1 Step functions

Problem 1. Compute $\int_{-3}^{3}\left[t^{2}\right] d t$.
Problem 2. Suppose that $s:[a, b] \rightarrow \mathbb{R}$ and $t:[a, b] \rightarrow \mathbb{R}$ are step functions.
Prove that

$$
\int_{a}^{b} s+t=\int_{a}^{b} s+\int_{a}^{b} t
$$

Problem 3. Let $s:[a, b] \rightarrow \mathbb{R}$ be a step function and let $P=\left\{x_{0}, \ldots, x_{n}\right\}$ be a partition of the interval $[a, b]$ for which s is constant on each subinterval $\left[x_{k-1}, x_{k}\right]$. Let s_{k} denote the value of s on the k-th subinterval; i.e., $s(x)=s_{k}$ for all $x_{k-1}<x<s_{k}$. Define

$$
\oint_{a}^{b} s=\sum_{k=1}^{n} s_{k}^{3}\left(x_{k}-x_{k-1}\right)
$$

For this new theory of integration, which of the following properties hold?
(a) $\oint_{a}^{b} s+t=\oint_{a}^{b} s+\oint_{a}^{b} t$
(c) $\oint_{a}^{b} s+\oint_{b}^{c} s=\oint_{a}^{c} s$
(b) $\oint_{a}^{b} c s=c \oint_{a}^{b} s$
(d) $\oint_{a+c}^{b+c} s(x) d x=\oint_{a}^{b} s(x+c) d x$.

2 Products and unions

2.1 The Cartesian product

Recall, for two sets X and Y we define the product $X \times Y$ to be the set

$$
X \times Y=\{(x, y): x \in X, y \in Y\}
$$

There are two important functions $\pi_{1}: X \times Y \rightarrow X$ and $\pi_{2}: X \times Y \rightarrow Y$. Here's a diagram:

The functions $\pi_{1}: X \times Y \rightarrow X$ and $\pi_{2}: X \times Y \rightarrow Y$ are called projections and are defined by $\pi_{1}(x, y)=x$ and $\pi_{2}(x, y)=y$.

The product $X \times Y$ and the projections π_{1} and π_{2} satisfy the following important property.

For any set Z and any functions $f: Z \rightarrow X$ and $g: Z \rightarrow Y$, there exists a unique function $h: X \times Y \rightarrow Z$ satisfying $\pi_{1} h=f$ and $\pi_{2} h=g$.

Figure 1: The important property for Cartesian product of sets

2.2 The union

Recall, for two sets X and Y we define the union $X \cup Y$ to be the set

$$
X \cup Y=\{a: a \in X \text { or } a \in Y\}
$$

There are two important functions $i_{1}: X \rightarrow X \cup Y$ and $i_{2}: Y \rightarrow X \cup Y$. Here's a diagram:

The functions $i_{1}: X \rightarrow X \cup Y$ and $i_{2}: Y \rightarrow X \cup Y$ are called inclusions and are defined by $i_{1}(x)=x$ and $i_{2}(y)=y$. The union $X \cup Y$ and the inclusions i_{1} and i_{2} satisfy the following important property:

For any set Z and any functions $f: X \rightarrow Z$ and $g: Y \rightarrow Z$ such that $f(x)=g(y)$ if $x=y$ there exists a unique function $h: X \cup Y \rightarrow Z$ so that $h i_{1}=f$ and $h i_{2}=g$.

Problem 4. Let $X=\{1,2\}$ and $Y=\{2,3\}$ and $Z=\{\varrho, \diamond\}$.
(a) Give an example of functions $f: Z \rightarrow X, g: Z \rightarrow Y$, and $h: Z \rightarrow X \times Y$ making the diagram in Figure 2.1 commute.
(b) Give an example of functions $f: X \rightarrow Z, g: Y \rightarrow Z$, and $h: X \cup Y \rightarrow Z$ making the diagram in Figure 2.2 commute.

Figure 2: The important property for the union of sets

(c) Are there any functions $X \rightarrow X \times Y$ and $X \cup Y \rightarrow X$?

Definition 1. For any sets A and B, let Functions (A, B) denote the set of functions $A \rightarrow B$.

Problem 5. True or False:
(a) For any sets X, Y, the projections $\pi_{1}: X \times Y \rightarrow X$ and $\pi_{2}: X \times Y \rightarrow Y$ are surjective.
(b) For any sets X, Y, the inclusions $i_{1}: X \rightarrow X \cup Y$ and $i_{2}: Y \rightarrow X \cup Y$ are injective.
(c) For all sets X, Y, and Z, there is a bijection between sets

$$
\operatorname{Functions}(Z, X) \times \operatorname{Functions}(Z, Y) \rightarrow \operatorname{Functions}(Z, X \times Y)
$$

(d) For all sets X, Y, and Z, there is a bijection between sets

$$
\operatorname{Functions}(X, Z) \times \operatorname{Functions}(Y, Z) \rightarrow \operatorname{Functions}(X \times Y, Z)
$$

(e) For all sets X, Y, and Z, there is a bijection between sets

$$
\text { Functions }(X, Z) \cup \operatorname{Functions}(Y, Z) \rightarrow \operatorname{Functions}(X \cup Y, Z)
$$

(f) For all sets X, Y, and Z with $X \cap Y=\emptyset$, there is a bijection between sets

$$
\text { Functions }(X, Z) \cup \operatorname{Functions}(Y, Z) \rightarrow \operatorname{Functions}(X \cup Y, Z)
$$

Problem 6. Prove or disprove: for all sets X, Y, Z, we have $X \times(Y \cup B)=$ $(X \times Y) \cup(X \times Z)$.

