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Abstract. Let f1 (resp. f2) denote two (elliptic) newforms of prime level N ,

trivial character and weight 2 (resp. k + 2, where k ∈ {8, 12}). We provide
evidence for the Bloch-Kato conjecture for the motive M = ρf1⊗ρf2 (−k/2−1)

by proving that under some assumptions the p-valuation of the order of the

Bloch-Kato Selmer group of M is bounded from below by the p-valuation
of the relevant L-value (a special value of the convolution L-function of f1
and f2). We achieve this by constructing congruences between the Yoshida

lift Y (f1 ⊗ f2) of f1 and f2 and Siegel modular forms whose p-adic Galois
representations are irreducible. Our result is conditional upon a conjectural

formula for the Petersson norm of Y (f1 ⊗ f2).

1. Introduction

The Bloch-Kato conjecture [6] is one of the central open problems in algebraic
number theory. Loosely speaking it asserts that the order of the (Bloch-Kato)
Selmer group associated with a motive M should be controlled by a special value
of the corresponding L-function divided by some canonically defined period. Let
p > 12 be a prime. This article provides evidence for this conjecture for the motive

M = Hom(ρf2 , ρf1(k/2)) ∼= ρf1 ⊗ ρf2(−k/2− 1),

where f1 (respectively f2) are classical (elliptic) cuspidal newforms of weight 2
(resp. k + 2 for k = 8 or 12) and prime level N and we denote by ρf the p-adic
Galois representation attached to a modular form f . More specifically, let E denote
a sufficiently large finite extension of Qp (so that in particular M is defined over E),
O ⊂ E its ring of integers and $ a choice of a uniformizer. Let H1

f (Q,M ⊗ E/O)

denote the Bloch-Kato Selmer group (for a precise definition see section 8.2, and
especially Remark 8.10) and we write Lalg(2 + k/2, f1 × f2) for the algebraic part
of the value at 2 + k/2 of the convolution L-function of f1 and f2. Then we prove
under some assumptions that

(1.1) valp(#H
1
f (Q,M ⊗ E/O)) ≥ valp(#O/Lalg(2 + k/2, f1 × f2)).

Roughly speaking our result thus provides ‘one-half’ of the Bloch-Kato conjecture
for this motive, i.e., one inequality (see Remark 8.10 for a discussion of how our
result relates to the Bloch-Kato conjecture).

Our proof proceeds via constructing extensions of ρf2 by ρf1(k/2) over some
Artinian rings whose existence on the other hand is deduced from the existence of
congruences between some Siegel modular forms. Construction of these congruences
comprises the heart of this paper. This general approach is now standard and has
been applied by many authors ([29, 3, 4, 11, 25]). In our case we study congruences
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between the Yoshida lift Y (f1 ⊗ f2) of f1 and f2 and Siegel modular forms which
have irreducible p-adic Galois representations. The “amount” of these congruences
is measured by the order of the quotient of a certain Hecke algebra TY

O by what
we call a “Yoshida ideal” If1,f2 . Under some assumptions we prove the following
inequality

(1.2) valp(#TY
O/If1,f2) ≥ valp(#O/Lalg(2 + k/2, f1 × f2)),

thus giving a lower bound on the “amount” of congruences between Y (f1 ⊗ f2)
(which necessarily has a reducible Galois representation) and forms with irreducible
Galois representations. This result may in fact be of independent interest (it is
used, for example, by T. Berger and the second author to prove modularity of some
4-dimensional p-adic Galois representations [5]).

Let us now briefly elaborate on our assumptions. Our approach of relating the
L-value to congruences is similar to that of [11, 25] in that one looks for a Siegel
modular form, say E which has O-integral Fourier coefficients, is not an eigenform
and is not orthogonal to Y (f1 ⊗ f2). Then one uses the equality

(1.3) E =
〈E , Y (f1 ⊗ f2)〉

〈Y (f1 ⊗ f2), Y (f1 ⊗ f2)〉
Y (f1 ⊗ f2) +G′,

where G′ is a Siegel modular form orthogonal to Y (f1 ⊗ f2). One expresses the
inner products by L-values. The denominator is related to L(2 + k/2, f1 × f2),
but the precise formula is known only up to a constant, so one of our assumptions
concerns the p-adic valuation of that unknown constant. In our case E is related to
a pullback of a certain Eisenstein series on GSp8 and its analyticity, cuspidality and
O-integrality properties are either known or can be deduced from existing results.
In fact our E is dependent on a certain Hecke character which we use as a parameter
and choose appropriately to make the inner product in the numerator a p-adic unit.
Using integrality of Fourier coefficients of Y (f1⊗f2) due to Jia [24] (here we need to
impose some assumptions that are already present in the work of Jia) we can then
deduce that whenever $ divides Lalg(2 + k/2, f1 × f2), the Yoshida lift Y (f1 ⊗ f2)
is congruent to some Siegel modular form G which is orthogonal to Y (f1 ⊗ f2). A
large portion of the article is then devoted to proving that G can be chosen to be an
eigenform with irreducible Galois representation. We achieve this by constructing
a certain Hecke operator TS which has the property that it kills the eigenforms
Fi in the expansion of G =

∑
Fi which have a reducible Galois representation.

Similar Hecke operator was constructed by Brown [11] and the second author [25],
but in the current case we are confronted with some technical difficulties resulting
from the fact that the Hecke algebra descent Φ : TS → T ⊗ T from the Siegel
modular Hecke algebra to the tensor product of the elliptic Hecke algebras acting
on the spaces containing f1 and f2 induced by the Yoshida lifting is not a priori
surjective. Working with completed Hecke algebras we use Galois representations
and a modularity result due to Diamond, Flach and Guo [16] to circumvent this
difficulty. This is where we need the restriction on the weight k ∈ {8, 12} and the
assumption thatN is a prime. See Assumption 6.1 for a complete list of assumptions
that we make.

Independently of us Böcherer, Dummigan and Schulze-Pillot had a similar idea
to provide evidence for the Bloch-Kato conjecture via Yoshida lifts [7]. To the best
of our knowledge however, their method and scope would differ substantially from
ours. In particular they work with any even k, but assume at the outset that the
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forms f1 and f2 are not congruent to any other cusp forms. Our approach (while
more restrictive) allows us to avoid this assumption and instead “kill” the possible
congruences by applying the Hecke operator TS discussed above. Also to construct
congruences Böcherer et al. would use the approach of Katsurada rather than the
method applied in [11, 25], and hence their L-value conditions guaranteeing the
existence of congruences should differ from ours.

Let us now briefly outline the organization of the paper. In section 2 we collect
the notation that is used throughout the paper. In section 3 we gather some basic
facts concerning modular forms on quaternion algebras and the Jacquet-Langlands
correspondence. We also define an integral structure on the space of these modular
forms that is necessary for the construction of an integral Yoshida lift. The lifting
procedure due to Yoshida [40] defines Y (f1 ⊗ f2) only up to a complex constant.
Since we are interested in the arithmetic of this lift, we need to choose an appro-
priate integral structure and specify the lift itself up to a p-adic unit. The latter is
carried out in section 5.1. In all this we closely follow [24]. As a consequence one
obtains O-integrality of the Fourier coefficients of the lift Y (f1 ⊗ f2) (see Theorem
5.4). This result is due to Jia [24]. In section 5.2 we study the Hecke algebra descent
Φ : TS → T ⊗ T, and in section 5.3 we relate the Petersson norm of Y (f1 ⊗ f2)
to L(2 + k/2, f1 × f2). In section 6 we construct the asserted congruence between
Y (f1 ⊗ f2) and a Siegel cusp form G =

∑
i Fi which is a linear combination of

eigenforms Fi with irreducible Galois representations (Theorem 6.5) and prove the
bound (1.2) on TY

O/If1,f2 (Corollary 6.10). To do this we need the form E as in
(1.3). This form is constructed in section 4, where we also compute the inner prod-
uct 〈E , Y (f1 ⊗ f2)〉. We also need the Hecke operator TS “killing” all the forms Fi,
which a priori might have had a reducible Galois representation. The construction
of this operator is carried out in section 7. Finally in section 8 we deduce (1.1)
from (1.2).

2. Notation and definitions

2.1. Number fields and Hecke characters. Throughout this paper ` will always
denote an odd prime. We write i for

√
−1.

Let L be a number field with ring of integers OL. For a place v of L, denote
by Lv the completion of L at v and by OL,v the valuation ring of Lv. For a prime
p, let valp denote the p-adic valuation on Qp. For notational convenience we also

define valp(∞) := ∞. If α ∈ Qp, then |α|Qp
:= p− valp(α) denotes the p-adic norm

of α. For p =∞, | · |Q∞ = | · |R = | · | is the usual absolute value on Q∞ = R.

In this paper we fix once and for all an algebraic closure Q of the rationals and
algebraic closures Qp of Qp, as well as compatible embeddings Q ↪→ Qp ↪→ C for

all finite places p of Q. We extend valp to a function from Qp into Q. We will

write Cp for the completion (with respect to the extended valp) of Qp and OCp for

its ring of integers. Let L be a number field. We write GL for Gal(L/L). If p is a
prime of L, we also write Dp ⊂ GL for the decomposition group of p and Ip ⊂ Dp

for the inertia group of p. The chosen embeddings allow us to identify Dp with

Gal(Lp/Lp).
For a number field L let AL denote the ring of adeles of L and put A := AQ.

Write AL,∞ and AL,f for the infinite part and the finite part of AL respectively.
For α = (αp) ∈ A set |α|A :=

∏
p |α|Qp

. By a Hecke character of A×L (or of L, for



4 MAHESH AGARWAL1 AND KRZYSZTOF KLOSIN2

short) we mean a continuous homomorphism

ψ : L× \A×L → C×

whose image is contained inside {z ∈ C | |z| = 1}. The trivial Hecke character
will be denoted by 1. The character ψ factors into a product of local characters
ψ =

∏
v ψv, where v runs over all places of L. If n is the ideal of the ring of integers

OL of L such that

• ψv(xv) = 1 if v is a finite place of L, xv ∈ O×L,v and x− 1 ∈ nOL,v
• no ideal m strictly containing n has the above property,

then n will be called the conductor of ψ.
Finally if z ∈ C we will sometimes write e(z) for e2πiz.

2.2. The symplectic group. Let

Hn := GSp2n := {g ∈ GL2n | gtwng = µ(g)wn, µ(g) ∈ GL1}

be the similitude group scheme (over Z) of the alternating form

(v, w) 7→ vtwnw

for v, w two vectors in G2n
a and wn =

[
0n −In
In 0n

]
. We will write

H1
n := Sp2n = kerµ.

Also set in := iIn. When n = 2, we drop it from notation.

2.3. The group of quaternions. Let L be a number field. Let D0 be a quaternion
algebra over L, i.e., a central simple division algebra of degree 4 over L (cf. e.g.,
[27], p.199). The algebra D0 comes equipped with an involution x 7→ xι. We set
tr (x) := x+ xι and n(x) := xxι. We call these trace and norm respectively.

For any L-algebra A, we set

D(A) := D0 ⊗L A.

Also set

D×(A) := (D0 ⊗L A)×.

The functors D and D× are algebraic groups over Q. We say that D is split (resp.
ramified) at v if D(Lv) ∼= M2(Lv) (resp. D(Lv) is a division algebra). The number
of places where D is ramified is finite and even ([20], p. 229). Set disc(D) to be the
product of the finite primes at which D is ramified. We say that D is definite if it
is ramified at the infinite places. We will always assume that our division algebras
are definite.

Remark 2.1. Note that the trace map can be extended to a morphism tr : D →
Ga of groups schemes over Q. Similarly we can extend the norm map to a morphism
of group schemes n : D× → Gm.

From now on let L = Q. Let m(X) = X2 + bX + c be an irreducible monic
polynomial with coefficients in Q. Denote by ∆m = b2 − 4c the discriminant of
m(X). Choose δ ∈ D so that Q(

√
∆m) = Q(δ). Then one has an orthogonal

decomposition

D = Q(δ)⊕Q(δ)⊥



YOSHIDA LIFTS AND THE BLOCH-KATO CONJECTURE 5

with respect to the bilinear form (x, y) = tr (xyι). We also choose j ∈ D so that
Q(δ)⊥ = jQ(δ). Such a set consisting of δ and j is sometimes called a basis of D.
We fix such a basis once and for all in what follows.

Let F = Q(
√
n(j)) and write Kj for Q(δ)⊥ ⊗ F . Note that Q(δ) is imaginary

quadratic (cf. [24], p.18) while F is real quadratic, so Kj is a field. The choice of
a basis determines an injective homomorphism (cf. [24], p.20):

(2.1) ε : D× ↪→ ResKj/Q(GL2/Kj ), α+ jβ 7→
[

α −
√
n(j) · βι√

n(j) · β αι

]
for α+ jβ ∈ D = Q(δ)⊕Q(δ)⊥.

Let H be the Hamilton quaternion algebra, i.e., H = R + RI + RJ + RK
with relations I2 = J2 = K2 = −1 and IJ = −JI = K, IK = −KI = J ,
JK = −KJ = I. Then H ∼= D(R).

We fix once and for all a maximal orderRmax ofD(Q). SetRp,max := Rmax⊗ZZp.
Let R be an order contained in Rmax. Set Rp = R ⊗Z Zp. For the order Rp we
define R∨p to be the dual Zp-lattice in D(Qp), i.e.,

R∨p := {x ∈ D(Qp) | tr (xyι) ∈ Zp}.

Let p−npZp, np ≥ 0 be the fractional ideal of Zp generated by all the reduced norms
of the elements of R∨p . The integer np is called the level of Rp ([40], p. 203).

Proposition 2.2. The integer np = 0 if D is split at p and Rp = Rp,max. The
integer np = 1 if D ramifies at p and Rp = Rp,max.

Proof. This is easy. ([40], p. 203). �

Let R be an order in D(Q). We say R is an Eichler order if Rp := R ⊗Z Zp =
Rp,max for all p at which D is split. See also [8], p.60 for a more general definition.
By Proposition 2.2 it makes sense to make the following definition.

