Problem 1. [2 points] Use the four fundamental properties of sine and cosine on page 95 of the Apostol's book to prove that

$$
\cos \left(\frac{2 \pi}{3}\right)=-\frac{1}{2}
$$

Then, use the other properties of sine and cosine listed in sections 2.5, 2.6, and 2.7 to compute

$$
\int_{0}^{\pi}\left|\frac{1}{2}+\cos (t)\right| d t
$$

Answer. The values we know from the fundamental properties are

$$
\begin{equation*}
\cos (0)=\sin \left(\frac{\pi}{2}\right)=1 \text { and } \cos (\pi)=-1 \tag{1}
\end{equation*}
$$

and the relation we know is

$$
\begin{equation*}
\cos (y-x)=\cos (y) \cos (x)+\sin (y) \sin (x) \tag{2}
\end{equation*}
$$

Now, specializing Equation (2) using the values we know from (1) yields

$$
\begin{gather*}
\sin (0)=0(\text { by setting } y=x=0) \tag{3}\\
\sin (\pi)=0(\text { by setting } y=x=\pi) \tag{4}\\
\cos \left(\frac{\pi}{2}\right)=0\left(\text { by setting } y=\pi \text { and } x=\frac{\pi}{2}\right) \tag{5}
\end{gather*}
$$

Now, setting $y=\frac{\pi}{2}$ in Equation (2) yields

$$
\begin{equation*}
\cos \left(\frac{\pi}{2}-x\right)=\sin (x) \tag{6}
\end{equation*}
$$

Using $x=\frac{\pi}{6}$ and $x=\frac{\pi}{3}$ in Equation (6) yields the two equations

$$
\begin{equation*}
\cos \left(\frac{\pi}{6}\right)=\sin \left(\frac{\pi}{3}\right) \text { and } \cos \left(\frac{\pi}{3}\right)=\sin \left(\frac{\pi}{6}\right) \tag{7}
\end{equation*}
$$

Then, setting $y=\frac{\pi}{3}$ and $x=\frac{\pi}{6}$ into Equation (2) yields

$$
\begin{equation*}
\cos \left(\frac{\pi}{6}\right)=\cos \left(\frac{\pi}{3}\right) \cos \left(\frac{\pi}{6}\right)+\sin \left(\frac{\pi}{3}\right) \sin \left(\frac{\pi}{6}\right) . \tag{8}
\end{equation*}
$$

Using (7) to replace the parts of (8) with $\frac{\pi}{6}$'s gives

$$
\begin{equation*}
\sin \left(\frac{\pi}{3}\right)=\cos \left(\frac{\pi}{3}\right) \sin \left(\frac{\pi}{3}\right)+\sin \left(\frac{\pi}{3}\right) \cos \left(\frac{\pi}{3}\right) \tag{9}
\end{equation*}
$$

Cancelling the $\sin \left(\frac{\pi}{3}\right)$ in Equation (9) and solving gives

$$
\begin{equation*}
1=\cos \left(\frac{\pi}{3}\right)+\cos \left(\frac{\pi}{3}\right) \Rightarrow \cos \left(\frac{\pi}{3}\right)=\frac{1}{2} \tag{10}
\end{equation*}
$$

Finally, using $\cos \left(\frac{\pi}{3}\right)=\frac{1}{2}$ and setting $y=\pi$ and $x=\frac{\pi}{3}$ into Equation (2) gives the result

$$
\cos \left(\frac{2 \pi}{3}\right)=-\frac{1}{2}
$$

Now, we show that $\int_{0}^{\pi}\left|\frac{1}{2}+\cos (t)\right|=\frac{\pi}{6}+\sqrt{3}$. Since cosine is strictly decreasing on $[0, \pi]$ and $\cos \left(\frac{2 \pi}{3}\right)=-\frac{1}{2}$, we have

$$
\begin{aligned}
& 0<t<\frac{2 \pi}{3} \Rightarrow \cos (t)>-\frac{1}{2} \Rightarrow \frac{1}{2}+\cos (t)>0 \\
& \frac{2 \pi}{3}<t<\pi \Rightarrow \cos (t)<-\frac{1}{2} \Rightarrow \frac{1}{2}+\cos (t)<0
\end{aligned}
$$

