1 Step functions

Problem 1. Compute $\int_{-3}^{3}\left[t^{2}\right] d t$.
Answer. The function $g:[-3,3] \rightarrow \mathbb{R}$ defined by $g(t)=\left[t^{2}\right]$ is constant on the open subintervals of the partition

$$
\mathcal{P}=\{-3,-\sqrt{8},-\sqrt{7},-\sqrt{6},-\sqrt{5},-2,-1,0,1, \sqrt{2}, \sqrt{3}, 2, \sqrt{5}, \sqrt{6}, \sqrt{7}, \sqrt{8}, 3\}
$$

Here's a picture:

We compute

$$
\begin{aligned}
\int_{-3}^{3}\left[t^{2}\right] d t & =\sum_{k=1}^{16} g_{k}\left(x_{k}-x_{k-1}\right) \\
& =8(-\sqrt{8}-(-3))+7(-\sqrt{7}+(-\sqrt{8}))+\cdots+8(3-\sqrt{8}) \\
& =42-6 \sqrt{2}-2 \sqrt{3}-2 \sqrt{5}-2 \sqrt{6}-2 \sqrt{7}
\end{aligned}
$$

Problem 2. Suppose that $s:[a, b] \rightarrow \mathbb{R}$ and $t:[a, b] \rightarrow \mathbb{R}$ are step functions. Prove that

$$
\int_{a}^{b} s+t=\int_{a}^{b} s+\int_{a}^{b} t
$$

Proof. Let $\mathcal{P}=\left\{x_{0}, \ldots, x_{n}\right\}$ be a common partition for which s and t are constant and take the values s_{k} and t_{k} respectively on the open subintervals $\left(x_{k-1}, x_{k}\right)$ for $k=1, \ldots, n$. Then

$$
\begin{aligned}
\int_{a}^{b} s+t & =\sum_{k=1}^{n}\left(s_{k}+t_{k}\right)\left(x_{k}-x_{k-1}\right) \\
& =\sum_{k=1}^{n}\left(\left(s_{k}\right)\left(x_{k}-x_{k-1}\right)+\left(t_{k}\right)\left(x_{k}-x_{k-1}\right)\right) \\
& =\sum_{k=1}^{n}\left(s_{k}\right)\left(x_{k}-x_{k-1}\right)+\sum_{k=1}^{n}\left(t_{k}\right)\left(x_{k}-x_{k-1}\right) \\
& =\int_{a}^{b} s+\int_{a}^{b} t
\end{aligned}
$$

Problem 3. Let $s:[a, b] \rightarrow \mathbb{R}$ be a step function and let $P=\left\{x_{0}, \ldots, x_{n}\right\}$ be a partition of the interval $[a, b]$ for which s is constant on each subinterval $\left[x_{k-1}, x_{k}\right]$. Let s_{k} denote the value of s on the k-th subinterval; i.e., $s(x)=s_{k}$ for all $x_{k-1}<x<s_{k}$. Define

$$
\oint_{a}^{b} s=\sum_{k=1}^{n} s_{k}^{3}\left(x_{k}-x_{k-1}\right)
$$

For this new theory of integration, which of the following properties hold?
(a) $\oint_{a}^{b} s+t=\oint_{a}^{b} s+\oint_{a}^{b} t$

Answer. This property fails to hold. For example, let $s(x)=1$ and $t(x)=2$ for $x \in[0,1]$. Then

$$
\oint_{0}^{1} s+t=(1+2)^{3}(1-0)=27 \text { and } \oint_{a}^{b} s+\oint_{a}^{b} t=1^{3}(1-0)+2^{3}(1-0)=9
$$

(b) $\oint_{a}^{b} c s=c \oint_{a}^{b} s$

Answer. This property fails to hold. For example, let $s(x)=1$ for $x \in[0,1]$. Then, checking the property for $c=2$, we have

$$
\oint_{0}^{1} 2 s=(2(1))^{3}(1-0)=8 \text { and } 2 \oint_{a}^{b} s=2\left(1^{3}(1-0)\right)=2 .
$$