Definition 2.3. Let R be an Eichler order. The level of R is
∏
p p

np .

Let R be an Eichler order of level N . Set

K := H× ×
∏
p

R×p .

Then we can write

D×(A) =

h(D)⊔
i=1

D×(Q)yiK

for some elements yi ∈ D×(A) that represent different left-ideal classes in R. We
can always choose yi to have norm 1.

3. Modular forms on the quaternion algebras

3.1. Definitions. Let D be a definite quaternion algebra over Q of discriminant
N . Fix ν an even positive integer. Define the symmetric tensor representation of
degree ν to be the representation

Symν : GL2(C)→ GLν+1(C)

which sends g ∈ GL2(C) to the automorphism of the (ν + 1)-dimensional vector
space SymνC given by sending the symmetric combination of the (ν + 1)-tensors
ei1⊗ei2⊗· · ·⊗eiν+1

to the corresponding symmetric combination of gei1⊗gei2⊗· · ·⊗
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geiν+1 , where ij ∈ {1, 2} and e1, e2 is the canonical basis for C2. Let ι0 be a fixed

embedding of H× into GL2(C). For g ∈ H× write σν(g) = Symν(ι0(g))n(g)−ν/2,
where n is the reduced norm of H. We will write V for the representation space of
σν .

Let R be an order contained in Rmax. Let ZD be the center of D× and let ω be
a character of ZD(A)/ZD(Q).

Definition 3.1. An automorphic form on D×(A) of type (R, ν, ω) is a function
φ : D×(A)→ V such that

• φ is left-invariant under D×(Q);
• φ(gk) = σν(k)φ(g) for k ∈ H× and g ∈ D×(A);
• φ is right-

∏
p-∞Rp-invariant;

• φ(zg) = ω(z)φ(g) for z ∈ ZD(A) and g ∈ D×(A).

The C-space of such forms will be denoted by ADν (R,ω) or ADν (R) if ω = 1. We
will write SDν (R,ω) and SDν (R) for the corresponding subspaces of cuspforms.

Remark 3.2. Note that the usual growth condition one imposes on an automorphic
form is automatically satisfied in this case (see [20], p.233). Indeed, the quotient
D×(Q)ZD(R) \D×(A) is compact ([20], p. 227), hence an automorphic form on

(3.1) D×(A) =

h(D)⊔
i=1

D×(Q)yiKfH
×

is determined by its values on the set of yi’s and on

(3.2) H× = ZD(R)K∞,

where K∞ is the maximal compact subgroup of H×. So the continuity of the
automorphic form implies the growth condition. Note the contrast to the GL2-
situation, where the infinite component modulo its center is not compact.

3.2. Jacquet-Langlands correspondence.

Theorem 3.3 ([20], Theorem 10.2). Let F be a global field. Let S denote the
finite set of places v in F such that D(Fv) is a division algebra. Then there is a
one-to-one correspondence π′ 7→ π =

⊗
v πv between the collection of irreducible

unitary representations π′ of D×(AF ) and the collection of cuspidal automorphic
representations π of GL2(AF ) with πv square-integrable for each v ∈ S.

Remark 3.4. The correspondence in Theorem 3.3 preserves the Hecke eigenvalues
at the primes where the automorphic representations are unramified in the following
sense. Let l be such a prime. Let π be an automorphic representation of GL2(A)
and π′ the representation of D×(A) attached to π via the Jacquet-Langlands cor-
respondence. Assume that the central character of π′ restricted to the infinite
component of the center is trivial. Then π′∞ descends to a representation of the
projective group PD×(R) and as such it is equivalent to (σν , V ) for some even
integer ν ≥ 0 (cf. [24], section 2.2.6). Call this integer the weight of π′. If ϕ is
an automorphic form of type (R, ν, ω) with ω|ZD(R) = 1, which is an eigenform
for the local Hecke algebras, then the corresponding automorphic representation
π′ has weight ν. Let TDl be the standard Hecke operator at l (denoted by T (l) in
[40]). Let λDl be the eigenvalue of that operator corresponding to π′. Let Tl be the
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standard (elliptic) Hecke operator at l and write λl for its eigenvalue corresponding
to the representation π. Then one has (cf. [40], Proposition 7.1)

(3.3) λDl = lν/2λl.

3.3. Arithmetic forms on D×. The Jacquet-Langlands correspondence as stated
in Theorem 3.3 is a correspondence between automorphic representations on GL2

and on D×. Our goal in the end is to study a certain theta lift (called Yoshida lift)
from D× to H, which composed with the Jacquet-Langlands correspondence will
give us a way to associate a Siegel modular form Y to a pair of elliptic modular
newforms f1 and f2. The forms f1 and f2 have nice arithmetic properties and we
would also like Y to have similar properties. This is why we will make a specific
choice of a vector inside the automorphic representation of D×(A) corresponding to
the automorphic representation associated to an elliptic newform via the Jacquet-
Langlands correspondence. Arithmeticity properties of the Yoshida lift were studied
in detail by Jia [24]. The contents of this section and large parts of section 5.1 are
essentially taken from [24], and we refer the reader to [loc. cit.] for details as well
as proper justification for the choices and definitions we will make in what follows.

We begin by putting a certain integral structure on the space V as above. In
this we follow [13] and [24]. Let Vν be the Z-submodule of the polynomial ring
Z[X] consisting of polynomials of degree not exceeding ν. The group GL2(Z) acts
on Vν in two ways:

σν(g) · f(X) = det g−ν/2(bX + d)νf

(
aX + c

bX + d

)
,

σ∨ν (g) · f(X) = det g−ν/2(−cX + a)νf

(
dX − b
−cX + a

)
,

where g =

[
a b
c d

]
. We denote these representations by (Vν , σν) and (Vν , σ∨ν ),

respectively. The monomials

ti := Xν/2+i i = −ν/2,−ν/2 + 1, . . . , ν/2

give a basis of Vν . We define a pairing on Vν × Vν given by〈
ν/2∑

i=−ν/2

aiti,

ν/2∑
i=−ν/2

biti

〉
ν

:=

ν/2∑
i=−ν/2

(−1)i
(ν/2 + i)!(ν/2− i)!

((ν/2)!)2
aibi.

This pairing has the property that

〈σν(g)v, σ∨ν (g)w〉ν = 〈v, w〉ν for all g ∈ GL2(Z), v, w ∈ Vν .

This pairing establishes a duality between σν ⊗ Z
[

1
(ν/2)!

]
and σ∨ν ⊗ Z

[
1

(ν/2)!

]
. It

is not hard to see that after extending the scalars to C the first representation
recovers the representation (V, σν) considered in section 3.1.

Let φ =
∑ν/2
j=−ν/2 φjtj and ψ =

∑ν/2
j=−ν/2 ψjtj be automorphic forms on D×(A)

and assume that the infinite part of the central character is trivial. Since the
quotient D×(Q)ZD(R) \ D×(A) is compact one can define the (Petersson) inner
product by

〈φ, ψ〉D :=
∑
j

∫
D×(Q)ZD(R)\D×(A)

φj(x)ψj(x)d×x,
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where d×x is the multiplicative measure defined by

d×xp =

{
(1− p−1)−1 · dxp

|n(xp)|2 if p -∞
dxp
|n(xp)|2 if p =∞,

and dxp is the Haar measure for the group D(Qp) giving Rp,max volume 1/p (if
p | disc(D)), 1 (if p - disc(D) · ∞) and equals 4 · dx1 · dx2 · dx3 · dx4 if p =∞.

If one takes yi’s as in Remark 3.2, then it follows from (3.1) and (3.2) that
(3.4)

〈φ, ψ〉D =

ν∑
j=0

h(D)∑
i=1

φj(yi)ψj(yi) vol(K∞Kf ) =
3

disc(D)

∏
l|disc(D)

1

1− 1
l

·
∑
i,j

φj(yi)ψj(yi)

(for the volume calculation see [24], p.37).
Composing the representations σν and σ∨ν with the homomorphism ε from (2.1),

we obtain two representations of D×(Q) which we will denote in the same way.
Let ` be a prime. Write Vν,` for Vν ⊗Z C` = C`[T ]ν and denote the corresponding
representations by σν,` and σ∨ν,`. Denote byMν,` the OC` -lattice in Vν,` generated
by

σ∨ν,`(GL2(Z`)) · t0.

From now on assume R = Rmax. Let φ be an automorphic form on D×(A) of
type (R, ν, ω). We say that φ is algebraic if φ(D×(Af)) ⊂ Vν ⊗Z Q.

The following fact is immediate from the definition of an algebraic automorphic
form and equation (3.4).

Lemma 3.5. Let φ and ψ be two algebraic automorphic forms on D×(A). Then
〈φ, ψ〉D ∈ Q.

Let φ be an algebraic automorphic form as above. Let δ and j be as in section
2.3. Define (cf. [24], p.33)

C =



[
n(j)−1/2 0

0 1

]
if ` splits in Q(j)[

∆
1/2
δ /2 1

(−∆δ)
1/2/2 −i

]
if ` does not split in Q(j).

Definition 3.6 ([24], p.47). An algebraic automorphic form φ is called `-integral
if

φ(x) ∈ σ∨ν,`(x`) · σ∨ν,`(C) · Mν,` for all x ∈ D×(Af)

Definition 3.7. An `-integral automorphic form φ is called non-Eisenstein if
〈φ, tk〉ν is a non-constant function modulo `.

Remark 3.8. Let π be an automorphic representation of GL2(A) and π′ the au-
tomorphic representation of D×(A) corresponding to π via the Jacquet-Langlands
correspondence. Assume that π′ is unramified away from the primes dividing the
discriminant of D. Write V (π′) for the one-dimensional vector subspace of (π′⊗V)
consisting of vectors fixed by

∏
p-∞R×p × D×(R) (cf. [24], p.42). There exists a

non-zero vector φ(π) ∈ V (π′) which is algebraic in the above sense ([24], p.46).
Moreover, it follows from the proof of [24], Proposition 2.2 that when the `-adic
Galois representation associated to π is residually irreducible, then the vector φ(π)
can be chosen to be `-integral and non-Eisenstein.
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Definition 3.9. Let D be as above and write N for the discriminant of D. Let `
be a rational prime with ` - N . Let f ∈ Sk(N) be an elliptic newform and write π
for the automorphic representation of GL2(A) associated with f . Assume that the
`-adic Galois representation ρf is residually irreducible. Let π′ be the automorphic
representation of D×(A) corresponding to π via the Jacquet-Langlands correspon-
dence. Then we will denote by JL(f) an `-integral (non-Eisenstein) vector φ(π)
defined as above.

Lemma 3.10. If φ and φ′ are two `-integral non-Eisenstein automorphic forms on
D×(A), then

val`(〈φ, φ〉D) = val`(〈φ′, φ′〉D).

Proof. Since φ, φ′ ∈ V (π′) and V (π′) is one-dimensional, there exists α ∈ Q such
that φ′ = αφ. Note that val`(α) = 0 since otherwise φ′ couldn’t be integral and
non-Eisenstein at the same time when φ is. Hence 〈φ′, φ′〉D = |α|2 〈φ, φ〉D. �

4. Siegel modular forms

4.1. Definitions. For any commutative ring R we let Mn(R) denote the set of
n × n matrices with entries in R. For g ∈ M2n(R) let Ag, Bg, Cg, Dg ∈ Mn(R) be
defined by

g =

(
Ag Bg
Cg Dg

)
where we will drop the subscript g when it is clear from the context.

Let Hn := GSp2n. Set Hn = {z ∈ Mn(C)|zt = z, Im(z) > 0} to be the Siegel
upper half space and we let H+

n (R) = {γ ∈ Hn(R)|µn(γ) > 0}. Then H+
n (R) acts

on Hn via

γ(z) = (aγz + bγ)(cγz + dγ)−1, γ =

(
aγ bγ
cγ dγ

)
∈ H+

n (R).

Let

ΓS0,n(N) = {γ =

(
a b
c d

)
∈ Sp2n(Z)|c ≡ 0 mod N},

be a congruence subgroup of Sp2n(Z). For k a positive integer and γ ∈ H+
n (R) we

define the slash operator by:

(F |kγ)(z) := µ(γ)nk/2j(γ, z)−κF (γz) for z ∈ Hn

where j(γ, z) = det(cγz + dγ). We say that F : Hn → C is a holomorphic Siegel
modular form (of genus n) of weight k with level N and character χ if F is holo-
morphic on Hn and

F |kγ = χ(det(dγ))F for γ ∈ ΓS0,n(N).

We denote the space of holomorphic Siegel modular forms (of genus n) of weight
k, and level ΓS0,n(N) and character χ by MS

n,k(N,χ). If χ = 1 then we will usually

write MS
n,k(N) for MS

n,k(N,χ). If F ∈MS
n,k(N,χ) then F has a Fourier expansion

given by

F (z) =
∑

T∈S≥0
n (Z)

a(T, F )e2πitr(Tz)

where S≥0
n (Z) is the semigroup of symmetric, positive semi-definite, n × n semi-

integral matrices. We call F a Siegel cusp form if for all α ∈ H+
n (R) one has
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a(T, F |kα) = 0 for every T such that detT = 0. We denote by SSn,k(N,χ) the

vector space of Siegel cusp forms of weight k and level ΓS0 (N) and character χ.
If χ = 1 then we omit any mention of the character. For A a subalgebra of C,
we define MS

n,k(N,χ,A)(resp. SSn,k(N,χ,A)) as the space of Siegel modular (resp.

cusp) forms with Fourier coefficients in A. Let F c be the Siegel modular form given
by

F c(z) =
∑

T∈S≥0
n (Z)

a(T, F )e2πitr(Tz)

For F and G two Siegel modular forms of weight k, level ΓSn,0(N) and either of
them being a cusp form we define the Petersson inner product

〈F,G〉 =

∫
ΓSn,0(N)\Hn

F (z)G(z)(det y)kdµz

where

dµz = (det y)−(n+1)Πα≤βdxα,βΠα≤βdyα,β ,

z = x + iy and z = (xα,β) + i(yα,β) and dxα,β and dyα,β are the usual Euclidean
measures on R. In all of the above if n = 2 we usually drop it from notation.

