1 Step functions

Problem 1. Compute $\int_{-3}^{3} [t^2] dt$.

Answer. The function $g: [-3,3] \to \mathbb{R}$ defined by $g(t) = [t^2]$ is constant on the open subintervals of the partition

$$\mathcal{P} = \{-3, -\sqrt{8}, -\sqrt{7}, -\sqrt{6}, -\sqrt{5}, -2, -1, 0, 1, \sqrt{2}, \sqrt{3}, 2, \sqrt{5}, \sqrt{6}, \sqrt{7}, \sqrt{8}, 3\}$$

Here's a picture:

We compute

$$\int_{-3}^{3} [t^2] dt = \sum_{k=1}^{16} g_k (x_k - x_{k-1})$$

= 8 \left(-\sqrt{8} - (-3)\right) + 7 \left(-\sqrt{7} + (-\sqrt{8})\right) + \dots + 8 \left(3 - \sqrt{8}\right)
= 42 - 6\sqrt{2} - 2\sqrt{3} - 2\sqrt{5} - 2\sqrt{6} - 2\sqrt{7}

Problem 2. Suppose that $s : [a, b] \to \mathbb{R}$ and $t : [a, b] \to \mathbb{R}$ are step functions. Prove that

$$\int_{a}^{b} s + t = \int_{a}^{b} s + \int_{a}^{b} t.$$

Proof. Let $\mathcal{P} = \{x_0, \ldots, x_n\}$ be a common partition for which s and t are constant and take the values s_k and t_k respectively on the open subintervals (x_{k-1}, x_k) for $k = 1, \ldots, n$. Then

$$\int_{a}^{b} s + t = \sum_{k=1}^{n} (s_{k} + t_{k})(x_{k} - x_{k-1})$$

= $\sum_{k=1}^{n} ((s_{k})(x_{k} - x_{k-1}) + (t_{k})(x_{k} - x_{k-1}))$
= $\sum_{k=1}^{n} (s_{k})(x_{k} - x_{k-1}) + \sum_{k=1}^{n} (t_{k})(x_{k} - x_{k-1})$
= $\int_{a}^{b} s + \int_{a}^{b} t.$

Problem 3. Let $s : [a, b] \to \mathbb{R}$ be a step function and let $P = \{x_0, \ldots, x_n\}$ be a partition of the interval [a, b] for which s is constant on each subinterval $[x_{k-1}, x_k]$. Let s_k denote the value of s on the k-th subinterval; i.e., $s(x) = s_k$ for all $x_{k-1} < x < s_k$. Define

$$\oint_{a}^{b} s = \sum_{k=1}^{n} s_{k}^{3} (x_{k} - x_{k-1}).$$

For this new theory of integration, which of the following properties hold?

(a) $\oint_a^b s + t = \oint_a^b s + \oint_a^b t$

Answer. This property fails to hold. For example, let s(x) = 1 and t(x) = 2 for $x \in [0, 1]$. Then

$$\oint_0^1 s + t = (1+2)^3 (1-0) = 27 \text{ and } \oint_a^b s + \oint_a^b t = 1^3 (1-0) + 2^3 (1-0) = 9.$$

(b) $\oint_a^b cs = c \oint_a^b s$

Answer. This property fails to hold. For example, let s(x) = 1 for $x \in [0, 1]$. Then, checking the property for c = 2, we have

$$\oint_0^1 2s = (2(1))^3 (1-0) = 8 \text{ and } 2 \oint_a^b s = 2 \left(1^3 (1-0) \right) = 2.$$

(c) $\oint_a^b s + \oint_b^c s = \oint_a^c s$

Answer. This property holds. Let $\mathcal{P} = \{x_0, \ldots, x_n\}$ be a partition of [a, c] for which s is constant on the open subintervals (x_{k-1}, x_k) and assume $b = x_j \in \mathcal{P}$. So that $\{x_0, \ldots, x_j\}$ is a partition of [a, b] and $\{x_j, \ldots, x_n\}$ is a partition of [b, c].

$$\oint_{a}^{b} s + \oint_{b}^{c} s = \sum_{k=1}^{j} s_{k}^{3} (x_{k} - x_{k-1}) + \sum_{k=j}^{n} s_{k}^{3} (x_{k} - x_{k-1})$$

$$= \sum_{k=1}^{n} s_{k}^{3} (x_{k} - x_{k-1})$$

$$= \oint_{a}^{c} s$$

(d) $\oint_{a+c}^{b+c} s(x)dx = \oint_{a}^{b} s(x+c)dx.$

Answer. This property holds. It's convenient to let $t : [a, b] \to \mathbb{R}$ be the function defined by t(x) = s(x + c). Note that s(x) = t(x - c). Now, let $\mathcal{P} = \{x_0, \ldots, x_n\}$ be a partition of [a, b] for which t is constant on the open subintervals (x_{k-1}, x_k) . Say

$$t(x) = t_k \text{ for } x_{k-1} < x < x_k.$$

So,

$$\oint_{a}^{b} s(x+c)dx = \int_{a}^{b} t = \sum_{k=1}^{n} t_{k}(x_{k} - x_{k-1}).$$