So

$$
\left|\frac{1}{2}+\cos (t)\right|= \begin{cases}\frac{1}{2}+\cos (t) & \text { if } 0 \leq t \leq \frac{2 \pi}{3} \\ -\frac{1}{2}-\cos (t) & \text { if } \frac{2 \pi}{3}<t \leq \pi\end{cases}
$$

Now we compute

$$
\begin{aligned}
\int_{0}^{\pi}\left|\frac{1}{2}+\cos (t)\right| & =\int_{0}^{\frac{2 \pi}{3}} \frac{1}{2}+\cos (t)+\int_{\frac{2 \pi}{3}}^{\pi}-\frac{1}{2}-\cos (t) \\
& =\int_{0}^{\frac{2 \pi}{3}} \frac{1}{2}+\int_{0}^{\frac{2 \pi}{3}} \cos (t)-\int_{\frac{2 \pi}{3}}^{\pi} \frac{1}{2}-\int_{\frac{2 \pi}{3}}^{\pi} \cos (t) \\
& =\left(\frac{\pi}{3}\right)+\sin \left(\frac{2 \pi}{3}\right)-\left(\frac{\pi}{6}\right)-\sin (\pi)+\sin \left(\frac{2 \pi}{3}\right) \\
& =\frac{\pi}{6}+2 \sin \left(\frac{2 \pi}{3}\right) \\
& =\frac{\pi}{6}+\sqrt{3}
\end{aligned}
$$

The last equation follows from the fact that $\sin \left(\frac{2 \pi}{3}\right)=\frac{\sqrt{3}}{2}$, which we deduce by using $\sin ^{2}(x)+\cos ^{2}(x)=1$ for all $x, \cos \left(\frac{2 \pi}{3}\right)=-\frac{1}{2}$, and $\sin (x)>0$ for $0<x<\pi$.

Problem 2. [1 point each] True or False. Completely justify your answers.
(a) $\sin \left(\frac{\pi}{12}\right)=\frac{\sqrt{3}}{2 \sqrt{2}}$.

Answer. False. Sine is increasing on $[0, \pi]$. We know $\sin \left(\frac{\pi}{6}\right)=\frac{1}{2}$, so $\sin \left(\frac{\pi}{12}\right)<\frac{1}{2}$. But $\frac{\sqrt{3}}{2 \sqrt{2}}>\frac{1}{2}$. That's the end of my answer. For another way to see that $\sin \left(\frac{\pi}{12}\right) \neq \frac{\sqrt{3}}{2 \sqrt{2}}$, just compute $\sin \left(\frac{\pi}{12}\right)=\frac{\sqrt{3}-1}{2 \sqrt{2}} \neq \frac{\sqrt{3}}{2 \sqrt{2}}$ using the fact that $\frac{\pi}{12}=\frac{\pi}{4}-\frac{\pi}{6}$ and the formula $\sin (x-y)=\sin (x) \cos (y)-$ $\cos (x) \sin (y)$.
(b) If f is increasing, then $f(b)(b-a) \geq \int_{a}^{b} f$.

Answer. True. First, we note that if f is increasing, then f is integrable hence $\int_{a}^{b} f$ exists. Since f is increasing, $f(x) \leq f(b)$ for all $x \leq b$. Thus, $\int_{a}^{b} f(x) \leq \int_{a}^{b} f(b)=f(b)(b-a)$.
(c) If f is integrable and satisfies $f(t+1)=f(t)$ for all t, then $A(x)=A(x+1)$ where A is defined by $A(x)=\int_{a}^{x} f(t)$.
Answer. False. The constant function $f(t)=1$ satisfies $f(t+1)=f(t)$ for all t. But $A(x)=\int_{0}^{x} f(t) d t=x$ does not satisfy $A(x)=A(x+1)$ for any x.
(d) If f is increasing, then the function A defined by $A(x)=\int_{a}^{x} f(t)$ is also increasing.
Answer. False. Let $f(t)=t$. Then $A(x)=\int_{0}^{x} f(t) d t=\frac{1}{2} x^{2}$ which is not increasing when $x \leq 0$.
Problem 3. [2 points] Let $f(t)=t-[t]+\frac{1}{2}$ and $A(x)=\int_{0}^{x} f(t) d t$. Sketch the graph of A on the interval $[-10,10]$.
Answer. Here's a sketch of the graph of f