(c) $\oint_{a}^{b} s+\oint_{b}^{c} s=\oint_{a}^{c} s$

Answer. This property holds. Let $\mathcal{P}=\left\{x_{0}, \ldots, x_{n}\right\}$ be a partition of $[a, c]$ for which s is constant on the open subintervals $\left(x_{k-1}, x_{k}\right)$ and assume $b=x_{j} \in \mathcal{P}$. So that $\left\{x_{0}, \ldots, x_{j}\right\}$ is a partition of $[a, b]$ and $\left\{x_{j}, \ldots, x_{n}\right\}$ is a partition of $[b, c]$.

$$
\begin{aligned}
\oint_{a}^{b} s+\oint_{b}^{c} s & =\sum_{k=1}^{j} s_{k}^{3}\left(x_{k}-x_{k-1}\right)+\sum_{k=j}^{n} s_{k}^{3}\left(x_{k}-x_{k-1}\right) \\
& =\sum_{k=1}^{n} s_{k}^{3}\left(x_{k}-x_{k-1}\right) \\
& =\oint_{a}^{c} s
\end{aligned}
$$

(d) $\oint_{a+c}^{b+c} s(x) d x=\oint_{a}^{b} s(x+c) d x$.

Answer. This property holds. It's convenient to let $t:[a, b] \rightarrow \mathbb{R}$ be the function defined by $t(x)=s(x+c)$. Note that $s(x)=t(x-c)$. Now, let $\mathcal{P}=\left\{x_{0}, \ldots, x_{n}\right\}$ be a partition of $[a, b]$ for which t is constant on the open subintervals $\left(x_{k-1}, x_{k}\right)$. Say

$$
t(x)=t_{k} \text { for } x_{k-1}<x<x_{k}
$$

So,

$$
\oint_{a}^{b} s(x+c) d x=\int_{a}^{b} t=\sum_{k=1}^{n} t_{k}\left(x_{k}-x_{k-1}\right)
$$

Consider the partition $\mathcal{Q}=\left\{x_{0}+c, \ldots, x_{n}+c\right\}$ of $[a+c, b+c]$. Note that for any $x \in\left(x_{k-1}+c, x_{k}+c\right)$, we have $x-c \in\left(x_{k-1}, x_{k}\right)$ so $s(x)=t(x-c)=t_{k}$. Thus s is constant on the subinterval $\left(x_{k-1}+c, x_{k}+c\right)$. Therefore,

$$
\oint_{a+c}^{b+c} s(x) d x=\sum_{k=1}^{n} t_{k}\left(\left(x_{k}+c\right)-\left(x_{k-1}+c\right)\right)=\sum_{k=1}^{n} t_{k}\left(x_{k}-x_{k-1}\right)
$$

Thus, $\oint_{a+c}^{b+c} s(x) d x=\oint_{a}^{b} s(x+c) d x$.

2 Products and unions

2.1 The Cartesian product

Recall, for two sets X and Y we define the product $X \times Y$ to be the set

$$
X \times Y=\{(x, y): x \in X, y \in Y\}
$$

There are two important functions $\pi_{1}: X \times Y \rightarrow X$ and $\pi_{2}: X \times Y \rightarrow Y$. Here's a diagram:

The functions $\pi_{1}: X \times Y \rightarrow X$ and $\pi_{2}: X \times Y \rightarrow Y$ are called projections and are defined by $\pi_{1}(x, y)=x$ and $\pi_{2}(x, y)=y$.

The product $X \times Y$ and the projections π_{1} and π_{2} satisfy the following important property.

For any set Z and any functions $f: Z \rightarrow X$ and $g: Z \rightarrow Y$, there exists a unique function $h: Z \rightarrow X \times Y$ satisfying $\pi_{1} h=f$ and $\pi_{2} h=g$.