Consider the partition $\mathcal{Q} = \{x_0+c, \ldots, x_n+c\}$ of [a+c, b+c]. Note that for any $x \in (x_{k-1}+c, x_k+c)$, we have $x-c \in (x_{k-1}, x_k)$ so $s(x) = t(x-c) = t_k$. Thus s is constant on the subinterval $(x_{k-1}+c, x_k+c)$. Therefore,

$$\oint_{a+c}^{b+c} s(x)dx = \sum_{k=1}^{n} t_k((x_k+c) - (x_{k-1}+c)) = \sum_{k=1}^{n} t_k(x_k - x_{k-1}).$$

Thus,
$$\oint_{a+c}^{b+c} s(x)dx = \oint_{a}^{b} s(x+c)dx.$$

2 Products and unions

2.1 The Cartesian product

Recall, for two sets X and Y we define the product $X \times Y$ to be the set

$$X \times Y = \{(x, y) : x \in X, y \in Y\}.$$

There are two important functions $\pi_1 : X \times Y \to X$ and $\pi_2 : X \times Y \to Y$. Here's a diagram:

The functions $\pi_1 : X \times Y \to X$ and $\pi_2 : X \times Y \to Y$ are called *projections* and are defined by $\pi_1(x, y) = x$ and $\pi_2(x, y) = y$.

The product $X \times Y$ and the projections π_1 and π_2 satisfy the following important property.

For any set Z and any functions $f: Z \to X$ and $g: Z \to Y$, there exists a unique function $h: Z \to X \times Y$ satisfying $\pi_1 h = f$ and $\pi_2 h = g$.

Figure 1: The important property for Cartesian product of sets

2.2 The union

Recall, for two sets X and Y we define the union $X \cup Y$ to be the set

$$X \cup Y = \{a : a \in X \text{ or } a \in Y\}.$$

There are two important functions $i_1 : X \to X \cup Y$ and $i_2 : Y \to X \cup Y$. Here's a diagram:

The functions $i_1 : X \to X \cup Y$ and $i_2 : Y \to X \cup Y$ are called *inclusions* and are defined by $i_1(x) = x$ and $i_2(y) = y$. The union $X \cup Y$ and the inclusions i_1 and i_2 satisfy the following important property:

For any set Z and any functions $f: X \to Z$ and $g: Y \to Z$ such that f(x) = g(y) if x = y there exists a unique function $h: X \cup Y \to Z$ so that $hi_1 = f$ and $hi_2 = g$.

Problem 4. Let $X = \{1, 2\}$ and $Y = \{2, 3\}$ and $Z = \{\heartsuit, \diamondsuit\}$.

(a) Give an example of functions $f: Z \to X, g: Z \to Y$, and $h: Z \to X \times Y$ making the diagram in Figure 2.1 commute.

Answer. Let

$Z \xrightarrow{f} X$	$Z \xrightarrow{g} Y$	$Z \xrightarrow{h} X \times Y$
$\heartsuit \longmapsto 1$	$\heartsuit \longmapsto 3$	$\heartsuit \longmapsto (1,3)$
$\Diamond \longmapsto 2$	$\Diamond \longmapsto 3$	$\diamondsuit \longmapsto (2,3)$

Note that $\pi_1 \circ h = f$ and $\pi_2 \circ h = g$:

(b) Give an example of functions $f: X \to Z$, $g: Y \to Z$, and $h: X \cup Y \to Z$ making the diagram in Figure 2.2 commute.

Answer. Let

$X \xrightarrow{f} Z$	$Y \xrightarrow{g} Z$	$X \cup Y \xrightarrow{h} Z$
$1 \longmapsto \diamondsuit$	$2 \longmapsto \diamondsuit$	$1 \longmapsto \diamondsuit$
$2 \longmapsto \diamondsuit$	$3 \longmapsto \heartsuit$	$2 \longmapsto \diamondsuit$
		$3 \longmapsto \heartsuit$

Note that $h \circ i_1 = f$ and $hi \circ_2 = g$:

(c) Are there any functions $X \to X \times Y$ and $X \cup Y \to X$?