Here's a sketch of the graph of A

Math 157 Fall 2013

 Problem Set 2: Due Nov 26Here's a closeup of the graph of A showing that it's a union of parabolic segments. Over $[0,1]$, the graph of A is the same as the curve $y=x^{2}$. Over [1, 2], the graph of A is congruent to the graph over $[0,1]$, translated over one unit and up one unit. And so on...

Problem 4. [3 points] Let $A(x)=\int_{1}^{x} \frac{10 t d t}{2+t^{3}}$ for $x \geq-\sqrt[3]{2}$. Here's a sketch of $y=\frac{10 t}{2+t^{3}}$.

(a) Determine $A(x)$ for a few values of x, say $x=-1,0,1,5$, Just eyeball it, or use a couple of rectangles to approximate.

Answer. Let

$$
f(t)=\frac{10 t}{2+t^{3}}
$$

For $A(5)=\int_{1}^{5} f(t) d t$, taking a guess at the area, I'd say $A(5) \approx 5$. I know $A(1)=0$ exactly. Note that $A(0)=\int_{1}^{0} f(t) d t$ is negative the area under the curve $y=f(t)$ from $t=0$ to $t=1$, which I approximate as $A(0) \approx-2$-it looks like it's more than half of the rectangle of width 1 and height $\frac{10}{3}$. To approximate $A(-1)=\int_{1}^{-1} f(t) d t$, we look at the area trapped between the curve $y=f(t)$ over the interval $[-1,1]$ with $A(-1)=$ $\int_{1}^{-1} f(t) d t$ being the area below minus the area above. I guess that the area below is greater than the area above (note that $f(-1)=-10$), so $A(-1)$ will be positive again. I estimate $A(-1) \approx 1$. I summarize

$$
A(-1) \approx 1 \quad A(0) \approx-2 \quad A(1)=0 \quad A(5) \approx 5 .
$$

(b) A has a minimum on $(-\sqrt[3]{2}, \infty)$. What is it?

Answer. Since $f(t)<0$ for $t<0, A$ is decreasing when $t<0$. Then, for $t>0, f(t)>0$, so A is increasing when $t>0$. Therefore A has a minimum when $x=0$.
(c) Sketch the graph of A.

Math 157 Fall 2013

Answer. Here's a sketch using

- My estimates: $A(-1) \approx 1 \quad A(0) \approx-2 \quad A(1)=0 \quad A(5) \approx 5$.
- A is decreasing when $t<0$ and A is increasing when $t>0$.
- A is convex for $t<1$ and concave when $t>1$.

Remark. Here's a sketch of the graph of A produced by a computer using some very good estimates:

For example, the computer estimated that

$$
\begin{gathered}
A(-1) \\
=-\frac{5\left(\frac{\pi}{\sqrt{3}}+\log (2)+\log \left(2+\sqrt[3]{2}-2^{2 / 3}\right)-2 \log \left(2+2^{2 / 3}\right)+2 \sqrt{3} \tan ^{-1}\left(\frac{2^{2 / 3}-1}{\sqrt{3}}\right)\right)}{3 \sqrt[3]{2}} \\
\approx-2.115289203951343066086224493265911198141
\end{gathered}
$$

Math 157 Fall 2013

 Problem Set 2: Due Nov 26Problem 5. [Bonus. 2 points] Find a function f so that

$$
\int_{1}^{x} f(t) d t=x^{2}+2 x+5
$$

or prove that no such function exists.
Answer. No such function exists. The left hand side $\int_{1}^{x} f(t) d t=0$ when $x=1$ but the righthand side $x^{2}+2 x+5=8$ when $x=1$.