Figure 1: The important property for Cartesian product of sets

2.2 The union

Recall, for two sets X and Y we define the union $X \cup Y$ to be the set

$$
X \cup Y=\{a: a \in X \text { or } a \in Y\}
$$

There are two important functions $i_{1}: X \rightarrow X \cup Y$ and $i_{2}: Y \rightarrow X \cup Y$. Here's a diagram:

The functions $i_{1}: X \rightarrow X \cup Y$ and $i_{2}: Y \rightarrow X \cup Y$ are called inclusions and are defined by $i_{1}(x)=x$ and $i_{2}(y)=y$. The union $X \cup Y$ and the inclusions i_{1} and i_{2} satisfy the following important property:

For any set Z and any functions $f: X \rightarrow Z$ and $g: Y \rightarrow Z$ such that $f(x)=g(y)$ if $x=y$ there exists a unique function $h: X \cup Y \rightarrow Z$ so that $h i_{1}=f$ and $h i_{2}=g$.

Figure 2: The important property for the union of sets

Problem 4. Let $X=\{1,2\}$ and $Y=\{2,3\}$ and $Z=\{\varnothing, \diamond\}$.
(a) Give an example of functions $f: Z \rightarrow X, g: Z \rightarrow Y$, and $h: Z \rightarrow X \times Y$ making the diagram in Figure 2.1 commute.

Answer. Let

Note that $\pi_{1} \circ h=f$ and $\pi_{2} \circ h=g:$

$$
\begin{array}{ll}
Z \xrightarrow{h} X \times Y \xrightarrow{\pi_{1}} X & Z \xrightarrow{h} X \times Y \xrightarrow{\pi_{2}} Y \\
৩ \longmapsto(1,3) \longmapsto 1 & \diamond \longmapsto(1,3) \longmapsto \longmapsto \\
\diamond \longmapsto(2,3) \longmapsto & \longmapsto
\end{array}
$$

(b) Give an example of functions $f: X \rightarrow Z, g: Y \rightarrow Z$, and $h: X \cup Y \rightarrow Z$ making the diagram in Figure 2.2 commute.

Answer. Let

$$
\begin{aligned}
& X \xrightarrow{f} Z \quad Y \xrightarrow{g} Z \quad X \cup Y \xrightarrow{h} Z \\
& 1 \longmapsto \diamond \quad 2 \longmapsto \diamond \quad 1 \longmapsto \diamond \\
& 2 \longmapsto \diamond \quad 3 \longmapsto \curvearrowright \\
& \begin{array}{l}
2 \longmapsto \diamond \\
3 \longmapsto \diamond
\end{array}
\end{aligned}
$$

Note that $h \circ i_{1}=f$ and $h i \circ_{2}=g$:

(c) Are there any functions $X \rightarrow X \times Y$ and $X \cup Y \rightarrow X$?

Answer. As long as the sets X and Y are nonempty, then sure, there will exists functions $X \rightarrow X \times Y$ and $X \cup Y \rightarrow X$. However, in contrast to the projection $X \times Y \rightarrow X$ and the inclusion $X \rightarrow X \cup Y$, there's no natural way to define such functions for arbitrary sets X and Y.

Definition 1. For any sets A and B, let Functions (A, B) denote the set of functions $A \rightarrow B$.

Problem 5. True or False:
(a) For any sets X, Y, the projections $\pi_{1}: X \times Y \rightarrow X$ and $\pi_{2}: X \times Y \rightarrow Y$ are surjective.

Answer. True.
(b) For any sets X, Y, the inclusions $i_{1}: X \rightarrow X \cup Y$ and $i_{2}: Y \rightarrow X \cup Y$ are injective.