4.2. Eisenstein series - setup. We now define some subgroups of Hn(A). Let
N be an integer. For a finite place ` | N , define

K0,` = {g ∈ Hn(Q`)|Ag, Bg, Dg ∈Mn(Z`), Cg ∈Mn(NZ`)}

and for ` - N define

K0,` = {g ∈ Hn(Q`)|Ag, Bg, Cg, Dg ∈Mn(Z`)}

and put

K0,f (N) = Π`-∞K0,`(N).

Let

K∞ = {g ∈ Sp2n(R)|gi2n = i2n}
and

K0(N) = K∞K0,f (N).

The Siegel parabolic Qn ⊂ Hn is defined by

Qn = {g ∈ Hn|Cg = 0}.

The parabolic Qn has a Levi decomposition given by Qn = NQnMQn where NQn
is the unipotent radical and MQn is the Levi subgroup. More precisely NQn and
MQn are given by

MQn =

{(
g

α(gt)−1

)
|g ∈ GLn, α ∈ GL1

}
and

NQn =
{( In s

In

)
|s = st, s ∈Mn

}



YOSHIDA LIFTS AND THE BLOCH-KATO CONJECTURE 11

4.3. Eisenstein series on Hn. In this section, we will define a Siegel Eisenstein
series on Hn attached to a Hecke character of Q. Assume N > 1. Let k be a
positive integer such that k > max{3, n + 1} and let τ : A× → C× be a Hecke
character such that for any finite place l,

τl(x) = 1

for x ∈ Z×l with N | x− 1 and has infinity type

τ∞(x) = (sgn(x))k.

Define ε(g, s; k,N, τ) on Hn(A)×C by

ε(g, s; k,N, τ) = 0 if g /∈ Qn(A)K0(N)

and

ε(g, s; k,N, τ) = ε∞(g, s; k, τ)
∏
l-N

εl(g, s; k, τ)
∏
l|N

εl(g, s; k,N, τ)

where for g = qθ ∈ Qn(A)K0(N), q ∈ Qn(A) and θ ∈ K0(N) we let

ε∞(g, s; k, τ) = τ∞(detAg,∞)|det(Ag,∞)|2sj(θ, in)−k

εl(g, s; k, τ) = τl(detAg,l)|det(Ag,l)|Ql

2s

εl(g, s; k,N, τ) = τl(detAg,l)τl(det(dθ))
−1|det(Ag,l)|Ql

2s
.

For the section ε(g, s; k,N, τ), we define the Siegel Eisenstein series associated
to it by

E(g, s) :=
∑

γ∈Qn(Q)\Hn(Q)

ε(γg, s; k,N, τ).

The Siegel Eisenstein series converges absolutely and uniformly for (g, s) on compact
subsets of Hn(A) × {s ∈ C | Re(s) > (n + 1)/2}. It defines an automorphic form
on Hn and a holomorphic function on {s ∈ C | Re(s) > (n + 1)/2} which has a
meromorphic continuation in s to all C with at most finitely many poles. This
Eisenstein series has a functional equation relating E(g, (n+ 1)/2− s) and E(g, s)
[26].

We can associate a classical Eisenstein series E(z, s) to the Siegel Eisenstein
series by

E(z, s) = (j(g∞, in))kE(g, s)

where z = g∞(in) and g = gQg∞θf ∈ Hn(Q)Hn(R)K0,f (N). By [34] the Eisenstein
series E(z, (n+ 1)/2− k/2) is a holomorphic Siegel modular form of weight k and
level N . Following Shimura [33] let

E∗(g, s) = E(gι−1
f , s)

where ιf ∈ Hn(A) is the matrix whose all finite components are

(
0n −In
In 0n

)
and the

infinite component equals I2n. Let E∗(z, s) be the corresponding classical Eisenstein
series. Then E∗(z, s) has a Fourier expansion given by

E∗(z, s) =
∑

h∈Sn(Q)

a(h, y, s)e(tr (hx))

for z = x+ iy ∈ Hn.
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Now we define a normalized Eisenstein series

DE∗(z, s) := π−n(n+2)/4LN (2s, τ)

[n/2]∏
j=1

LN (4s− 2j, τ2)E∗(z, s).

For a definition of the L-factors see section 5.3.

Theorem 4.1. Let ` be an odd prime such that ` > n and (`,N)=1. Then

DE∗(z, (n+ 1)/2− k/2) ∈MS
n,k(N,Zp[τ, i

nk]).

Proof. See e.g., [11] or [1]. �

Consider an embedding

H2 ×H2 → H4

given by

z × w 7→
(
z 0
0 w

)
= diag[z, w].

Then by a classical interpretation of the pullback formula of Garrett and Shimura
we have the following theorem:

Theorem 4.2 (Brown [11], Theorem 4.5). Let n = 4. Let F ∈ SSk (N) be a (genus
2) Siegel cusp eigenform then〈

DE∗(diag[z, w], (5− k)/2)) |1×ι−1
f
, F c(w)

〉
= π−3Ak,NLNst (5− k, F c, τ)F (z)

where Ak,N = (−1)k22k−3vN
3[Sp4(Z):ΓS0 (N)]

, vN = ±1 and LNst (5 − k, F, τ) is the standard L-

function of F (cf. Definition 5.15).

5. Yoshida lifts

5.1. Definition and integrality of the Fourier coefficients of Yoshida lift.
Yoshida lifting is a procedure which associates a Siegel modular form to a pair of
elliptic modular forms. In this section we mainly follow [40], section 2 and [24].

Let R = Rmax be the maximal Eichler order in D×(Q). Let ν1, ν2 be two
non-negative integers. Later we will specialize them by taking ν1 = 0 and ν2 ∈
{2, 4, 6, 8, 12}. These restrictions are in fact not necessary for defining the Yoshida
lift, however we will only use the lift for the weights in these ranges and for these
weights the exposition becomes much easier. The space D can be regarded as a
4-dimensional quadratic space over Q with respect to the reduced norm n. Set

(x, x)D = tr (xxι) = 2n(x).

Let

GO(D) := {h ∈ GL(D) | n(h · x) = λ(h)n(x) for all x ∈ D}
denote the corresponding group of orthogonal similitudes, where λ is the similitude
character. Let D× ×D× act on D by

(a, b) · x = axb−1.

This gives a homomorphism D××D× → GO(D) with kernel the center Z(D×) =
Gm diagonally embedded inside D××D×. The image is the connected component
GSO(D) of GO(D) defined by the condition deth = λ(h)2. Set

D := (D× ×D×)/Z(D×) ∼= GSO(D).
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Let ϕi, i = 1, 2 be automorphic forms on D×(A) of type (R, νi, 1). In section
3.3 we defined for every even integer ν, a free Z-module Vν of rank ν + 1. In this
section we will write V1 instead of Vν1 and V2 instead of Vν2 and similarly for the
representations σ also defined in section 3.3. We hope this will cause no confusion.
Put

V = V1 ⊗ V2 and V = V ⊗Z C.

(Note that if ν1 = 0, then V = V2). In section 3.3 we also defined a pairing 〈·, ·〉νi
on each of the Vνi , which induces a pairing on V × V by

〈v1 ⊗ v2, w1 ⊗ w2〉1,2 := 〈v1, w1〉ν1 〈w1, w2〉ν2 .

Consider ϕ := ϕ1 ⊗ ϕ2 ∈ ADν1(R) ⊗ ADν2(R). The element ϕ descends to a
function ϕ : D(A) → V defined by ϕ(x1, x2) = ϕ1(x1) ⊗ ϕ2(x2). This function is
an automorphic form on D (cf. [24], p.55).

We will now associate a Siegel modular form to ϕ. We follow the exposition
in [24], chapter 4. Because we are interested in a lift that has very particular
arithmetic properties we will not work in complete generality, but instead we will
make very specific choices to ensure certain integrality properties of the resulting
Siegel modular form. Write w1 and w2 for the canonical basis of the free Z-module
L := Z⊕Z and write w∨1 , w∨2 for the canonical basis of its dual L∨. If we identify
GL4 with the group of automorphisms of the rank 4 free Z-module W := L⊕ L∨,
then under the embedding GSp4 ↪→ GL4 the group GSp4 becomes the similitude
group of the alternating form on W defined by

((x1, y1), (x2, y2))W := y1(x2)− y2(x1),

where xi ∈ L and yi ∈ L∨. We denote the similitude factor (as before) by µ.
We first study the dual pair (Sp4, O(D)), where O(D) is the kernel of λ. Set

W = W ⊗D to be the Q-vector space with the alternating form (·, ·)W := (·, ·)W ⊗
(·, ·)D. It has X := L∨⊗D as a maximal totally isotropic subspace and a complete
polarization given by W ∼= (L⊗D)⊕ (L∨⊗D). The subgroups Sp4 and O(D) form
a dual reductive pair. Denote by ω the Weil representation on Sp4(A)×O(D)(A)
(which a priori depends on a choice of a character, but we will suppress it from
notation). For all this see [24], p. 80.

We now proceed to the dual pair (GSp4,D). First note that it is possible to
extend ω to a representation of a subgroup H ′ of GSp4×D defined as follows:

H ′ = {(g, h) ∈ GSp4×D | µ(g) = λ(g)}.

Locally at every place v for a local Schartz-Bruhat function fv on Xv we define

(ωv(g, h)fv)(x) = |λ(h)|−2(ω(g1)fv)(h
−1 · x),

where

g1 := g

[
I2 0
0 µ(g)I2

]−1

∈ Sp4(Qv).

From now on take ν1 = 0 and ν2 ∈ {2, 4, 6, 8, 12}. We will write k for ν2. Then

V = V2. Let ti be as in section 3.3. Fix a smooth vector f =
∑k/2
i=−k/2 fi ⊗ ti ∈

S(XA)⊗V (see [24], page 83 and (5.1.10) on p.94), where S(XA) denotes the space
of the Schwartz-Bruhat functions on XA, and define the V -valued theta kernel Θf
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to be the function on H ′(A) given by

Θf (g, h) :=
∑
i

Θfi(g, h)⊗ ti =
∑

x∈X(Q)

∑
i

(ω(g, h)fi)(x)⊗ ti.

We define the theta lift of ϕ (with respect to f) to be

θf (ϕ)(g) :=
1

vol(H1(R))
·
∫
H1(Q)\H1(A)

〈Θf (g, hhg), ϕ(hhg)〉1,2 d
1h,

where hg is any element of D with λ(hg) = µ(g)- see [24] (5.1.10) on p.94.
It remains to choose the vector f . This choice is crucial to ensure integrality

of the Fourier coefficients of the Yoshida lift. In this we again follow closely [24]
(section 4.4). We begin by noting that the function f will depend on the choice of
a “basis” {δ, j} which we fixed once and for all in section 2.3. However, in fact the
Yoshida lift will be independent of that choice (see [24] section 4.5.2 (p.94)).

For every place v of Q, let S(Xv) be the space of Schwarz-Bruhat functions on
Xv. Write

f =
∏
v-∞

fv ·
∑
i

fi ⊗ ti ∈ S(XA)⊗ V

for an element satisfying the following two conditions:

• For a rational prime p, fp is the characteristic function of Rp ⊕ Rp ⊂
D(Qp)⊕D(Qp) = Xp

• f∞ ∈ S(X∞)⊗ V .

We will now make a choice of f∞. We take f∞ =
∑k/2
i=−k/2 fi ⊗ ti as above and

set

fi(x) = Pi((x1, x2))e(−2π(n(x1) + n(x2))),

where Pi is a harmonic polynomial on XR, which we now describe. First of all,
Pi((x1, x2)) = P̃i(x0), where x0 = 1

2 (x1x
ι
2−x2x

ι
1), and P̃i is a harmonic polynomial

on the trace zero elements on D∞, defined in the following way (cf. [24], section
1.2.5):

P̃i(x) = (−1)i
((k/2)!)2

(k/2 + i)!(k/2− i)!
Pi(εR(x)),

where the map εR : D×(R) ↪→ GL2,Kj (R) is the map induced by the homomor-
phism ε in (2.1) and the polynomial Pi is defined recursively in the following way.
First, for integers l,m, n set

Ml,m,n

([
a b
c −a

])
= al

(
b

2

)m ( c
2

)n
.

We define an action of the “Lie algebra” operators Y + and Y − on the set of these
monomials by

• Y + ·Ml,m,n = m ·Ml+1,m−1,n − 2l ·Ml−1,m,n+1;
• Y − ·Ml,m,n = 2l ·Ml−1,m+1,n − n ·Ml+1,m,n−1.

Set µ = k/4 if 4 | k and µ = (k/2− 1)/2 if 4 - k. Define

P0 =

µ∑
i=0

(−1)i
(
k/2

2i

)(
2i

i

)
Mk−2i,i,i
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and

Pi =

{
(k/2+i)!
(k/2)! (−Y +)−iP0 if i < 0,

(k/2−i)!
(k/2)! (−Y −)iP0 if i > 0.

Theorem 5.1. Let f be chosen as above. Let AS denote the space of automorphic
forms on H(A) with trivial central character. Then the assignment

ϕ = ϕ1 ⊗ ϕ2 7→ θf (ϕ)

defines a C-linear map from AD0 (R)⊗ADk (R) to AS.

Proof. The continuity and left H(Q)-invariance of θf (ϕ) follow from Proposition
2.1 in [40]. Let K = K∞Kf be the maximal compact subgroup of H(A) defined by

K∞ =
{
M ∈ H(R) |MM t = I4

}
=

{
M =

[
A B
−B A

]
∈ H(R) | A,B ∈M2(R)

}
and

Kf =
∏
p

Kp =
∏
p

H(Zp).

