A matrix-tree theorem for directed multigraphs

In class, we stated and proved the matrix-tree theorem for ordinary graphs. There's a version for directed multigraphs as well. First, you need to know what the Laplacian of a directed multigraph is.

Definition. The Laplacian of a directed multigraph G with vertices $\left\{v_{1}, \ldots, v_{n}\right\}$ is defined to be the $n \times n$ matrix whose (i, j) entry $l_{i j}$ is defined by

$$
l_{i j}= \begin{cases}\text { the outdegree } d^{+}\left(v_{i}\right) \text { of } v_{i} & \text { if } i=j \\ -s & \text { if } i \neq j \text { and there are } s \text { edges from } v_{i} \text { to } v_{j}\end{cases}
$$

Example. Here's a picture of a directed multigraph and its Laplacian.

And now here is a directed multigraph version of the matrix tree theorem:
Directed Multigraph Matrix Tree Theorem. Let G be a directed multigraph, let L be its Laplacian matrix, and let L_{i} be the Laplacian matrix with the i-th row and i-th column removed. Then the number of spanning trees oriented towards the vertex i is equal to $\operatorname{det}\left(L_{i}\right)$.

Example. In the example above,
 is the only spanning tree oriented towards the first vertex and $\operatorname{det}\left(L_{1}\right)=\operatorname{det}\left(\begin{array}{cc}2 & -1 \\ -1 & 1\end{array}\right)=1$. Also, there are four spanning trees oriented towards the second vertex:

and $\operatorname{det}\left(L_{2}\right)=$ $\operatorname{det}\left(\begin{array}{cc}4 & -3 \\ 0 & 1\end{array}\right)=4$.

Your Problems

Problem 1. [10 points] Let G be the directed graph pictured below.

Use the BEST Theorem and the directed-multigraph version of the matrix-tree theorem to count the Euler circuits in G. Hint: there are more than five and less than one hundred.

Problem 2. Planar graphs.
(a) [5 points] Prove that $K_{3,3}$ is nonplanar.
(b) [$\mathbf{5}$ points] Is the graph pictured below is planar? If yes, prove it with a picture. If no, identify a K_{5} or $K_{3,3}$ minor.

