Problem 1: Prove that the quotient topology is characterized by its universal property

Definition 1. Let X be a topological space, let S be a set, and let $\pi : X \rightarrow S$ be surjective. The quotient topology on S is defined to be the finest topology for which π is continuous. Equivalently, a set U in S is open in the quotient topology if and only if $\pi^{-1}(U)$ is open in X.

Prove that the quotient topology on S is characterized by the universal property stated below. That is, prove (1) that the quotient topology has the universal property and (2) that the quotient topology is the only topology on S that has the universal property.

Universal property for the quotient topology. For every topological space Z and every function $f : S \rightarrow Z$, f is continuous if and only if $f \circ \pi : X \rightarrow Z$ is continuous.

Here is the picture:

```
X  \pi
  ↓
S  ↓ f
   ↓
Z
  \rightarrow f \circ \pi
```
Problem 2: Give an example, or prove that no such example exists

(a) A continuous surjection $(0, 1) \to [0, 1]$
(b) A continuous surjection $[0, 1] \to (0, 1)$
(c) A path $p : [0, 1] \to X$ connecting a to b in the space (X, τ) where
 \[X = \{a, b, c, d\} \text{ and } \tau = \{\emptyset, \{c\}, \{a, c\}, \{b, c, d\}, X\}. \]

Here are the first two pages of an article published in *The American Mathematical Monthly*, Vol. 74, No. 3 (Mar., 1967), pp. 261-266. Parts have been redacted.

Your problem: Prove Theorem 1 and Theorem 2.

BETWEEN T_1 AND T_2

ALBERT WILANSKY, Lehigh University

1. There has been an outbreak recently of discussion in the MONTHLY on the subject of the Hausdorff separation axiom T_2. Specifically, it has been noted that various consequences of T_2 are or are not sufficient to imply it. There is a considerable amount of duplication in these results. See [3], [5], [6], [8], [10], [12], [13], [14], [15]. The object of this article is to introduce some systemization into the discussion, to point out its importance, and to show some surprising contact (Theorem 5) with a concept, k space, which has been introduced independently and for quite other purposes.

 One possible importance of separation axioms weaker than T_2 lies in the fact that if X is a topological space and X^+ its one point compactification ($X^+ = X \cup \{\infty\}$, neighborhoods of ∞ are complements of compact closed subsets of X, see [7] Chapter 5, Theorem 21) then X^+ is not T_2 unless X is itself T_2 and locally compact. But one may ask what degree of separation X^+ has if X is T_2
and has some other pleasant property. An example of a result of this type is the contact with \(k \) space mentioned above. Another instance occurs in [1], Theorems 5.1, 5.3.

2. We now introduce two separation axioms, making no claim of novelty. (In [8], the name CC is applied to what we here call a compact KC space. In [1], \(J' \) is used for KC.)

Definition. A topological space is called a KC space if every compact set is closed, and a US space if every convergent sequence has exactly one limit to which it converges.

In Theorem 3.1 of [1], equivalences are given between KC and separation properties of compact sets.

Theorem 1. \(T_2 \Rightarrow \text{KC} \Rightarrow \text{US} \Rightarrow T_1 \); but no converse implication holds even if the space is compact.

For the next result see [3], [5], [6].

Theorem 2. For first countable spaces, \(T_2 \Rightarrow \text{KC} \Rightarrow \text{US} \).

Definition. A topological space \(X \) is called locally compact if each neighborhood of each point includes a compact neighborhood of that point.