Then the right Kf -finiteness of θf (ϕ) follows from the fact that the Weil repre-
sentations ωp are finite-dimensional when restricted to Kp and one-dimensional for
all but finitely many p ([40], Proposition 2.5). Also, as discussed above, K∞ acts
on θf (ϕ) via character. Finally z-finiteness and moderate growth condition follow
from holomorphicity of the corresponding function (denoted below by Yf (ϕ1⊗ϕ2))
defined on the Siegel upper half-space as discussed on pages 203-204 in [40]. Here
z denotes the center of the universal enveloping algebra of H(R). �

We will now make a translation to the language of Siegel modular forms. Let H2

denote (as before) the Siegel upper half-space. From now on we fix the choice of f
as above. For z ∈ H2, there exists g = (g∞, I4) ∈ H(R)H(Af) such that z = g∞i.
Set

Y (ϕ1 ⊗ ϕ2)(z) = Yf (ϕ1 ⊗ ϕ2)(z) := θf (ϕ1 ⊗ ϕ2)(g)j(g∞, i)
k/2+2.

This function is well-defined since for κ =
[
A B
−B A

]
∈ K∞, we have

θf (ϕ)(gκ) = det(A−Bi)−k/2−2θf (ϕ)(g).

Theorem 5.2. Let k, R, ϕ1 and ϕ2 be as above. The assignment

ϕ1 ⊗ ϕ2 7→ Y (ϕ1 ⊗ ϕ2)

defines a C-linear map from AD0 (R)⊗ADk (R) to the space of Siegel modular forms
of weight k/2 + 2, level N and trivial character.

Proof. Cf. [40], Theorem 2.7. �

Definition 5.3. Let k, R and f be as above. The function Y (ϕ1 ⊗ ϕ2) will be
called the Yoshida lift of ϕ1⊗ϕ2. It is an element in SSk/2+2(N) (by Theorem 5.2).

We will now state a result of Jia which guarantees the integrality of the Fourier
coefficients of Y (ϕ1 ⊗ ϕ2) for an appropriate choice of ϕ1 and ϕ2.

Theorem 5.4 (Jia, [24], Theorem 4.10 and 4.13). Let ` be an odd prime, ` - N ,
` > k. Suppose ϕ1, ϕ2 are `-integral (in the sense of Definition 3.6). Then every
Fourier coefficient of Y (ϕ1 ⊗ ϕ2) (with the vector f chosen as above) lies in a
finite extension of Q and is `-integral, i.e., viewed as an element of Q` under our
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fixed choice of embedding Q` ↪→ C has a non-negative `-adic valuation. Moreover,
assuming the Artin’s conjecture on primitive roots (for details see [24], Theorem
4.13) and that the forms ϕ1 and ϕ2 are non-Eisenstein (cf. Definition 3.7) there
exists a Fourier coefficient of Y (ϕ1 ⊗ ϕ2) which is an `-adic unit.

5.2. The Hecke action. We let TS denote the standard Hecke algebra acting on
the space of Siegel cusp forms SSk/2+2(N). At every place l it is generated by the
operators

T (ld1 , ld2 , ld3 , ld4) := ΓS0 (N)


ld1

ld2

ld3

ld4

ΓS0 (N),

where the di are non-negative integers.

Theorem 5.5 (Yoshida [40], section 6). Let l - N be a prime. Let ϕ1 ∈ SD0 (N),
ϕ2 ∈ SDk (N) be eigenfunctions of TDl with corresponding eigenvalues λl,1, λl,2.
Then the Yoshida lift Y (ϕ1 ⊗ ϕ2) of ϕ1 ⊗ ϕ2 is a common eigenfunction of the
all the Hecke operators T (ld1 , ld2 , ld3 , ld4), i.e., it is a common eigenfunction of the
entire Hecke algebra at l. Moreover, one has

T (1, 1, l, l)Y (ϕ1 ⊗ ϕ2) = lk/2(λl,1 + λl,2)Y (ϕ1 ⊗ ϕ2),

T (1, l, l, l2)Y (ϕ1 ⊗ ϕ2) = (lk−2(l2 − 1 + lλl,1)Y (ϕ1 ⊗ ϕ2).
(5.1)

Remark 5.6. Note that the assumption that R×q contains an element of reduced
norm l for every rational prime q 6= l appearing in the statement of the correspond-
ing theorem in [40], section 6 is always satisfied in our case.

From now on let N be a prime. In Definition 3.9 we defined a lift

JL : Sn+2(N)→ SDn (N),

which has the property that if f ∈ Sn+2(N) is an eigenform for Tl, l - N , then
JL(f) ∈ SDn (N) is an eigenform for the corresponding Hecke operatos TDl , l - N
acting on SDn (N). The composition

S2(N)⊗ Sk+2(N)
JL−−→ SD0 (N)⊗ SDk (N)

Y−→ SSk/2+2(N)

is a C-linear map which is Hecke-equivariant away from N . We will denote this
composite also by Y . Note also that for a prime ` > k, ` - N by the construction
carried out in section 3.3 and by Theorem 5.4, the composite Y has the property
that it takes normalized newforms f1 ∈ S2(N) and f2 ∈ Sk+2(N) to a Siegel
modular form with `-integral Fourier coefficients.

Let l be a prime not dividing N . Let f1 ∈ S2(N) and f2 ∈ Sk+2(N) be eigenforms
for the operator Tl with eigenvalues λ1, λ2 respectively. Then JL(f1) ∈ SD0 (N) and
JL(f2) ∈ SDk (N) are eigenforms of TDl with corresponding eigenvalues λD1 = λ1

and λD2 = lk/2λ2 respectively (see (3.3)).

Remark 5.7. For n ∈ {2, 4, 6, 8, 10, 14} and N prime the space Sn(N) has a basis
of newforms ([27], p. 153). Moreover the Hecke eigenvalues of any newform in
Sn(N) are real ([27], formula (4.6.17) and Theorem 4.6.17(2)).
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Corollary 5.8. Let N be a prime and assume k ∈ {2, 4, 6, 8, 12}. Let l - N be
another prime and let f1 ∈ S2(N) (resp. f2 ∈ Sk+2(N)) be eigenforms for the
operators Tl with eigenvalues λ1 (resp. λ2). Then one has

T (1, 1, l, l)Y (f1 ⊗ f2) = (lk/2λ1 + λ2)Y (f1 ⊗ f2)

T (1, l, l, l2)Y (f1 ⊗ f2) = (lk − lk−2 + lk/2−1λ1λ2)Y (f1 ⊗ f2).
(5.2)

Proof. This follows from (3.3), Theorem 5.5 and Remark 5.7. �

Since the operators T (1, 1, l, l) and T (1, l, l, l2) generate the full local Hecke al-
gebra at l, we get the following theorem.

Theorem 5.9. Assume k ∈ {2, 4, 6, 8, 12}. Let Y : S2(N)⊗Sk+2(N)→ SSk/2+2(N)

denote the Yoshida lift. Let TS denote the C-Hecke algebra acting on SSk/2+2(N)

generated by all the local Hecke algebras away from N . There exists a homomor-
phism of Hecke algebras Φ : TS → T⊗T such that for every T ∈ TS the following
diagram commutes:

SSk/2+2(N)
T // SSk/2+2(N)

S2(N)⊗ Sk+2(N)

Y

OO

Φ(T )
// S2(N)⊗ Sk+2(N)

Y

OO

For a prime l 6= N the map Φ is given explicitly by

Φ(T (1, 1, l, l)) = lk/2Tl ⊗ 1 + 1⊗ Tl
Φ(T (1, l, l, l2)) = lk − lk−2 + lk/2−1Tl ⊗ Tl

(5.3)

Note our slight abuse of notation. We use the same symbol Tl (resp. T) even though
we sometimes mean the Hecke operator (resp. Hecke algebra) acting on S2(N) and
sometimes on Sk+2(N).

One can also show that in fact Y (f1⊗ f2) is an eigenform for all the local Hecke
algebras (including at the prime N). This follows from Lemma 7.3 in [8] (for k = 2)
and from section 4 of [9] (for k > 2). We summarize it in the following proposition.

Proposition 5.10 (Böcherer-Schulze-Pillot). The Yoshida lift Y (f1 ⊗ f2) is an
eigenform for the local Hecke algebra at N .

5.3. The Petersson norm of a Yoshida lift.

5.3.1. L-functions and Satake isomorphism. The goal of this section is to express
the Petersson norm of a Yoshida lift by L-functions. Unfortunately the resulting
formula involves a constant that we are unable to compute explicitly. We begin
by defining the Dirichlet L-functions and then L-functions of elliptic and Siegel
modular forms.

Let Σ be a finite set of rational primes and N a positive integer whose all prime
divisors are in Σ. Let M be a positive integer and χ : (Z/M)× → C× be a Dirichlet
character. Define the Dirichlet L-function associated to χ to be

LΣ(s, χ) =
∏
l 6∈Σ

(1− χ(l)l−s)−1,
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where we set χ(l) = 0 if l |M . The properties of these L-functions are well-known,
see for example [28].

Let f ∈ Sn(N) be a normalized common eigenform of all Tl, l 6∈ Σ. Write

f(z) =

∞∑
n=1

anq
n.

Then if l is a prime not in Σ, one has Tlf = alf . For such an l, let αl,1 and
αl,2 be the l-Satake parameters of f , i.e., the unique complex numbers such that
αl,1 + αl,2 = al and αl,1αl,2 = ln−1. Define the standard L-function of f to be

LΣ(s, f) =
∏
l 6∈Σ

(1− αl,1l−s)−1(1− αl,2l−s)−1.

Let g ∈ Sm(N) be another common eigenform for all Tl with l 6∈ Σ. Write βl,1, βl,2
for its l-Satake parameters. Let χ be a Dirichlet character as above. We define the
convolution L-function of f and g twisted by χ to be

(5.4) LΣ(s, f × g, χ) =
∏
l 6∈Σ

{(1− χ(l)αl,1βl,1l
−s)(1− χ(l)αl,1βl,2l

−s)×

× (1− χ(l)αl,2βl,1l
−s)(1− χ(l)αl,2βl,2l

−s)}−1.

To ease notation we set

LΣ(s, f × g) = LΣ(s, f × g,1).

For the well-known properties of this function we refer the reader to any of the
following sources [35, 21, 23]. We will now define L-functions associated to a Siegel
modular form. Let F ∈ SSn (N) be a common eigenform for all the local Hecke
algebras away from Σ. Let TS,Σ ⊂ EndC(SSk/2+2(N)) denote the C-subalgebra

generated by the local Hecke algebras at all primes l 6∈ Σ. Then F defines a C-
algebra homomorphism λF : TS,Σ → C sending T to its F -eigenvalue.

Definition 5.11. Let Σ and F be as above. Set t0 = λF (T (1, 1, l, l)), t1 =
λF (T (1, l, l, l2)) and t2 = λF (T (l, l, l, l)). The product

(5.5) LΣ
spin(s, F ) :=

∏
l 6∈Σ

(1− t0l−s+{lt1 + l(l2 +1)t2}l−2s− l3t0t2l−3s+ l6t22l
−4s)−1

is called the spin L-function associated to F .

The spin L-function can be given an alternative definition in terms of the Satake
parameters. Let l be a prime not dividing N . Set

∆S
l (N) =

{
g =

[
A B
C D

]
∈ H(Q)+ ∩GL4(Z[l−1]) | µ(g) ∈ Z[l−1], C ≡ 0 (mod N)

}
.

Let LSl (N) be the Q-algebra generated by the double cosets ΓS0 (N)gΓS0 (N) for
g ∈ ∆S

l (N) subject to the usual law of multiplication (see [14], p.51). Let W

denote the Weyl group of GSp4. If t = diag(t0t
−1
1 , t0t

−1
2 , t1, t2) is an element of

the maximal torus of T of GSp4, then W can be identified with the subgroup of
the group S of permutations of the entries of t consisting of those σ ∈ S for which
σ(t) ∈ T . This group is generated by σ0, where

σ0(t0) = t0, σ0(t1) = t2, σ0(t2) = t1
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and σ1 and σ2, where

σj(t0) = t0tj , σj(ti) = ti, σj(tj) = t−1
j , i 6= j.

Let x0, x1, x2 be indeterminates. The group W acts on the ring of polynomials
R := Q[x0, x

−1
0 , x1, x

−1
1 , x2, x

−1
2 ] in the way defined above (replace t by x). Define

a Q-linear homomorphism Sat : LSl (N) → R in the following way. For every
g ∈ ∆S

l (N) we can write

ΓS0 (N)gΓS0 (N) =
⊔
i

ΓS0 (N)gi

with gi ∈ ∆S
l (N) upper-triangular with diagonal entries of the form le0 l−e1 , le0 l−e2 ,

le1 , le2 for some e0, e1, e2 ∈ Z. Set

Sat(ΓS0 (N)gΓS0 (N)) =
∑
i

xe00 (x1l
−1)e1(x2l

−2)e2 ,

(see [2], p. 140-141 and p. 118).

Theorem 5.12 ([2], p. 141). The map Sat : LSl (N) → R defines a Q-linear
isomorphism of LSl (N) with the subring RW of R of all W -invariant polynomials
in x0, x1, x2.

Let F and λF be as above. Let l 6∈ Σ be a prime. Then the restriction of
λF to the local Q-Hecke algebra at l can be extended to a Q-algebra homo-
morphism from LSl (N) to C. We will denote this extension also by λF . The

composite λF ◦ Sat−1 : RW → C determines complex numbers λl,j , j = 0, 1, 2

such that for any polynomial P (x0, x
−1
0 , x1, x

−1
1 , x2, x

−1
2 ) ∈ RW one has λF (P ) =

P (λl,0, λ
−1
l,0 , λl,1, λ

−1
l,1 , λl,2, λ

−1
l,2 ). The element λl,0 is determined uniquely, while λl,1

and λl,2 are determined up to permutation.

Definition 5.13. For F as above, and a prime l - N , the complex numbers
λl,0, λl,1, λl,2 are called the l-Satake parameters of F .

The l-Satake parameters of F ∈ SSk/2+2(N) satisfy the following relation ([14],

formula (2.41))

λ2
l,0λl,1λl,2 = lk+1.

Proposition 5.14 ([14], section 2.1.6). Let χ : (Z/M)× → C× be a Dirichlet
character. One has

LΣ
spin(s, F ) =

∏
l 6∈Σ

{(1−λl,0l−s)(1−λl,0λl,1l−s)(1−λl,0λl,2l−s)(1−λl,0λl,1λl,2l−s)}−1.

