f(x)|<|x|$ for all $x \in \mathbb{R}$. Prove that f is continuous at 0 .

Problem 12. Give an example of a function $f: \mathbb{R} \rightarrow \mathbb{R}$ that is continuous at 0 and is discontinuous at every other point.

Problem 13. Extending functions.
(a) Suppose $f(x)=\frac{x^{2}-9}{x-3}$. Does there a continuous function $F: \mathbb{R} \rightarrow \mathbb{R}$ satisfying $F(x)=f(x)$ for all x in the domain of f ?
(b) Suppose $f(x)=\frac{|x|}{x}$. Does there a continuous function $F: \mathbb{R} \rightarrow \mathbb{R}$ satisfy$\operatorname{ing} F(x)=f(x)$ for all x in the domain of f ?
(c) Suppose $f(x)=\frac{\sin (x)}{x}$. Does there a continuous function $F: \mathbb{R} \rightarrow \mathbb{R}$ satisfying $F(x)=f(x)$ for all x in the domain of f ?
(d) Suppose $f(x)=\sin \left(\frac{1}{x}\right)$. Does there a continuous function $F: \mathbb{R} \rightarrow \mathbb{R}$ satisfying $F(x)=f(x)$ for all x in the domain of f ?
(e) Suppose $f(x)=x \sin \left(\frac{1}{x}\right)$. Does there a continuous function $F: \mathbb{R} \rightarrow \mathbb{R}$ satisfying $F(x)=f(x)$ for all x in the domain of f ?
(f) Suppose

$$
f(x)= \begin{cases}x^{2}+2 x+1 & \text { if } x<1 \\ 5 x-1 & \text { if } x>1\end{cases}
$$

Does there a continuous function $F: \mathbb{R} \rightarrow \mathbb{R}$ satisfying $F(x)=f(x)$ for all x in the domain of f ?
(g) Suppose $f: \mathbb{Q} \rightarrow \mathbb{R}$ is given by $f(r)=0$ for all $r \in \mathbb{Q}$. Does there a continuous function $F: \mathbb{R} \rightarrow \mathbb{R}$ satisfying $F(x)=f(x)$ for all x in the domain of f ?
(h) Suppose $f: \mathbb{Q} \rightarrow \mathbb{R}$ is given by $f(r)=\frac{1}{q}$ if $r=\frac{p}{q}$ in lowest terms. Does there a continuous function $F: \mathbb{R} \rightarrow \mathbb{R}$ satisfying $F(x)=f(x)$ for all x in the domain of f ?
(i) Suppose that $f:[a, b] \rightarrow \mathbb{R}$ is continuous at every point of $[a, b]$. Prove that there exists a continuous function $F: \mathbb{R} \rightarrow \mathbb{R}$ satisfying $F(x)=f(x)$ for all x in the domain of f (in fact, there are infinitely many such F).
(j) Give an example to show that if $f:(a, b) \rightarrow \mathbb{R}$ is continuous at every point of (a, b) there need not exist a continuous function $F: \mathbb{R} \rightarrow \mathbb{R}$ satisfying $F(x)=f(x)$ for all x in the domain of f.