Answer. True.
(c) For all sets X, Y, and Z, there is a bijection between sets

$$
\operatorname{Functions}(Z, X) \times \operatorname{Functions}(Z, Y) \rightarrow \operatorname{Functions}(Z, X \times Y)
$$

Answer. True. The followin is a bijection

$$
\begin{aligned}
& \text { Functions }(Z, X) \times \operatorname{Functions}(Z, Y) \longleftarrow \operatorname{Functions}(Z, X \times Y) \\
& \qquad\left(\pi_{1} \circ h, \pi_{2} \circ h\right) \longleftarrow
\end{aligned}
$$

(d) For all sets X, Y, and Z, there is a bijection between sets

$$
\text { Functions }(X, Z) \times \operatorname{Functions}(Y, Z) \rightarrow \operatorname{Functions}(X \times Y, Z)
$$

Answer. False. For example if $X=\{1\}, Y=\{a, b, c\}$, and $Z=\{\odot, \diamond\}$, then $X \times Y$ has 3 elements so there are 9 functions $X \times Y \rightarrow Z$. On the other hand, there are two function from $X \rightarrow Z$ and 9 functions from $Y \rightarrow Z$, so the set $\operatorname{Functions}(X, Z) \times \operatorname{Functions}(Y, Z)$ has 18 elements. There's no bijection between a set with 9 elements and a set with 18 elements.
(e) For all sets X, Y, and Z, there is a bijection between sets

$$
\text { Functions }(X, Z) \cup \operatorname{Functions}(Y, Z) \rightarrow \operatorname{Functions}(X \times Y, Z)
$$

Answer. False. For example if $X=\{1,2\}, Y=\{2,3\}$, and $Z=\{\odot, \diamond\}$, then $X \cup Y$ has 3 elements so there are 9 functions $X \times Y \rightarrow Z$. On the other hand, there are 4 function from $X \rightarrow Z$ and 9 functions from $Y \rightarrow Z$, none are equal, so the set $\operatorname{Functions}(X, Z) \cup \operatorname{Functions}(Y, Z)$ has 13 elements. There's no bijection between a set with 9 elements and a set with 13 elements.
(f) For all sets X, Y, and Z with $X \cap Y=\emptyset$, there is a bijection between sets

$$
\text { Functions }(X, Z) \times \operatorname{Functions}(Y, Z) \rightarrow \operatorname{Functions}(X \cup Y, Z)
$$

Answer. True. The followin is a bijection

$$
\begin{gathered}
\text { Functions }(X, Z) \times \operatorname{Functions}(Y, Z) \longleftarrow \operatorname{Functions}(X \cup Y, Z) \\
\left(h \circ i_{1}, h \circ i_{2}\right) \longleftarrow h
\end{gathered}
$$

Problem 6. Prove or disprove: for all sets X, Y, Z, we have $X \times(Y \cup Z)=$ $(X \times Y) \cup(X \times Z)$.

Answer. This is true. Here's a proof. Let $p \in Z \times(Y \cup Z)$. So, $p=(x, w)$ for some $x \in X$ and $w \in Y \cup Z$. If $w \in Y$, then $(x, w) \in X \times Y \subseteq X \times Y \cup X \times Z$. if $w \in Z$, then $(x, w) \in X \times Z \subseteq X \times Y \cup X \times Z$. This proves that $X \times(Y \cup Z) \subseteq$ $(X \times Y) \cup(X \times Z)$.

Now suppose $p \in(X \times Y) \cup(X \times Z)$. This means $p \in(X \times Y)$ or $p \in(X \times Y)$. If $p \in(X \times Y)$, then $p=(x, y)$ for some $x \in X$ and some $y \in Y$. Since $Y \subseteq Y \cup Z$, we have $x \in X$ and $y \in Y \cup Z$ and we see that $p=(x, y) \in X \times(Y \cup Z)$. If, on the other hand, $p \in(X \times Z)$, then $p=(x, z)$ for some $x \in X$ and some $z \in Z$. Since $Z \subseteq Y \cup Z$, we have $x \in X$ and $z \in Y \cup Z$ and we see that $p=(x, z) \in X \times(Y \cup Z)$. This proves that $(X \times Y) \cup(X \times Z) \subseteq X \times(Y \cup Z)$.

