Problem 1. [2 points] Use the four fundamental properties of sine and cosine on page 95 of the Apostol's book to prove that

$$
\cos \left(\frac{2 \pi}{3}\right)=-\frac{1}{2}
$$

Then, use the other properties of sine and cosine listed in sections 2.5, 2.6, and 2.7 to compute

$$
\int_{0}^{\pi}\left|\frac{1}{2}+\cos (t)\right| d t
$$

Problem 2. [1 point each] True or False. Completely justify your answers.
(a) $\sin \left(\frac{\pi}{12}\right)=\frac{\sqrt{3}}{2 \sqrt{2}}$.
(b) If f is increasing, then $f(b)(b-a) \geq \int_{a}^{b} f$.
(c) If f is integrable and satisfies $f(t+1)=f(t)$ for all t, then $A(x)=A(x+1)$ where A is defined by $A(x)=\int_{a}^{x} f(t)$.
(d) If f is increasing, then the function A defined by $A(x)=\int_{a}^{x} f(t)$ is also increasing.

Problem 3. [2 points] Let $f(t)=t-[t]+\frac{1}{2}$ and $A(x)=\int_{0}^{x} f(t) d t$. Sketch the graph of A on the interval $[-10,10]$.

Problem 4. [3 points] Let $A(x)=\int_{1}^{x} \frac{10 t d t}{2+t^{3}}$ for $x \geq-\sqrt[3]{2}$. Here's a sketch of $y=\frac{10 t}{2+t^{3}}$.

(a) Determine $A(x)$ for a few values of x, say $x=-1,0,1,5$, Just eyeball it, or use a couple of rectangles to approximate.
(b) A has a minimum on $(-\sqrt[3]{2}, \infty)$. What is it?
(c) Sketch the graph of A.

Problem 5. [Bonus. 2 points] Find a function f so that

$$
\int_{1}^{x} f(t) d t=x^{2}+2 x+5
$$

or prove that no such function exists.