Answer. As long as the sets X and Y are nonempty, then sure, there will exists functions $X \to X \times Y$ and $X \cup Y \to X$. However, in contrast to the projection $X \times Y \to X$ and the inclusion $X \to X \cup Y$, there's no natural way to define such functions for arbitrary sets X and Y.

Definition 1. For any sets A and B, let Functions(A, B) denote the set of functions $A \to B$.

Problem 5. True or False:

(a) For any sets X, Y, the projections $\pi_1 : X \times Y \to X$ and $\pi_2 : X \times Y \to Y$ are surjective.

Answer. True.

(b) For any sets X, Y, the inclusions $i_1 : X \to X \cup Y$ and $i_2 : Y \to X \cup Y$ are injective.

Answer. True.

(c) For all sets X, Y, and Z, there is a bijection between sets

 $\operatorname{Functions}(Z, X) \times \operatorname{Functions}(Z, Y) \to \operatorname{Functions}(Z, X \times Y)$

Answer. True. The followin is a bijection

Functions
$$(Z, X)$$
 × Functions (Z, Y) ← Functions $(Z, X \times Y)$
 $(\pi_1 \circ h, \pi_2 \circ h)$ ← h

(d) For all sets X, Y, and Z, there is a bijection between sets

Functions(X, Z) × Functions(Y, Z) → Functions $(X \times Y, Z)$

Answer. False. For example if $X = \{1\}$, $Y = \{a, b, c\}$, and $Z = \{\heartsuit, \diamondsuit\}$, then $X \times Y$ has 3 elements so there are 9 functions $X \times Y \to Z$. On the other hand, there are two function from $X \to Z$ and 9 functions from $Y \to Z$, so the set Functions $(X, Z) \times \text{Functions}(Y, Z)$ has 18 elements. There's no bijection between a set with 9 elements and a set with 18 elements.

(e) For all sets X, Y, and Z, there is a bijection between sets

 $\operatorname{Functions}(X, Z) \cup \operatorname{Functions}(Y, Z) \rightarrow \operatorname{Functions}(X \times Y, Z)$

Answer. False. For example if $X = \{1, 2\}$, $Y = \{2, 3\}$, and $Z = \{\heartsuit, \diamondsuit\}$, then $X \cup Y$ has 3 elements so there are 9 functions $X \times Y \to Z$. On the other hand, there are 4 function from $X \to Z$ and 9 functions from $Y \to Z$, none are equal, so the set Functions $(X, Z) \cup$ Functions(Y, Z) has 13 elements. There's no bijection between a set with 9 elements and a set with 13 elements.

(f) For all sets X, Y, and Z with $X \cap Y = \emptyset$, there is a bijection between sets

Functions(X, Z) × Functions(Y, Z) → Functions $(X \cup Y, Z)$

Answer. True. The followin is a bijection

$$\begin{aligned} \operatorname{Functions}(X,Z) \times \operatorname{Functions}(Y,Z) & \longleftarrow \operatorname{Functions}(X \cup Y,Z) \\ & (h \circ i_1, h \circ i_2) & \longleftarrow h \end{aligned}$$

Problem 6. Prove or disprove: for all sets X, Y, Z, we have $X \times (Y \cup Z) = (X \times Y) \cup (X \times Z)$.

Answer. This is true. Here's a proof. Let $p \in Z \times (Y \cup Z)$. So, p = (x, w) for some $x \in X$ and $w \in Y \cup Z$. If $w \in Y$, then $(x, w) \in X \times Y \subseteq X \times Y \cup X \times Z$. if $w \in Z$, then $(x, w) \in X \times Z \subseteq X \times Y \cup X \times Z$. This proves that $X \times (Y \cup Z) \subseteq (X \times Y) \cup (X \times Z)$.

Now suppose $p \in (X \times Y) \cup (X \times Z)$. This means $p \in (X \times Y)$ or $p \in (X \times Y)$. If $p \in (X \times Y)$, then p = (x, y) for some $x \in X$ and some $y \in Y$. Since $Y \subseteq Y \cup Z$, we have $x \in X$ and $y \in Y \cup Z$ and we see that $p = (x, y) \in X \times (Y \cup Z)$. If, on the other hand, $p \in (X \times Z)$, then p = (x, z) for some $x \in X$ and some $z \in Z$. Since $Z \subseteq Y \cup Z$, we have $x \in X$ and $z \in Y \cup Z$ and we see that $p = (x, z) \in X \times (Y \cup Z)$. This proves that $(X \times Y) \cup (X \times Z) \subseteq X \times (Y \cup Z)$.