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Mathematical induction
Problem 1. Do either part (a) or part (b)

(a) Let c be any fixed natural number. Prove that 1c+2c+ · · ·+nc >
nc+1

c+ 1
for every n ∈ N.

Answer:
First we establish a key inequality. For any real numbers a and b, a quick check will show that

ac+1 − bc+1 = (a− b)(ac + ac−1b+ ac−2b2 + · · ·+ a2bc−2 + abc−1 + bc).

So, for a = k + 1 and b = k, we have

(k + 1)c+1 − kc+1 = (k + 1− k)
(
(k + 1)c + (k + 1)c−1k + · · ·+ (k + 1)kc−1 + kc

)
=
(
(k + 1)c + (k + 1)c−1k + · · ·+ (k + 1)nc−1 + kc

)
Since k < k + 1, each term in the sum on the right is less than or equal to (k + 1)c (since
(k+1)c−1k < (k+1)c−1(k+1) = (k+1)c and (k+1)c−2k2 < (k+1)c−2(k+1)2 = (k+1)c,
and so on). Therefore, we have (k + 1)c+1 − kc+1 < (c + 1)(k + 1)c establishing the key
inequality

kc+1 + (c+ 1)(k + 1)c > (k + 1)c+1.

Let P (n) be the statement

1c + 2c + · · ·+ nc >
nc+1

c+ 1

and notice that P (1) is the statement 1 >
1

c+ 1
, which is true.

Now, assume that P (k) is true for some k ∈ N. This means that 1c + 2c + · · · + kc >
kc+1

c+ 1
.

Now, consider 1c + 2c + · · ·+ (k + 1)c:

1c + 2c + · · ·+ (k + 1)c >
kc+1

c+ 1
+ (k + 1)c

>
1

c+ 1

(
kc+1 + (c+ 1)(k + 1)c

)
>

1

c+ 1
(k + 1)c+1.

This proves that A(k)⇒ A(k + 1).
Therefore, by the principle of mathematical induction, P (n) is true for all n ∈ N.
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Problem 1. Continued.

(b) Let Fk denote the k-th Fibonacci number, and let c be any fixed natural number, c ≥ 2.
Prove that Fn+c = FcFn+1 + Fc−1Fn for every n ∈ N.

Answer:
Recall, the Fibonacci numbers F0, F1, F2, . . . , are defined inductively by F1 = 1, F2 = 1, and
for k ≥ 3

Fk = Fk−1 + Fk−2.

The first few Fibonacci numbers are 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, . . . ,
Now, we begin our proof. Let P (n) be the statement

“Fk+c = FcFk+1 + Fc−1Fk for all k ≤ n.”

P (1) is the statement that Fk+c = FcFk+1 + Fc−1Fk for all k ≤ 1. There is only one thing to
check. Namely that F1+c = FcF2 + Fc−1F1. Using the fact that F1 = F2 = 1, we have

FcF2 + Fc−1F1 = Fc + Fc−1

= Fc+1.

Therefore, F1+c = FcF2 + Fc−1F1. This proves that P (1) is true.
Let us consider P (2). This is the statement Fk+c = FcFk+1 + Fc−1Fk for all k ≤ 2. Which
amounts to checking that

F1+c = FcF2 + Fc−1F1 and F2+c = FcF3 + Fc−1F2.

We already checked the first statement. To check the second one, look at:

FcF3 + Fc−1F2 = 2Fc + Fc−1

= Fc + Fc + Fc−1

= Fc + Fc+1

= Fc+2.

Therefore, F2+c = FcF3 + Fc−1F2. So, it is true that Fk+c = FcFk+1 + Fc−1Fk for all k ≤ 2.
Now, suppose that P (x) is true This means that we assume that Fk+c = FcFk+1 + Fc−1Fk for
all k ≤ x. Now consider Fx+1+c:

Fx+1+c = Fx+c + Fx+c−1 (by the definition of the Fibonacci numbers)

= (FcFx+1 + Fc−1Fx) + (FcFx + Fc−1Fx−1) (using P (x) and P (x− 1))

= Fc(Fx+1 + Fx) + Fc−1(Fx + Fx−1)

= FcFx+2 + Fc−1Fx+1.