We will also have a use for the standard L-function associated to F .

Definition 5.15. The standard L-function of F is given by the following product

LΣ
st(s, F, χ) =

∏
l 6∈Σ

(1− χ(l)l−s)

2∏
j=1

(1− χ(l)λl,j l
−s)(1− χ(l)λ−1

l,j l
−s)


−1

Proposition 5.16. Let N be a prime and set Σ = {N}. Let f1 ∈ S2(N) and
f2 ∈ Sk+2(N) be common eigenforms for all Hecke operators away from the primes
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in Σ. Fix a prime l 6∈ Σ. Write α1, α2 (resp. β1, β2) for the l-Satake parameters
of f1 (resp. f2). Write λ0, λ1, λ2 for the l-Satake parameters of Y (f1 ⊗ f2). Then

λ0 = α1l
k/2

λ1 = α−1
1 β1l

−k/2 = α2β1l
−k/2−1

λ2 = α−1
1 β−1

1 lk/2+1 = α2β2l
−k/2−1

.(5.6)

Theorem 5.17. Let N be a prime and set Σ = {N}. Let f1 ∈ S2(N) and f2 ∈
Sk+2(N) be common eigenforms for all Hecke operators away from the primes in
Σ. Let M be a positive integer and χ : (Z/M)× → C× a Dirichlet character. Then
one has

(5.7) LΣ
spin(s, Y (f1 ⊗ f2)) = LΣ(s− k/2, f1)LΣ(s, f2)

and

(5.8) LΣ
st(s, Y (f1 ⊗ f2), χ) = LΣ(s, χ)LΣ(s+ 1 + k/2, f1 × f2, χ).

Proof. Formula (5.7) was obtained by Yoshida ([40], Theorem 7.2), while formula
(5.8) is an easy calculation using Propositions 5.14 and 5.16. �

Corollary 5.18. With the assumptions as in Theorem 5.17 the standard L-function
LΣ

st(s, Y (f1 ⊗ f2)) of a Yoshida lift has a simple pole at s = 1 with residue equal to

LΣ(2 + k/2, f1 × f2)×
∏
l∈Σ

(1− l−1).

Let N be a prime and k an even positive integer. Let f1 ∈ S2(N), f2 ∈ Sk+2(N)
be common eigenforms for all Tl, l 6= N .

Conjecture 5.19. Let ` > k be a prime, ` 6= N . One has

〈Y (f1 ⊗ f2), Y (f1 ⊗ f2)〉
〈ϕ1, ϕ1〉 〈ϕ2, ϕ2〉

= π1−kcalg(f1 ⊗ f2)ress=1 L
(N)
st (s, Y (f1 ⊗ f2))

= π1−kcalg(f1 ⊗ f2)L(N)(2 + k/2, f1 × f2) · (1− 1

N
),

(5.9)

where calg(f1 ⊗ f2) is an algebraic number which is an `-adic unit.

Remark 5.20. The algebraicity of calg(f1 ⊗ f2) will be proved in section 6. The
second equality is a consequence of Corollary 5.18. When k = 2, equation (5.9) is
proved in [8], Proposition 10.2, where the constant c = calg(f1⊗f2) is computed and
it follows that it is in fact independent of f1 and f2. One also sees that val`(c) = 0.

6. The congruence

In this section we construct a congruence between the Yoshida lift Y (f1 ⊗ f2)
(which has a reducible `-adic Galois representation) and a cuspidal Siegel eigenform
F with an irreducible Galois representation. To carry out the construction we will
need a certain Hecke operator, whose existence is proved in section 7.

To make the statement of the main theorem (Theorem 6.5) self-contained let us
gather here all the main assumptions which we need for Theorem 6.5.

Assumption 6.1. Consider the following set of assumptions:

(1) k ∈ {8, 12};
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(2) N a prime;
(3) ` a prime such that ` > k, ` 6= N , ` - (N + 1) (the last one is needed for

Corollary 7.22);
(4) Σ := {N, `};
(5) f1 ∈ S2(N) and f2 ∈ Sk+2(N) common eigenforms for all Hecke operators

ordinary at ` such that the residual (mod $) Galois representations ρfi
have the property that ρfi |L are absolutely irreducible for i = 1, 2, where

L = Q(
√

(−1)(`+1)/2`);
(6) Assume that the Artin’s conjecture on primitive roots holds (see Theorem

5.4 and [24], Conjecture 6.6 for details);
(7) Assume Conjecture 5.19.

For the rest of the section assume that Assumption 6.1 holds. Set ϕi = JL(fi)
for i = 1, 2 as in Definition 3.9. By Remark 3.8, the forms ϕi are non-Eisenstein.
Let Y (f1 ⊗ f2) be the Yoshida lift associated to f1 and f2. Set

E(z, w) := DE∗(diag[z, w], (5− (k/2 + 2))/2)) |1×ι−1
f

to be the holomorphic Siegel Eisenstein series introduced in section 4 with weight
k/2 + 2 and level N . Let F0 := Y (f1 ⊗ f2), F1, F2, ..., Fr be an orthogonal basis of
SSk/2+2(N) consisting of eigenforms for the Hecke operators away from the primes

in Σ.
Let E be a sufficiently large finite extension of Q`, O its ring of integers and $ a

uniformizer. By “sufficiently large” we mean that we will assume that it contains all
the number fields that we will define below. In particular we require that it contains
the number field Q[τ ] generated by the Fourier coefficients of the Eisenstein series
E(z, w) (cf. Theorem 4.1) and the number field generated by the Hecke eigenvalues
of the eigenforms F0, F1, . . . , Fr (for the proof that these eigenvalues indeed generate
a number field see e.g., [34] Theorem 10.7 and the proof of Theorem 28.5 in [loc.
cit.]). Note that on the other hand Theorem 5.4 only guarantees that the Fourier
coefficients of Y (f1 ⊗ f2) lie in the ring of integers O of Q`. Moreover, it follows
from [34] Theorem 28.5 that we can scale the Fi’s so that their Fourier coefficients
all lie in Q`. In what follows we scale the Fi’s for i > 0 appropriately (leaving
Y (f1 ⊗ f2) unchanged).

By the cuspidality result of Brown [12], section 3.2 for E(z, w) we can write

E(z, w) =

r∑
i,j=0

ci,jFi(z)F
c
j (w)(6.1)

with ci,j ∈ Q`.
Arguing as in Proposition 6.1 in [11] (using Theorem 4.2 and the fact that F0 is

an eigenform for all Hecke operators - see Corollary 5.8 and Proposition 5.10) we
get that

(6.2) E(z, w) = c0,0F0(z)F c0 (w) +
∑

0≤i≤r,0<j≤r

ci,jFi(z)F
c
j (w)

and

c0,0 =
π−3Ak,NLNst (3− k/2, F c0 , τ)

〈F c0 (w), F c0 (w)〉
Our primary goal is to establish a congruence between a Siegel eigenform (here

F0 = Y (f1 ⊗ f2)) whose associated Galois representation is reducible and another
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Siegel eigenform G whose Galois representation is irreducible. To do this we will

need a Hecke operator TS ∈ TΣ,S
O such that TSF = η1η2F for any F ∈ Yf1,f2 (for

notation see section 7) and TSF = 0 for any eigenform orthogonal to Yf1,f2 whose
associated Galois representation is reducible. Here η1 and η2 are the generators of
the Hida congruence ideal for f1(resp.f2). The operator TS will be constructed in
the next section (see Corollary 7.22).

We now recall a theorem of Hida that gives a description of Hida’s congruence
invariant η.

Theorem 6.2 (Hida87). If f is a newform ordinary at `, then

η = u
〈f, f〉
Ω+
f Ω−f

,

where u is a $-adic unit if ` 6= 2 and Ω+
f and Ω−f are complex periods uniquely

determined up to an O-unit.

Applying TS (in the variable z - note that E(z, w) is cuspidal (as remarked above)
when considered as only a function of z) to (6.2) we get

(6.3) TSE(z, w) = η1η2c0,0F0(z)F c0 (w) +

r∑
0≤i≤r,0<j≤r

ci,jT
SFi(z)F

c
j (w).

Suppose val$(η1η2c0,0) = −M < 0, that is, there exists β ∈ O× so that η1η2c0,0 =

ω−Mβ. By Proposition 7.1 any operator in TΣ,S
O preserves the `-integrality of

the Fourier coefficients of the forms it acts on. Hence TSE(z, w) still has Fourier
coefficients that lie in O. By Theorem 5.4 there exists T0 such that ω - a(T0, F

c
0 ),

where a(T0, F
c
0 ) denotes the T0-Fourier coefficient of F c0 . Now it is easy to observe

that ci,jT
SFi(z)F

c
j (w) 6= 0 for at least one pair i, j 6= 0 because otherwise

ωMTSE(z, w) = βF0(z)F c0 (w),

and this would imply that F0(z)F c0 (w) ≡ 0 (mod ω) which would lead to a contra-
diction by Theorem 5.4. Here and below if we write F ≡ F ′ (mod $m) we mean
that all of the Fourier coefficients of F are congruent to the corresponding Fourier
coefficients of F ′ (i.e., their difference lies in $mO).

By expanding both sides of (6.3) in terms of w and comparing the coefficient of
T0 using the integrality of the coefficients of E(z, w) we have

(6.4) F0(z) ≡ − ωM

a(T0, F c0 )β

∑
0≤i≤r,0<j≤r

ci,ja(T0, F
c
j )TSFi(z) (mod ωM ).

Let

G(z) = − ωM

a(T0, F c0 )β

∑
0≤i≤r,0<j≤r

ci,ja(T0, F
c
j )TSFi(z).

Then F0(z) ≡ G (mod ωM ). Clearly, G(z) 6= 0 due to the non-vanishing (mod ω)
of F0.

By Conjecture 5.19

〈F c0 (z), F c0 (z)〉 = π1−kcalg(f1⊗f2)LN (2+k/2, f1×f2) · (1− 1

N
) · 〈ϕ1, ϕ1〉 · 〈ϕ2, ϕ2〉 .
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Hence by (5.8) noting that both f1 and f2 have real Hecke eigenvalues (cf. Remark
5.7), we get

c0,0 =
π−3Ak,NLNst (3− k/2, F c0 , τ)

π1−kcalg(f1 ⊗ f2)LN (2 + k/2, f1 × f2) · (1− 1
N ) · 〈ϕ1, ϕ1〉 · 〈ϕ2, ϕ2〉

=
π−3Ak,NLN (3− k/2, τ)LN (4, f1 × f2)

π1−kcalg(f1 ⊗ f2)LN (2 + k/2, f1 × f2) · (1− 1
N ) · 〈ϕ1, ϕ1〉 · 〈ϕ2, ϕ2〉

.

(6.5)

Theorem 6.3 (Shimura, [35], Theorem 4). Let gi ∈ Smi(N) be eigenforms, i = 1, 2.
Assume m1 < m2. Let m be an integer such that m1 ≤ m < m2. Then

LN,alg(m, g1 × g2) :=
πm1−2−2mLN (m, g1 × g2)

〈g2, g2〉
∈ Q.

By Theorem 6.3 we have

c0,0 =
Ak,NLN (3− k/2, τ)LN,alg(4, f1 × f2)

calg(f1 ⊗ f2)LN,alg(2 + k/2, f1 × f2) · (1− 1
N ) · 〈ϕ1, ϕ1〉 · 〈ϕ2, ϕ2〉

.

Since c0,0 ∈ Q`, we conclude that calg(f1 ⊗ f2) ∈ Q` which proves this part of
Conjecture 5.19. We enlarge E so it contains calg(f1 ⊗ f2). Also, by [30] (p.109)
one has

Ak,N =
±22k−3

3(N2 + 1)
.

Hence val$(Ak,N ) ≤ 0. Since by Proposition 7.23 the form F0 spans Yf1,f2 we
conclude that the eigenforms Fi in the sum

∑
0≤i≤r,0<j≤r ci,ja(T0, F

c
0 )TSFi(z) with

ci,jT
SFi 6= 0 all have irreducible Galois representations. Define a period ratio

Ω1,2 :=
〈ϕ1, ϕ1〉D 〈ϕ2, ϕ2〉D

η1η2
.

Using Theorem 6.2 and the fact that f1 and f2 are assumed ordinary we can also
write (up to an `-adic unit):

Ω1,2 =
〈ϕ1, ϕ1〉D 〈ϕ2, ϕ2〉D Ω+

f1
Ω−f1Ω+

f2
Ω−f2

〈f1, f1〉 〈f2, f2〉
.

Remark 6.4. The authors do not know whether val`(Ω1,2) = 0 (note that this
value is canonical by Lemma 3.10). Since ηi measures congruences between fi and
other cusp forms, while 〈ϕi, ϕi〉D is an (algebraic) period for the `-integral automor-
phic form ϕi (thus should measure congruences between ϕi and other quaternionic
modular forms, which should be “induced” from the fi-congruences) it is perhaps
reasonable to believe that Ω1,2 is an `-adic unit.

We have proven the following theorem.

Theorem 6.5. Let the notation and assumptions be as in Assumption 6.1. If for
some Hecke character τ as above of conductor N the value

M := val$(Ω1,2L
N,alg(2 + k/2, f1 × f2))

− val$(LN (3− k/2, τ)LN,alg(4, f1 × f2))
(6.6)

is positive, then there exists a Siegel modular form G with Fourier coefficients in O
such that

Y (f1 ⊗ f2) ≡ G (mod $M ),
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where G is an E-linear combination of eigenforms whose associated Galois repre-
sentations are irreducible.

Remark 6.6. Let the notation and assumptions be as in Assumption 6.1. Suppose
it is possible to find τ such that the ratio LN (3 − k/2, τ)LN,alg(4, f1 × f2))/Ω1,2

is an `-adic unit. Then the congruence in Theorem 6.5 is modulo $M , where
M := val$(LN,alg(2 + k/2, f1 × f2)).

