Problem 1. [1 point each] Compute:
(a) $\lim _{x \rightarrow 2} \frac{3 x^{2}-5 x-2}{2 x^{2}-9 x+10}$.
(b) $\lim _{x \rightarrow 0} x^{2} \sin \left(\frac{1}{x}\right)$.
(c) $\lim _{x \rightarrow 0} \frac{\sqrt{1-x}-1}{x}$.
(d) $\lim _{x \rightarrow 0} \frac{\tan (2 x)}{\sin 3 x}$.

Problem 2. [1 point each] True or False. Give proofs or counterexamples.
(a) If $\lim _{x \rightarrow a} f(x)$ does not exist and $\lim _{x \rightarrow a} g(x)=L$, then $\lim _{x \rightarrow a} f(x)+g(x)$ does not exist.
(b) If $\lim _{x \rightarrow a} f(x)$ does not exist and $\lim _{x \rightarrow a} g(x)$ does not exist, then $\lim _{x \rightarrow a} f(x) g(x)$ does not exist.
(c) If $\lim _{x \rightarrow a} f(x)$ does not exist and $\lim _{x \rightarrow a} g(x)=L$, then $\lim _{x \rightarrow a} f(x) g(x)$ does not exist.
(d) If $f(x) \geq 0$ for all x in an interval $[a, b]$ and $\int_{a}^{b} f=0$, then $f=0$.

Problem 3. [1 point each] Definitions and theorems
(a) Let f be a function defined on an open neighborhood of c. Define the statement " f is continuous at c."
(b) State Bolzano's theorem.
(c) State the intermediate value theorem.
(d) State the mean value theorem for integrals.

Problem 4. [Bonus 2 points] Prove:
Theorem. If f is continuous, $f(x) \geq 0$ for all $x \in[a, b]$, and $\int_{a}^{b} f=0$ then $f(x)=0$ for all $x \in[a, b]$.