This shows that Fx+1+c = FcFx+2 + Fc−1Fx+1, and consequently, that Fk+c = FcFk+1 +
Fc−1Fk for all k ≤ x+ 1.; that is, P (n+ 1) is true.
Therefore, by the principle of mathematical induction P (n) is true for all n ∈ N and the theorem
is proved.
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Integration
Problem 2.

(a) Let s : [a, b]→ R be a step function. Define
∫ b
a s.

Answer:

If s is a step function, then there is a partition P = {a = x0, x1, . . . , xn−1, xn = b}
of [a, b] for which s is constant on the open subintervals (xi−1, xi). Let us denote the
constant value by sK ; that is, s(x) = sk for x ∈ (xk−1, xk). Then, we define∫ b

a
s = s1(x1 − x0) + s2(x2 − x1) + · · ·+ sn(xn − xn−1).

(b) Let f : [a, b] → R be any bounded function. Define the statement “f is integrable”, and
the expression

∫ b
a f .

Answer:

let f : [a, b] → R be any bounded function. If there exists one and only one number I
satisfying ∫ b

a
s ≤ I ≤

∫ b

a
t

for all step functions s, t : [a, b] → R with s ≤ f ≤ t, then we say that f is integrable.
Furthermore, we denote this unique number I by∫ b

a
f.
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Problem 3. True or false:

(a) If x is any rational number and y is any irrational number, then x+ y is irrational.

Answer:

True If x could be written x = a
b and x + y = c

d for integers a, b, c, d, then we could
write y = (x+ y − x) = c

d −
a
b = bc−ad

bd .

(b) If x is any rational number and y is any irrational number, then xy is irrational.

Answer:

This is false, for example, if x = 0 and y =
√
2. Then x is rational, y is irrational, and

xy = 0 is rational. (However, if we assume that x is a nonzero rational number, then xy
is irrational. Try to prove this and see where in your argument it is important that x be
nonzero.)

(c) For any function f : X → Y and any C ⊆ Y , f−1(C) = f−1(C).

Answer:

First a remark about notation. For a set S, the symbol S means the complement of S; that
is, s ∈ S ⇔ s /∈ S. This notation only makes sense when S is understood to be a subset
of a given set U , in which case S := U \ S. So, here, for C ⊆ Y ,

C = Y \ C

and for f−1(C) ⊆ X ,
f−1(C) = X \ f−1(C).

Now, we begin our answer:

True. Let x ∈ f−1(C). This means that f(x) ∈ C. Hence, f(x) /∈ C. This implies that
x /∈ f−1(C). Therefore x ∈ f−1(C) and we’ve proved that f−1(C) ⊆ f−1(C).

On the other hand, let x ∈ f−1(C). Then, x /∈ f−1)(C). This says that f(x) /∈ C. So,
f(x) ∈ C ⇒ x ∈ f−1(C). This shows that f−1(C) ⊆ f−1(C).

(d) For any function f : X → Y and any A ⊆ X , f(A) = f (A).

Answer:

False. Let f : Z → N be given by f(z) = z2 and consider A = {0, 1, 2}. Then
A = {. . . ,−3,−2,−1, 3, 4, . . .} and

f(A) = {1, 4, 9, 16, 25, . . .}.

On the other hand, f(A) = {0, 1, 4, 9, 16} and

f(A) = {2, 3, 5, 6, 7, 10, 11, . . .}.
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Problem 3. Continued.

(e) If A is any nonempty subset of real numbers bounded below, then there is an element
z ∈ A with z ≤ a for all a ∈ A.

Answer:

This is false. The open interval (0, 1) ⊆ R is nonempty and bounded above; and there is
no element a ∈ (0, 1) with a ≤ z for all z ∈ (0, 1). (Note, by the completeness axiom,
the set (0, 1) has an infemum, but here inf(0, 1) = 0 is not an element of (0, 1).)

