Problem 1. [1 point each] Compute:
(a) $\lim _{x \rightarrow 2} \frac{3 x^{2}-5 x-2}{2 x^{2}-9 x+10}$.

Answer.

$$
\begin{aligned}
\lim _{x \rightarrow 2} \frac{3 x^{2}-5 x-2}{2 x^{2}-9 x+10} & =\lim _{x \rightarrow 2} \frac{(x-2)(3 x+1)}{(x-2)(2 x-5)} \\
& =\lim _{x \rightarrow 2} \frac{3 x+1}{2 x-5} \\
& =-7
\end{aligned}
$$

(b) $\lim _{x \rightarrow 0} x^{2} \sin \left(\frac{1}{x}\right)$.

Answer. Since $-1 \leq \sin \left(\frac{1}{x}\right) \leq 1$ for all x for all $x \neq 0$, we have

$$
-x^{2} \leq \sin \left(\frac{1}{x}\right) \leq x^{2}
$$

for all $x \neq 0$. Since $\lim _{x \rightarrow 0}-x^{2}=\lim _{x \rightarrow 0} x^{2}=0$, the Squeezing Principle (Theorem 3.3 in the book) says $\lim _{x \rightarrow 0} x^{2} \sin \left(\frac{1}{x}\right)=0$ also.
(c) $\lim _{x \rightarrow 0} \frac{\sqrt{1-x}-1}{x}$.

Answer.

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{\sqrt{1-x}-1}{x} & =\lim _{x \rightarrow 0} \frac{\sqrt{1-x}-1}{x}\left(\frac{\sqrt{1-x}+1}{\sqrt{1-x}+1}\right) \\
& =\lim _{x \rightarrow 0} \frac{1-x-1}{x(\sqrt{1-x}+1)} \\
& =\lim _{x \rightarrow 0} \frac{-x}{x(\sqrt{1-x}+1)} \\
& =\lim _{x \rightarrow 0} \frac{-1}{\sqrt{1-x}+1} \\
& =-\frac{1}{2}
\end{aligned}
$$

(d) $\lim _{x \rightarrow 0} \frac{\tan (2 x)}{\sin 3 x}$.

Answer. We use the fact that

$$
\lim _{x \rightarrow 0} \frac{\sin (x)}{x}=1
$$

This limit follows from the fundamental inequality

$$
0<\cos (x)<\frac{\sin (x)}{x}<\frac{1}{\cos (x)} \text { for } 0<x<\frac{\pi}{2}
$$

and the squeeze theorem. See Example 4 on page 134 for all the details. It follows that

$$
\lim _{x \rightarrow 0} \frac{\sin (2 x)}{2 x}=1 \text { and } \lim _{x \rightarrow 0} \frac{3 x}{\sin (3 x)}=1
$$

Now,

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{\tan (2 x)}{\sin (3 x)} & =\lim _{x \rightarrow 0} \frac{\sin (2 x)}{\cos (2 x)} \frac{1}{\sin (3 x)} \\
& =\lim _{x \rightarrow 0} \frac{1}{\cos (2 x)}\left(\frac{2}{3}\right)\left(\frac{\sin (2 x)}{2 x}\right)\left(\frac{3 x}{\sin (3 x)}\right) \\
& =\frac{2}{3}
\end{aligned}
$$

Problem 2. [1 point each] True or False. Give proofs or counterexamples.
(a) If $\lim _{x \rightarrow a} f(x)$ does not exist and $\lim _{x \rightarrow a} g(x)=L$, then $\lim _{x \rightarrow a} f(x)+g(x)$ does not exist.