Corollary 6.7. Let the notation and assumptions be as in Assumption 6.1. Let M
be as in Theorem 6.5. If M > 0, then there exists a Siegel modular form G, which
is an eigenform away from Σ with Fourier coefficients that lie in O such that

• Y (f1 ⊗ f2) ≡ G mod $;
• the Galois representation associated to G is irreducible.

Proof. Let S be the set of mutually orthogonal eigenforms (away from Σ) with
Fourier coefficients in O which are congruent to Y (f1 ⊗ f2) mod $. If none of the
forms Fi (i > 0) in (6.4) is in S, then it follows from the decomposition (7.2) that

there exists a Hecke operator T0 ∈ TΣ,S
O such that T0F0 = F0 and TFi = 0 for

all i > 0. Applying this operator to the congruence F0 ≡ G (mod $n) with G as
in Theorem 6.5 and keeping in mind that G is an E-linear combination of the Fi
(i > 0), we get F0 ≡ 0 (mod $), which yields a contradiction by Theorem 5.4. �

Note that it is not necessarily true that there exists an eigenform congruent
to Y (f1 ⊗ f2) mod $M . However, one can rephrase Theorem 6.5 in terms of
congruences of Hecke eigenvalues rather than Fourier coefficients, as we do below.

Write Y for the subspace of SSk/2+2(N) spanned by common eigenforms F for TΣ,S
O

such that
LΣ

spin(s, F ) = LΣ(s− k/2, f)LΣ(s, g)

for some f ∈ N (2) and g ∈ N (k+2) (for notation see section 7).

Remark 6.8. By definition Y and its orthogonal component Y ⊥ are Hecke-stable
subspaces. By Proposition 7.9 the eigenforms in Y are exactly those whose associ-
ated Galois representations are reducible.

Denote by TY
O the image of TΣ,S

O inside EndO(Y ⊥) and let φ : TΣ,S
O � TY

O
be the canonical projection. Let Ann(Y (f1 ⊗ f2)) ⊂ TΣ,S

O denote the annihilator

of Y (f1 ⊗ f2). It is a prime ideal of TΣ,S
O and the map λY : TΣ,S

O � O sending
each operator T to its eigenvalue corresponding to Y (f1⊗f2) induces an O-algebra

isomorphism TΣ,S
O /Ann(Y (f1 ⊗ f2))

∼−→ O.

Definition 6.9. As φ is surjective, If1,f2 := φ(Ann(Y (f1⊗ f2))) is an ideal of TY
O.

We will call it the Yoshida ideal associated to Y (f1 ⊗ f2).

There exists a non-negative integer r for which the diagram

(6.7) TΣ,S
O

φ
//

��

TY
O

��

TΣ,S
O /Ann(Y (f1 ⊗ f2))

φ
//

oλY

��

TY
O/If1,f2

o
��

O // O/$rO
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all of whose arrows are O-algebra epimorphisms, commutes.

Corollary 6.10. Let the notation and assumptions be as in Assumption 6.1. If r
is the integer from diagram (6.7), and M is as in Theorem 6.5, then r ≥M .

Proof. Choose any T ∈ φ−1($r) ⊂ TΣ,S
O . Suppose that r < M , and let G be as in

Theorem 6.5. We have

(6.8) Y (f1 ⊗ f2) ≡ G (mod $M ).

and TG = $rG. Hence applying T to both sides of (6.8), we obtain 0 ≡ $rG (mod $M ),
which leads to

(6.9) G ≡ 0 (mod $M−r).

Since r < M , (6.8) and (6.9) imply that Y (f1 ⊗ f2) ≡ 0 (mod $), which gives a
contradiction by Theorem 5.4. �

Remark 6.11. By Definition 6.9 and Remark 6.8 the Yoshida ideal measures
Hecke-eigenvalue congruences (away from Σ) between the Yoshida lift Y (f1 ⊗ f2)
and eigenforms whose associated Galois representations are irreducible. It can be
thought of as an analogue of the classical Eisenstein ideal. See also [25] for a related
notion of a CAP ideal.

7. The Hecke operator TS

The goal of this section is to construct the Hecke operator TS used in the previous
section. In this section we fix an odd prime `. Let E be a sufficiently large finite
extension of Q` and write O for its ring of integers. We fix a choice of a uniformizer
$ ∈ O. Let N be a prime, k ∈ {2, 4, 6, 8, 12}. Note that both S2(N) and Sk+2(N)
have bases consisting of newforms. These bases are unique and we denote them
by N (2) and N (k+2) respectively. Let Σ be a finite set of rational primes. Write

T
Σ,(n)
Z for the Z-subalgebra of EndC(Sn(N)) generated by {Tl | l 6∈ Σ}. For any

Z-algebra A we set T
Σ,(n)
A := T

Σ,(n)
Z ⊗Z A. It follows that T

Σ,(n)
O is a semi-local

complete finite O-algebra. One has

T
Σ,(n)
O =

∏
m

T
Σ,(n)
m ,

where the product runs over all the maximal ideals of T
Σ,(n)
O and T

Σ,(n)
m denotes

the localization of T
Σ,(n)
O at m. Moreover, one has

(7.1) T
Σ,(n)
E =

∏
f∈N (n)

E.

Here and below we write n for 2 or k+2, where k is as above. Every f ∈ N (n) defines

an O-algebra map λf : T
Σ,(n)
O → O sending T to its eigenvalue corresponding to f .

Fix such an f . Then the kernel of the map

T
Σ,(n)
O → O � F

is a maximal ideal, say mf , of T
Σ,(n)
O . Set

N (n)
f := {g ∈ N (n) | mg = mf}.
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In other wordsN (n)
f consists of the newforms whose Hecke eigenvalues are congruent

to those of f for all Tl, l 6∈ Σ. We can identify T
Σ,(n)
mf with the image of T

Σ,(n)
O

inside EndC(span{N (n)
f }) (note that we have fixed an embedding E ↪→ C). In

particular

T
Σ,(n)
mf ⊗O E =

∏
f∈N (n)

f

E.

Similarly, write TΣ,S
Z for the Z-subalgebra of EndC(SSk/2+2(N)) generated by

TΣ := {T (1, 1, l, l), T (1, l, l, l2), T (l, l, l, l) | l 6∈ Σ}.

For any Z-algebra A, set TΣ,S
A = TΣ,S

Z ⊗Z A. It follows that TΣ,S
O is a semi-local

complete finite O-algebra. One has

(7.2) TΣ,S
O =

∏
m

TΣ,S
m ,

where the product runs over all the maximal ideals of TΣ,S
O and TΣ,S

m denotes the

localization of TΣ,S
O at m.

Proposition 7.1. Let a(h, F ) be any Fourier coefficient of F ∈ SSk/2+2(N). If

a(h, F ) ∈ O, then for any t ∈ TΣ,S
O , the corresponding Fourier coefficient a(h, tF )

of tF also lies in O.

Proof. This follows from explicit formulas for Fourier coefficients of a Siegel modular
form acted upon by the operators in TΣ - see for example, [10], Lemma II.10. �

Theorem 7.2. Assume N ∈ Σ. The space SSk/2+2(N) has an orthogonal basis

consisting of common eigenfunctions of TΣ,S
C .

Proof. This is Theorem 1.9 on page 233 in [2]. The key fact is Proposition 6.14 in
[23]. �

Theorem 7.3. Let F ∈ SSk/2+2(N) be a common eigenform for all the operators in

TΣ,S
O . If T ∈ TΣ,S

O and λ ∈ C is an eigenvalue of T associated to F , then λ ∈ O.

Proof. This may be seen for example from a theorem of Weissauer (see Theorem
8.1), because the eigenvalues of the Hecke operators away from Σ coincide with
the eigenvalues of the Frobenii, which in turn are roots of their respective charac-
teristic polynomials. Since (by compactness of GQ) one can conjugate the Galois
representation to have image in GL4(O), these coefficients must also lie in O. �

Using Theorem 7.3, we can state similar results on the structure of the Hecke
algebra as we did above for the elliptic modular forms. In particular, let N S ⊂
SSk/2+2(N) be a basis consisting of common eigenforms of all the operators in TΣ,S

O .

As before if we write mF for the maximal ideal of TΣ,S
O corresponding to F , we can

define N S
F := {G ∈ NS | mG = mF }. Then we can identify TΣ,S

mF with the image of

TΣ,S
O inside EndC(span{NS

F }).
Let F ∈ SSk/2+2(N) be a common eigenform for all the operators in TΣ,S

O .
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Proposition 7.4. There exists a continuous semi-simple representation

ρF : GQ → GL4(E)

unramified away from ` and N such that for a prime l 6∈ Σ∪{`,N} the characteristic
polynomial f(X) of ρF (Frobl) coincides with the polynomial

1− t0X + {lt1 + l(l2 + 1)t2}X2 − l3t0t2X3 + l6t22X
4,

where t0 = λF (T (1, 1, l, l)), t1 = λF (T (1, l, l, l2)) and t2 = λF (T (l, l, l, l)). Here λF
is the map TΣ,S

O → O sending t ∈ TΣ,S
O to its eigenvalue corresponding to F .

Proof. This follows from a result of Weissauer (see Theorem 8.1), which assigns such

a representation to a common eigenform of T∅,SO and Proposition 7.5 below. �

Proposition 7.5. Let F ∈ SSk/2+2(N) be a common eigenform for all the operators

in TΣ,S
O . There exists F ′ ∈ SSk/2+2(N), which is a common eigenform for all the

operators in T∅,SO such that for every T ∈ TΣ,S
O , the eigenvalue of T corresponding

to F ′ agrees with the eigenvalue of T corresponding to F .

Proof. Proposition 7.5 follows immediately from the fact that SSk/2+2(N) is finite-

dimensional, T∅,SO is commutative ([33], Lemma 11.12(1)) and Lemma 7.6 below,
where we take T to consist of the (finitely many) generators of the local Hecke
algebras at primes in Σ. �

Lemma 7.6. Let R = S t T be a family of commuting linear operators on a
finite dimensional C-vector space V . Assume #T < ∞. Let v ∈ V be a common
eigenvector for all operators in S. Then there exists w ∈ V , which is a common
eigenvector for all operators in R such that for every S ∈ S, the eigenvalue of S
corresponding to w agrees with the eigenvalue of S corresponding to v.

Proof. Let v be as above. Note that it is enough to prove the lemma in the case
when T consists of single operator. Indeed, then the general case can be proved
by induction on n := #T . More precisely, if #T = n + 1, T = {T1, . . . , Tn+1},
set S ′ := S ∪ {T1} and T ′ := {T2, . . . , Tn+1}. First apply the inductive hypothesis
to {T1}, get v′ ∈ V , a common eigenvector for S ′ and then apply it again to T ′.
So, assume T = {T}. Note that commutativity of R implies that for every S ∈ S
and every integer i ≥ 0, we have ST iv = T iSv = T iλv = λT iv, where λ is the
eigenvalue of S corresponding to v. Hence every w ∈ W := span{T iv}∞i=0 is a
common eigenvector for all S ∈ S such that the eigenvalue of S corresponding to
w agrees with the eigenvalue of S corresponding to v. Moreover, note that W is
T -stable. Consider T |W : W →W . Since we are working over C, the characteristic
polynomial of T |W has a root, and thus T has an eigenvector w ∈W . �

From now on fix f1 ∈ N (2) and f2 ∈ N (k+2). Let η1 (resp. η2) be a generator of
the Hida congruence ideal for f1 (resp. f2).

Definition 7.7. Write Y for the subspace of SSk/2+2(N) spanned by common eigen-

forms F for TΣ,S
O such that

LΣ
spin(s, F ) = LΣ(s− k/2, f)LΣ(s, g)
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for some f ∈ N (2) and g ∈ N (k+2). Write Yf1,f2 for the subspace of Y spanned by

common eigenforms F for TΣ,S
O such that

LΣ
spin(s, F ) = LΣ(s− k/2, f1)LΣ(s, f2).

Remark 7.8. Note that Y contains the image of the Yoshida lift. Also note that
equivalently Y is the subspace of SSk/2+2(N) spanned by common eigenforms F for

TΣ,S
O such that ρF = (ρf ⊗ εk/2) ⊕ ρg, where ρF is the 4-dimensional semi-simple

`-adic Galois representation attached to F as in Proposition 7.4, while ρf , (resp.
ρg) denotes the 2-dimensional irreducible `-adic Galois representation attached to
f (resp. g) by Eichler-Shimura, Deligne. This follows from the Chebotarev Density
Theorem and the Brauer-Nesbitt Theorem as if F is a common eigenform in Y
then for all but finitely many primes l the characteristic polynomials of ρF (Frobl)
and of (ρf (Frobl) ⊗ εk/2(Frobl)) ⊕ ρg(Frobl) coincide for some f and g because
of the L-function equality. Then the Brauer-Nesbitt Theorem implies that ρF ∼=
(ρf ⊗ εk/2)⊕ ρg since ρF is semisimple, while f and g are cusp forms, so ρf and ρg
are irreducible.

Proposition 7.9. Suppose that f1 and f2 are ordinary at `. Assume the `-adic Ga-
lois representations attached to f1 and f2 are residually irreducible when restricted
to G

Q(
√

(−1)(`−1)/2`)
. Let F ∈ N S be such that the Hecke eigenvalues of F are

congruent to those of Y (f1⊗ f2) for all the Hecke operators in TΣ,S
O . Furthermore,

assume that ρF is reducible. Then F ∈ Y .