(f) If A is any nonempty subset of natural numbers, then there is an element z ∈ A with
z ≤ a for all a ∈ A.

Answer:

True. This is the well ordering principle of the natural numbers.

(g) Let g : [0, 1]→ R defined by

g(x) =

{
x if x = 1

n for some n ∈ N,
1 otherwise.

Then g is integrable and
∫ 1
0 g = 1.

Answer:

This is true. Notice that for any step function t with g < t,
∫ 1
0 t ≥ 1, with equality

attained when t is the constant function given by t(x) = 1. Therefore, I(g) = 1.

Now, consider the function sk : [0, 1]→ R defined by

sk =


0 if 0 ≤ x ≤ 1

k ,

0 if x = 1
n for some n ≤ k,

1 otherwise .

Then, sk is a step function and
∫ 1
0 sk = 1− 1

k . Therefore,

I(g) ≥ sup

{
1− 1

k

}
= 1.

Since, one has I(g) ≤ I(g) for any function g, we conclude in this case that I(g) =
I(g) = 1. This proves that g is integrable, and in fact, that

∫ 1
0 g = 1.
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Problem 3. Continued.

(h) Let g : [0, 1]→ R defined by as above. There are step function s and t with
∫ 1
0 s = I(g)

and
∫ 1
0 t = I(g).

Answer:

No, there is no step function s < g with I(g) = 1, since g takes on the value 0 for
infinitely many x, any step function s < g, must be ≤ 0 for at least a small open interval.
This implies that

∫ 1
0 s ≤ 1 for any step function s < g.

(i) Let h(x) = [
√
x]. Then h is a step function and

∫ 16
1 h = 34.

Answer:

True. Here,

h(x) =


1 if 1 ≤ x < 4,

2 if 4 ≤ x < 9,

3 if 9 ≤ x < 16,

4 if x = 16.

So,
∫ 16
1 h = 1(3) + 2(5) + 3(7) = 34.

(j) If f is decreasing on [a, b] then f is integrable and (b− a)f(b) ≤
∫ b
a f ≤ (b− a)f(a).

Answer:

True. This is a consequence of the montonic function theorem, and the fact that the
constant functions s = f(b) and t = f(a) are step functions satisfying s ≤ f ≤ t.
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Problem 4. Bonus. Suppose that instead of the usual definition, we had defined the integral
of a step function s by the formula∫ b

a
s =

n∑
i=1

(
s2i
)
(xi − xi−1)

where {xi} is a partition of [a, b] for which s takes the constant value si on the open subin-
terval (xi−1, xi). Then, a different theory of integration would result, with possibly different
properties.
Of the following two familiar properties of the integral, only one is true under the modified
definition. For two bonus points, prove the claim that is true and disprove the claim that is false:

Claim. For all step functions s and all constants c ∈ R,
∫ b
a cs = c

∫ b
a s.

Answer:
This is false. Consider the step function s : [0, 1]→ R defined by s(x) = 3 and let c = 2. Then,
according to the modified definition,∫ 1

0
(2s) =

∫ 1

0
6 = 62(1− 0) = 36

while

2

∫ 1

0
(s) = 2

∫ 1

0
3 = 2(32(1− 0)) = 2(9) = 18.

(The correct formula, by the way, would be
∫ b
a cs = c2

∫ b
a s.)

Claim. For all step functions s and all a, b, c ∈ R with a < b < c,
∫ c
a s =

∫ b
a s+

∫ c
b s.

Answer:
This is true. To prove it, let P be a partition of [a, c] that includes the number b and for which s
takes constant values sk on the k-th subinterval. Write P as

{a = x0 < x1 < · · · < xt−1 < xt = b < xt+1 < · · · < xn = c.}

So, {x0 < x1 < · · · < xt−1 < xt} is a partition of [a, b] and {xt < xt+1 < · · · < xn} is a
partition of [b, c]. We have∫ c

a
s = s21(x1 − x0) + · · ·+ s2t (xt − xt−1) + s2t+1(xt+1 − xt) + · · ·+ s2n(xn − xn−1)

=

∫ b

a
s+

∫ c

b
s.


