Problem 1. [1 point each] Compute:

- (a) $\lim_{x \to 2} \frac{3x^2 5x 2}{2x^2 9x + 10}.$ (b) $\lim_{x \to 0} x^2 \sin\left(\frac{1}{x}\right).$
- (c) $\lim_{x \to 0} \frac{\sqrt{1-x}-1}{x}$.
- (d) $\lim_{x \to 0} \frac{\tan(2x)}{\sin 3x}.$

Problem 2. [1 point each] True or False. Give proofs or counterexamples.

- (a) If $\lim_{x\to a} f(x)$ does not exist and $\lim_{x\to a} g(x) = L$, then $\lim_{x\to a} f(x) + g(x)$ does not exist.
- (b) If $\lim_{x \to a} f(x)$ does not exist and $\lim_{x \to a} g(x)$ does not exist, then $\lim_{x \to a} f(x)g(x)$ does not exist.
- (c) If $\lim_{x\to a} f(x)$ does not exist and $\lim_{x\to a} g(x) = L$, then $\lim_{x\to a} f(x)g(x)$ does not exist.

(d) If
$$f(x) \ge 0$$
 for all x in an interval $[a, b]$ and $\int_a^b f = 0$, then $f = 0$.

Problem 3. [1 point each] Definitions and theorems

- (a) Let f be a function defined on an open neighborhood of c. Define the statement "f is continuous at c."
- (b) State Bolzano's theorem.
- (c) State the intermediate value theorem.
- (d) State the mean value theorem for integrals.

Problem 4. [Bonus 2 points] Prove:

Theorem. If f is continuous, $f(x) \ge 0$ for all $x \in [a, b]$, and $\int_a^b f = 0$ then f(x) = 0 for all $x \in [a, b]$.