A matrix-tree theorem for directed multigraphs

In class, we stated and proved the matrix-tree theorem for ordinary graphs. There's a version for *directed multigraphs* as well. First, you need to know what the Laplacian of a directed multigraph is.

Definition. The *Laplacian* of a directed multigraph *G* with vertices $\{v_1, \ldots, v_n\}$ is defined to be the $n \times n$ matrix whose (i, j) entry l_{ij} is defined by

$$l_{ij} = \begin{cases} \text{the outdegree } d^+(v_i) \text{ of } v_i & \text{ if } i = j, \\ -s & \text{ if } i \neq j \text{ and there are } s \text{ edges from } v_i \text{ to } v_j. \end{cases}$$

Example. Here's a picture of a directed multigraph and its Laplacian.

And now here is a directed multigraph version of the matrix tree theorem:

Directed Multigraph Matrix Tree Theorem. Let G be a directed multigraph, let L be its Laplacian matrix, and let L_i be the Laplacian matrix with the *i*-th row and *i*-th column removed. Then the number of spanning trees oriented towards the vertex *i* is equal to det(L_i).

Your Problems

Problem 1. [10 points] Let G be the directed graph pictured below.

Use the BEST Theorem and the directed-multigraph version of the matrix-tree theorem to count the Euler circuits in *G. Hint*: there are more than five and less than one hundred.

Problem 2. Planar graphs.

- (a) **[5 points]** Prove that $K_{3,3}$ is nonplanar.
- (b) **[5 points]** Is the graph pictured below is planar? If yes, prove it with a picture. If no, identify a K_5 or $K_{3,3}$ minor.