Proof. Let ρF = σ1 ⊕ σ2 be as in the statement of the theorem. Note that there
is no loss of generality in assuming that ρF has this form, as ρF is semi-simple
by Proposition 7.4 and we do not assume that the representations σ1, σ2 are irre-
ducible. Write ρF and ρY (f1⊗f2) for the reductions (mod $) of the `-adic Galois

representations attached to F and Y (f1 ⊗ f2) respectively. Since the character-
istic polynomials of ρF (Frobl) and of ρY (f1⊗f2)(Frobl) agree for l 6∈ Σ ∪ {`,N},
they agree on GQ by the Chebotarev Density Theorem. Hence the Brauer-Nesbitt
Theorem implies that the semisimplifications of ρF and ρY (f1⊗f2) are isomorphic.
Both of the representations are semi-simple by Proposition 7.4. Hence both σ1 and
σ2 must be 2-dimensional and irreducible as well and without loss of generality
we can assume that σ1

∼= ρf1 ⊗ ε
k/2 and σ2

∼= ρf2 . Furthermore, by choosing the
right bases we can take the isomorphisms to be equalities. This implies that σ2

(and σ1 after twisting) is a deformation of ρf2 (resp. ρf1) unramified away from
N` and crystalline at ` as a subrepresentation of a crystalline representation ρF
(see Theorem 8.1 (ii)). Then our assumptions imply that σ1 and σ2 are modular
([16], Theorem 0.3 - note that ρF is geometric in the sense of Fontaine [19]). Hence
σ1 = ρg1 ⊗ εk/2, σ2 = ρg2 for some modular forms g1 and g2 of correct weight and
level. Thus F ∈ Y . �

Assumption 7.10. There exist T 1 ∈ T
Σ,(2)
O and T 2 ∈ T

Σ,(k+2)
O such that T 1f1 =

η1f1, T 2f2 = η2f2 and T 1f = 0 for all f ∈ S2(N) orthogonal to f1 and T 2f = 0
for all f ∈ Sk+2(N) orthogonal to f2.

Remark 7.11. Suppose that f1 and f2 are ordinary at ` or that N > 4. Then
Assumption 7.10 is satisfied for Σ = ∅ by the definition of η1 and η2.

Proposition 7.12. Suppose that f1 and f2 are ordinary at ` and that the `-adic
Galois representations attached to f1 and f2 are residually irreducible. Suppose that
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Assumption 7.10 is satisfied for a finite set of primes Σ. Then it is also satisfied
for the set Σ ∪ {`}.

Proof. Let’s just show the statement for f2. The proof for f1 is the same. If ` ∈ Σ,
there is nothing to prove, so assume ` 6∈ Σ. Since Assumption 7.10 is satisfied for
Σ, T 2 with desired properties exists in this case. Let S be any subset of the set of

maximal ideals of T
Σ,(k+2)
O containing the maximal ideal corresponding to f2. Let

T 2
S ∈ T

Σ,(k+2)
O =

∏
m T

Σ,(k+2)
m be the operator (0, 0, . . . , 0, T 2, T 2, . . . , T 2, 0, . . . , 0)

where T 2 (or rather its image in T
Σ,(k+2)
m ) occurs at the places corresponding to

m ∈ S, and zeroes for the other maximal ideals. Then T 2
S also has the property of

multiplying f2 by η2 and annihilating all the other newforms. We will regard T 2
S

as lying in
∏

m∈S T
Σ,(k+2)
m .

From now on let Σ′ = Σ ∪ {`}. Let mf2 denote the maximal ideal of T
Σ′,(k+2)
O

corresponding to f2. The inclusion T
Σ′,(k+2)
O ↪→ T

Σ,(k+2)
O descends to an inclusion

T
Σ′,(k+2)
mf2

↪→ R :=
∏
m∈S

T
Σ,(k+2)
m ,

where S denotes the subset of the set of maximal ideals m of T
Σ,(k+2)
O such that

m ∩ T
Σ′,(k+2)
O = mf2 . We will denote the image of T` in R also by T`. We need

to show that T 2
S (which a priori lies in R) lies in T

Σ′,(k+2)
mf2

. Then extending T 2
S

by zeroes at the other maximal ideals of T
Σ′,(k+2)
O we get an operator in T

Σ′,(k+2)
O

with the same properties as T 2. It is enough to show that T` (which a priori lies

in R) lies in T
Σ′,(k+2)
mf2

. Indeed, T 2 is polynomial in Tl with l 6∈ Σ, so if we denote

the image of Tl in R also by Tl, then T 2
S is a polynomial in Tl with l 6∈ Σ. However,

Tl ∈ T
Σ′,(k+2)
mf2

for l 6∈ Σ, l 6= `, so we just need to deal with T`.

Let N denote the subset of N (k+2) consisting of newforms g =
∑∞
n=1 an(g)qn

whose Hecke eigenvalues λg(Tl) = al(g) are congruent (mod $) to the Hecke eigen-
values of f2 for all Tl, l 6∈ Σ′. First note that since f2 is ordinary so is every such
g. Indeed, let ρf2 , ρg denote the `-adic Galois representations attached to f2 and g
respectively and write ρf2 and ρg for the residual representations. Since the Hecke
eigenvalues of f2 and g are congruent for all Tl, l 6∈ Σ′ and Σ′ is finite, we have
tr ρf2 = tr ρg by the Chebotarev Density Theorem. Since ρf2 is irreducible, Brauer-
Nesbitt Theorem implies that ρf2

∼= ρg. Since f2 is ordinary, ρf2 |D` is reducible.
Hence ρg|D` must also be reducible, so by a theorem of Fontaine ([17], section 6) g
must be ordinary as well.

By ordinarity

ρg|D` ∼=
[
εk+1χ1,g ∗

χ2,g

]
,

where χ1,g, χ2,g are unramified and χ2,g(Frob`) = a`(g). We can identify T
Σ′,(k+2)
mf2

with R′ the subalgebra of T
Σ′,(k+2)
O generated by (al(g))g∈N ,l 6∈Σ′ . Choose a basis

of the Galois representation ρg for every such g so that ρg|D` is of the above form.
Then the product over all such g gives a representation ρ : GQ → GL2(

∏
g∈N O).

One has (χ2,g(Frob`))g = T`. We want to show that T` ∈ R′. Let F denote any
lift of Frob` to D` and choose σ ∈ I` to be such that εk+1(σ) = −1. Since ε gives
a surjection of I` onto Z×` this is possible since k + 1 is odd (i.e., if σ ∈ I` maps
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to −1 via ε, then εk+1(σ) = −1). Then T` = 1
2 (tr ρ(Fσ) + tr ρ(F )). Now set τ to

be either F or Fσ. Since GQ is generated by conjugates of Frobenii away from Σ′

and ρ is continuous, we know that tr ρ(τ) ∈ R is the limit of tr ρ(Frobl) ∈ R′ for
l 6∈ Σ′. But for l 6∈ Σ′, tr ρ(Frobl) = Tl ∈ R′. By completeness of R′, we get that
tr ρ(τ) ∈ R′, so T` ∈ R′. �

Proposition 7.13. Suppose ` - (N + 1). Suppose that Assumption 7.10 is satisfied
for a finite set Σ. Then it is also satisfied for the set Σ ∪ {N}.

Proof. Since N is prime, and the character of fj , j = 1, 2 is trivial, we get by
a result of Langlands (see for example, [15], Theorem 3.1(e) for weight 2 or [22],
Theorem 3.26(3b) for an arbitrary weight) that for j = 1, 2,

ρfj |DN ∼=
[
χε ∗

χ

]
,

where χ : DN → E× is the unique unramified character such that χ(FrobN ) =
afj (N), where afj (N) is the eigenvalue of TN corresponding to fj . Thus for j = 1, 2,
tr ρfj (FrobN ) is well-defined and one has

tr ρfj (FrobN ) = (N + 1)afj (N).

This, as in the proof of Proposition 7.12, and the fact that ` - (N + 1) imply that

TN ∈ T
Σ∪{N},(2)
mfj

, j = 1, 2. �

Corollary 7.14. Assumption 7.10 is satisfied for any finite set of primes Σ pro-
vided we assume f1 and f2 are ordinary at ` and their Galois representations are
residually irreducible, if ` ∈ Σ and ` - (N + 1), if N ∈ Σ.

Proof. Let Σ be a finite set of primes and set Σ′ = Σ \ {`,N}. Then as Tl is
just the trace of Frobenius at l for l ∈ Σ′, a completeness argument as in the
proof of Proposition 7.12 gives the result for Σ′. Hence the corollary follows from
Propositions 7.12 and 7.13. �

Theorem 7.15. Assume N, ` ∈ Σ and that ` > k. Suppose Assumption 7.10 holds
and that the residual Galois representations attached to f1 and f2 are irreducible.

There exists T ∈ TΣ,S
O such that TF = η1η2F for all F ∈ Yf1,f2 and TF = 0 for

every F ∈ Y orthogonal to Yf1,f2 .

Proof. Consider the map TS
C → T

(2)
C ⊗ T

(k+2)
C as in Theorem 5.9. It descends to

an O-algebra homomorphism (which we also denote by Φ):

Φ : TΣ,S
O → T

Σ,(2)
O ⊗T

Σ,(k+2)
O .

One has

(7.3) T
Σ,(2)
O ⊗T

Σ,(k+2)
O =

∏
m

T
Σ,(2)
m ⊗

∏
n

T
Σ,(k+2)
n =

∏
m,n

T
Σ,(2)
m ⊗T

Σ,(k+2)
n ,

where m denotes a maximal ideal of T
Σ,(2)
O and n denotes a maximal ideal of

T
Σ,(k+2)
O .

Proposition 7.16. Suppose ` > k. Let l be a prime such that l 6∈ Σ. There exists

S, T ∈ TΣ,S
O such that Φ(S) = Tl ⊗ 1 and Φ(T ) = 1⊗ Tl.
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Remark 7.17. Note that using the diagram from Theorem 5.9, Proposition 7.16
implies that SY (f ⊗ g) = Y (Tlf ⊗ g) and TY (f ⊗ g) = Y (f ⊗ Tlg) for the Yoshida
lift Y (f ⊗ g) of f ⊗ g ∈ S2(N) ⊗ Sk+2(N) with f and g eigenforms. However,
Y a priori contains more common eigenforms than those whose Hecke eigenvalues
coincide with the Hecke eigenvalues of Yoshida lifts.

In other words the map Φ : TΣ,S
O → T

Σ,(2)
O ⊗ T

Σ,(k+2)
O factors through the

projection TΣ,S
O � TΣ,Yosh

O , where TΣ,Yosh
O is the image of TΣ,S

O in the ring of C-
endomorphisms of the span of the Yoshida lifts inside SSk/2+2(N). We will denote

the resulting map TΣ,Yosh
O → T

Σ,(2)
O ⊗T

Σ,(k+2)
O also by Φ.

Before we prove Proposition 7.16 let us show how it implies Theorem 7.15. Let

T 1, T 2 be as in Assumption 7.10. Then T 1⊗T 2 ∈ T
Σ,(2)
O ⊗T

Σ,(k+2)
O is a polynomial

in Tl⊗1, 1⊗Tl, l 6∈ Σ with coefficients in O. Hence by Proposition 7.16, T1⊗T2 is in
the image of Φ. Choose T ∈ Φ−1(T1⊗T2). Then by commutativity of the diagram
in Theorem 5.9, we see that TY (f1⊗f2) = η1η2Y (f1⊗f2), hence also TF = η1η2F
for any F ∈ Yf1,f2 as Y (f1 ⊗ f2) as such F has the same eigenvalues. On the
other hand if F ∈ Y is orthogonal to Yf1,f2 , then it is an E-linear combination of

common eigenforms of TΣ,S
O orthogonal to Yf1,f2 . Fix such an eigenform F . Then

ρF = ρf ⊗ εk/2 ⊕ ρg for some f ∈ N (2) and g ∈ N (k+2).

Lemma 7.18. One has TF = 0.

Proof. Because f , g and F are eigenforms for T
Σ,(2)
O , T

Σ,(k+2)
O and TΣ,S

O respec-
tively, each of them defines an O-algebra homomorphism from its respective Hecke
algebra to O sending an operator t to its eigenvalue. We will denote these ho-
momorphisms by λf , λg and λF . The first two induce an O-algebra homomor-

phism λf ⊗ λg : T
Σ,(2)
O ⊗ T

Σ,(k+2)
O → O, sending an operator s ⊗ t to λf (s)λg(t).

(Recall that the action of an element s ⊗ t ∈ T
Σ,(2)
O ⊗ T

Σ,(k+2)
O on an element

h1 ⊗ h2 ∈ S2(N) ⊗ Sk+2(N) is defined by (s ⊗ t)(h1 ⊗ h2) = (sh1) ⊗ (sh2).) Let
l be a prime, l 6∈ Σ. We will show that if s ∈ {T (1, 1, l, l), T (1, l, l, l2), T (l, l, l, l)}
then λF (s) = (λf ⊗ λg)(Φ(s)). Since T is a polynomial in T (1, 1, l, l), T (1, l, l, l2),
T (l, l, l, l), l 6∈ Σ, with coefficients in O and Φ is an O-algebra map, that will clearly
imply that

λF (T ) = (λf ⊗ λg)(Φ(T )) = (λf ⊗ λg)(T1 ⊗ T2) = 0.

Note that this would be obvious if we knew that F = Y (f ⊗ g), but we are not
assuming this (cf. Remark 7.17). We have

ρF =

[
ρf ⊗ εk/2

ρg

]
.

For σ ∈ GQ write

(7.4) f(σ)(X) =

4∑
n=0

an(σ)Xn = (1− (εk/2(σ)tr ρf (σ))X + (εk(σ) det ρf (σ))X2)

× (1− (tr ρg(σ))X + (det ρg(σ))X2)

for the characteristic polynomial of ρF (σ). One has

f(Frobl)(X) = 1− t0X + {lt1 + l(l2 + 1)t2}X2 − l3t0t2X3 + l6t22X
4,
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where t0 = λF (T (1, 1, l, l)), t1 = λF (T (1, l, l, l2)) and t2 = λF (T (l, l, l, l)). Hence
we have

(7.5)

λF (T (1, 1, l, l)) = −a1 = tr ρF (Frobl) = εk/2(Frobl)tr ρf (Frobl) + tr ρg(Frobl) =

= lk/2λf (Tl)+λg(Tl) = (λf ⊗λg)(lk/2Tl⊗1+1⊗Tl) = (λf ⊗λg)(Φ(T (1, 1, l, l)).