Answer. True. Suppose both limits $\lim _{x \rightarrow a} g(x)$ and $\lim _{x \rightarrow a} f(x)+g(x)$ exist. Say, $\lim _{x \rightarrow a} g(x)=L$ and $\lim _{x \rightarrow a} f(x)+g(x)=M$. Then, by Theorem 3.1 part (ii), we know the limit of the difference

$$
\lim _{x \rightarrow a}(f(x)+g(x))-f(x)
$$

exists and equals $M-L$. That is, if $\lim _{x \rightarrow a} g(x)$ exists and $\lim _{x \rightarrow a} f(x)+g(x)$ exists, then $\lim _{x \rightarrow a} f(x)$ exists also. Therefore, if $\lim _{x \rightarrow a} f(x)$ does not exist and $\lim _{x \rightarrow a} g(x)$ exists then it is impossible that for $\lim _{x \rightarrow a} f(x)+g(x)$ to exist.
(b) If $\lim _{x \rightarrow a} f(x)$ does not exist and $\lim _{x \rightarrow a} g(x)$ does not exist, then $\lim _{x \rightarrow a} f(x) g(x)$ does not exist.

Answer. False. For example, let $f(x)=0$ for $x \in \mathbb{Q}$ and $f(x)=1$ for $x \in \mathbb{R} \backslash \mathbb{Q}$. Let $g(x)=1$ for $x \in \mathbb{Q}$ and $g(x)=0$ for $x \in \mathbb{R} \backslash \mathbb{Q}$. Note that neither $\lim _{x \rightarrow 3} f(x)$ nor $\lim _{x \rightarrow 3} g(x)$ exist. However, the function $f(x) g(x)=0$, so $\lim _{x \rightarrow 3} f(x) g(x)=\lim _{x \rightarrow 3} 0=0$ exists.
(c) If $\lim _{x \rightarrow a} f(x)$ does not exist and $\lim _{x \rightarrow a} g(x)=L$, then $\lim _{x \rightarrow a} f(x) g(x)$ does not exist.

Answer. False. For example, let $f(x)=0$ for $x \in \mathbb{Q}$ and $f(x)=1$ for $x \in \mathbb{R} \backslash \mathbb{Q}$. Let $g(x)=0$ for all $x \in \mathbb{R}$. Note that $\lim _{x \rightarrow 3} f(x)$ does not exist and $\lim _{x \rightarrow 3} g(x)=0$ exists. Also, the function $f(x) g(x)=0$, so $\lim _{x \rightarrow 3} f(x) g(x)=\lim _{x \rightarrow 3} 0=0$ exists.
(d) If $f(x) \geq 0$ for all x in an interval $[a, b]$ and $\int_{a}^{b} f=0$, then $f=0$.

Answer. False. Let $f(x)=1$ for $x=\frac{1}{2}$ and let $f(x)=0$ for all other x. Then $\int_{0}^{1} f(x)=0$, but $f \neq 0$.

Problem 3. [1 point each] Definitions and theorems
(a) Let f be a function defined on an open neighborhood of c. Define the statement " f is continuous at c."
(b) State Bolzano's theorem.
(c) State the intermediate value theorem.
(d) State the mean value theorem for integrals.

Answer. See the textbook.
Problem 4. [Bonus 2 points] Prove:
Theorem. Suppose f is continuous on $[a, b]$ for some numbers $a<b$ and that $f(x) \geq 0$ for all $x \in[a, b]$. If $\int_{a}^{b} f=0$ then $f(x)=0$ for all $x \in[a, b]$.
Answer. Let $a<b$ and let f be a continuous function on $[a, b]$ satisfying $f(x) \geq 0$ for all $x \in[a, b]$.

Suppose that there is a number c with $f(c) \neq 0$. Say $f(c)=y>0$. Since f is continuous, there exists a number $\delta>0$ so that $f(x)>\frac{y}{2}$ for all $x \in(c-\delta, c+$ $\delta) \subset[a, b]$. Therefore, the function s defined by $s(x)=\frac{y}{2}$ for $c-\delta<x<c+\delta$ and $s(x)=0$ for all other x satisfies

$$
s(x) \leq f(x) \text { for all } x \in[a, b]
$$

Thus,

$$
\int_{a}^{b} f \geq \int_{a}^{b} s=\frac{y(b-a)}{2}>0
$$

This proves that if it is not true that $f(x)=0$ for all $x \in[a, b]$, then $\int_{a}^{b} f \neq 0$.
Therefore, if $\int_{a}^{b} f=0$ then $f(x)=0$ for all $x \in[a, b]$.

