Problem 1. Prove that $\operatorname{rad}(G) \leq \operatorname{diam}(G) \leq 2 \operatorname{rad}(G)$ for any graph G.
Problem 2. A little experimenting will tell you that K_{3} is the disjoint union paths of length 1 and $2 ; K_{4}$ is the disjoint union of paths of length 1,2 , and 3 ; K_{5} is the disjoint union of paths of length $1,2,3,4$. Your problem: prove that K_{n} is the disjoint union of paths of lengths $1,2, \ldots, n-1$.

Problem 3. Prove that every spatial embedding of $K_{4,4}$ has a pair of linked rectangles.

Problem 4. Prove or disprove: Every embedding of $G=\left(K_{3,3}-e\right)+K_{1}$ has a pair of linked cycles.

Problem 5. Give an example of graphs G and H so that H is minor of G but not a subgraph of a subdivision of G.

Problem 6. Draw all the graphs that can be obtained from K_{6} by $\Delta-Y$ exchanges.

Problem 7. Are K_{5} and $K_{3,3}$ related by $\Delta-Y$ exchanges?
Problem 8. Find a list of forbidden minors to characterize forests.
Problem 9. The crossing number of a graph is the smallest number of crossings that occur in a diagram of a spatial embedding of the graph. Prove that if G has crossing number ≤ 1 then G can be embedded on a torus, but not conversely.

Problem 10. Prove that K_{n} can be embedded on the torus if and only if $n \leq 7$.
Problem 11. Suppose G is a maximal planar graph. That is, a planar graph such that adding any edge to G results in a nonplanar graph. Prove that every face of G is a triangle.