Now note that

T (l, l, l, l)F = µ(diag(l, l, l, l))2(k/2+2)−3 det(diag(l, l))−(k/2+2)F = lk−2F

for any F ∈ SSk/2+2(N) (see [10], p.27 or [2]). Hence (note that l 6= `)

(7.6) λF (T (1, l, l, l2)) = λF (l−1a2(Frobl)− (l2 + 1)T (l, l, l, l)) =

= l−1[εk(Frobl) det ρf (Frobl) + det ρg(Frobl)]+

+ l−1[(εk/2(Frobl)tr ρf (Frobl))(tr ρg(Frobl))]− (l2 + 1)lk−2 =

l−1[lk+1 + lk+1 + lk/2λf (Tl)λg(Tl)]− lk − lk−2 =

= (λf ⊗ λg)(lk − lk−2 + Tl ⊗ Tl) = (λf ⊗ λg)(Φ(T (1, l, l, l2)).

Finally, the fact that

λF (T (l, l, l, l)) = (λf ⊗ λg)(Φ(T (l, l, l, l)))

follows directly from the fact that Φ is an O-algebra homomorphism since T (l, l, l, l)
multiplies every Siegel modular form by a scalar. �

It remains to prove Proposition 7.16.

Proof of Proposition 7.16. We will just show the proof in case of S, the case of T

being analogous. Since the Yoshida lifts are eigenforms for TΣ,S
O , the span of all

Yoshida lifts inside SSk/2+2(N) is Hecke-invariant. Let TΣ,Yosh
O denote the quotient

of TΣ,S
O acting on the span of all Yoshida lifts. The map Φ factors through TΣ,Yosh

O
(cf. Remark 7.17). Obviously, we just need to construct S ∈ TΣ,Yosh

O with the
desired property.

Write mY for the maximal ideal of TΣ,Yosh
O corresponding to Y (f1 ⊗ f2). Since

TΣ,Yosh
O also decomposes as

TΣ,Yosh
O =

∏
m

TΣ,Yosh
m ,

where m runs over its maximal ideals and TΣ,Yosh
m denotes localization, it is enough

to construct S ∈ TΣ,Yosh
mY . Write SYosh ⊂ SSk/2+2(N) for the span of Y (f ⊗ g) such

that the maximal ideal of TΣ,Yosh
O corresponding to Y (f ⊗ g) equals mY . Then we

can identify TΣ,Yosh
mY with the quotient of TΣ,S acting on SYosh.

For two elements α, β ∈ O, we write α ≡ β if α−β belongs to the maximal ideal
of O.

Lemma 7.19. Let f ∈ S2(N), g ∈ Sk+2(N) be eigenforms for T
Σ,(2)
O , T

Σ,(k+2)
O

respectively. If λY (f⊗g)(t) ≡ λY (f1⊗f2)(t) for all t ∈ TΣ,S
O , then either

λf1(Tl) ≡ λf (Tl) and λf2(Tl) ≡ λg(Tl)
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or
λf1(Tl) ≡ λg(Tl) and λf2(Tl) ≡ λf (Tl)

for l 6∈ Σ. Furthermore, if f1 and f2 are ordinary, so are f and g.

Proof. As before, the Chebotarev Density Theorem and the Brauer-Nesbitt The-
orem imply that ρY (f1⊗f2)

∼= ρY (f⊗g), hence ρf1
∼= ρf and ρf2

∼= ρg or the other

way around. Thus the first part of the assertion follows. Furthermore, since ` - 2N ,
(5.3) gives

λf1(T`)λf2(T`) ∼= λf (T`)λg(T`).

Thus f1 and f2 being ordinary implies that f and g are ordinary. �

We have a map Φ : TΣ,Yosh
O =

∏
m TΣ,Yosh

m → T
Σ,(2)
O ⊗T

Σ,(k+2)
O .

Let Y (f ⊗ g) ∈ SYosh. Then by Lemma 7.19, f and g are ordinary, hence (after
fixing an appropriate basis)

ρY (f⊗g)|I` =


εk/2+1 ∗

εk/2

εk+1 ∗
1

 .
Lemma 7.20. Assume ` > k. Then there exists σ ∈ I` such that β1 := εk/2+1(σ),
β2 := εk/2(σ), β3 = εk+1(σ), β4 := 1 are all distinct (mod `).

Proof. The `-adic cyclotomic character gives a surjection I` � Z×`
∼= Z`×(Z/`Z)×,

hence we just need to show that there exists α ∈ (Z/`Z)× such that αk/2+1, αk/2, αk+1, 1
are all distinct. This is equivalent to showing that there is α ∈ (Z/`Z)× such that
none of the following α, αk+1, αk/2, αk/2+1 is 1. Take α to be any generator of
(Z/`Z)×. We just need to make sure that `− 1 (which is the order of α) does not
divide any of the following k + 1, k/2, k/2 + 1.This is clear since ` > k > 2. �

We return to the proof of Proposition 7.16. By Lemma 7.20 there exists σ ∈ I`
and a basis of ρY (f⊗g) in which

ρY (f⊗g)(σ) = diag(β1, β2, β3, β4).

Define

ei :=
∏
j 6=i

σ − βj
βi − βj

∈ O[GQ].

Set ef := e1 + e2.
Let R′ :=

∏
Y (f⊗g)∈SYosh O. Let R be the O-subalgebra of R′ generated by

(λY (f⊗g)(T ))Y (f⊗g)∈SYosh , where T runs over TΣ,Yosh
O .

Lemma 7.21. One has
R ∼= TΣ,Yosh

mY .

Proof. There exists an O-algebra map TΣ,Yosh
O → R defined by sending t to the

tuple of eigenvalues of t. This map is clearly surjective by the definition of R.

On the other hand since TΣ,Yosh
O is the quotient of TΣ,S

O acting on the C-vector
space SYosh, the action is faithful. However, since SYosh is by definition spanned

by eigenforms of TΣ,S
O (since by assumption N ∈ Σ), if t ∈ TΣ,Yosh

O kills all the
eigenfoms in SYosh, it must kill SYosh, hence injectivity follows by faithfulness of

the action of TΣ,Yosh
O on SYosh. �
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Define

ρ =
∏

Y (f⊗g)∈SYosh

ρY (f⊗g) : GQ → GL4(R′).

Extend ρ to an R-algebra map ρ : R[GQ] → M4(R′). Let l 6∈ Σ be as in the
statement of Proposition 7.16. Set

rf (l) := tr ρ(ef Frobl) ∈ R′.
We claim that rf (l) ∈ R. Note that ρ(ef Frobl) is a polynomial in ρ(σi Frobl),
i = 0, 1, 2, 3, with coefficients in O, so it is enough to show that tr ρ(σi Frobl) ∈ R.
Fix i, set τ = σi Frobl. Then by the Chebotarev Density Theorem, GQ is generated
by conjugacy classes of Frobenii away from Σ, so tr ρ(τ) is the limit of tr ρ(Frobp)
for some sequence of primes p 6∈ Σ. However, as indicated above, for such p, one
has

tr ρ(Frobp) = (λY (f⊗g)(T (1, 1, p, p)))Y (f⊗g)∈SYosh ∈ R.

By completeness of R we get tr ρ(τ) ∈ R. So, rf (l) ∈ R. Define S ∈ TΣ,Yosh
mY

to be the image of rf (l) under the isomorphism in Lemma 7.21. It is clear that
Φ(S) = Tl ⊗ 1. �

This completes the proof of Theorem 7.15. �

Corollary 7.22. Let Σ be a finite set of rational primes. Let N be a prime such
that ` - N(N+1). Assume N, ` ∈ Σ. Let k ∈ {2, 4, 6, 8, 12}. Suppose that ` > k. Let
f1 ∈ S2(N), f2 ∈ Sk+2(N) be newforms, ordinary at `, whose `-adic Galois repre-
sentations are residually absolutely irreducible when restricted to G

Q(
√

(−1)(`−1)/2`)
.

Write Yf1,f2 for the subspace of SSk/2+2(N) consisting of common eigenforms for all

t ∈ TΣ,S
O whose Hecke eigenvalues coincide with those of Y (f1⊗f2) for all t ∈ TΣ,S

O .

Then there exists TS ∈ TΣ,S
O such that both of the following hold:

• TSF = η1η2F for every F ∈ Yf1,f2 ;
• TSF = 0 for all F ∈ SSk/2+2(N) such that F is orthogonal to Yf1,f2 and

F is a linear combination of common eigenforms F ′ for all t ∈ TΣ,S
O such

that the `-adic Galois representation attached to F ′ is reducible.

Proof. This follows immediately from Theorem 7.15, Corollary 7.14 and Proposition
7.9. �

Proposition 7.23. The space Yf1,f2 is one-dimensional.

Proof. The following argument is essentially due to Neil Dummigan. Let G ∈ Yf1,f2
be a TΣ,S

O -eigenform. We want to show that G is a scalar multiple of Y (f1 ⊗ f2).
Let Π be the automorphic representation in which G lies. Then using hypothesis A
(4) and (6) of [39], we see that Π must be associated to a Yoshida lift in the sense
that there exists an automorphic representation Π′ containing a Yoshida lift such
that Π ∼= Π′ (classicially this means that there is a Yoshida lift whose associated
Hecke eigenform at all places has the same eigenvalues as Π). However, the Hecke
eigenvalues of a Yoshida lift are completely determined by the Hecke eigenvalues of
the elliptic normalized modular eigenforms, say g1, g2 from which it is lifted. Since
Hecke eigenvalues of Y (f1⊗f2) can differ from those of Π (and hence Π′) only at the
primes Σ, we conclude that the Hecke eigenvalues of f1, f2 differ from those of g1, g2

only at the primes in Σ. Using strong multiplicity one on GL2, we get that f1 = g1
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and f2 = g2, hence Π ∼= ΠY , where ΠY is the automorphic representation containing
Y (f1 ⊗ f2). Now, use Hypothesis A (6) in [39] to conclude that the multiplicity
of ΠY in the discrete spectrum is one, so we must have Π = Π′ = ΠY . Note that
both G and Y (f1 ⊗ f2) are vectors lying in the subspace of ΠY fixed by the group
K0(N) and having the correct behavior at infinity (holomorphic, correct weight).
The behavior at infinity implies that the infinite components of the automorphic
forms attached to G and Y (f1 ⊗ f2) agree. Moreover, clearly away from N the
finite local components (at l, say) lie in the subspaces fixed by GSp4(Zl), hence
are one-dimensional, because at those places ΠY is spherical. At N they lie in the
subspace fixed by K0(N) ∩ GSp4(ZN ). So, it remains to show that this subspace
is one-dimensional. Since Y (f1 ⊗ f2) comes from forms which are new at N , i.e.,
whose automorphic representations π1 and π2 have the Steinberg representation
as a local component at N , we know that ΠY = θ(Steinberg ⊗ Steinberg) in the
notation of [37], and that therefore ΠY is a twist of τ(S, ν−1/2) see [37], Lemme
1.2.10(ii). Hence using [32], table 3(VIa), we see that the space of vectors fixed
by K0(N) ∩ GSp4(ZN ) is one-dimensional (note that his P1 is the same as our
K0(N) ∩GSp4(ZN ) - see [32], page 267 for notation). Hence we are done. �

8. Galois representations and Selmer groups

Let the notation and assumptions be as in Assumption 6.1. In this section we
will give a lower bound on the order of (the Pontryagin dual of) the Selmer group
of

Hom(ρf2 , ρf1(k/2)) ∼= ρf1(k/2)⊗ ρ∨f2 ∼= ρf1 ⊗ ρf2(−k/2− 1)

in terms of the Yoshida ideal (Definition 6.9) as well as in terms of the special
L-value LN,alg(2 + k/2, f1 × f2). Most of the arguments are now standard (see
e.g., [38], [4] or [25], section 9). We will often refer the reader to [25], section 9 for
details.

8.1. Galois representations. To an elliptic newform as well as to a Siegel eigen-
form one can attach an `-adic Galois representation. As the elliptic case is well
presented in the literature we will only record the relevant theorem in the Siegel
modular case.

Theorem 8.1 (Weissauer, Laumon, Urban). Let F ∈ SSk/2+2(N) be a Siegel eigen-

form. Let ` be a prime not dividing N . There exists a finite extension EF of Q`

and a 4-dimensional continuous semisimple representation ρF : GQ → GL4(EF )
unramified away from the primes dividing N` and such that

(i) For any prime l such that l - N`, the characteristic polynomial of ρF (Frobl)
coincides with the polynomial on the right-hand side of (5.5) if one substi-
tutes X for l−s.

(ii) the representation ρF |D` is crystalline (cf. section 8.2).
(iii) If ` > k/2 + 2, then the representation ρF |D` is short. (For a definition of

short we refer the reader to [16], section 1.1.2.)

Proof. For everything except part (iii), see e.g., [37], Theoreme 3.1.3 and 3.1.4. For
(iii) see e.g., [11], Theorem 8.2 and references cited there. �

As before, let E be a sufficiently large finite extension of Q` with valuation ring
O, uniformizer $ and residue field F = O/$. In this section we will make the
following additional assumption:
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Assumption 8.2. We will assume that the Galois representation Hom(ρf2 , ρf1(k/2))
is absolutely irreducible modulo $.

Let ε denote the `-adic cyclotomic character. The following isomorphism is a
consequence of (5.7)

ρY (f1⊗f2)
∼= (ρf1 ⊗ εk/2)⊕ ρf2 .

8.2. Selmer group. Let N Y be those vectors of the F1, F2, . . . , Fr (cf. section 6)
whose associated `-adic Galois representation is irreducible. Let Σ = {N, `}. Let

M denote the set of maximal ideals of the Hecke algebra TΣ,S
O and MY the set of

maximal ideals of the quotient TY
O := TΣ,S,Y

O of TΣ,S
O acting on the space generated

by N Y . We have TY
O =

∏
m∈MY TY

m, where TY
m denotes the localization of TY

O at

m. Let φ : TΣ,S
O → TY

O be the natural projection. We haveM =MctMnc, where
Mc consists of those m ∈M which are preimages (under φ) of elements ofMY and
Mnc :=M\Mc. Note that φ factors into a product φ =

∏
m∈Mc φm×

∏
m∈Mnc 0m,

where φm : TΣ,S
m → TΣ,S

m′ is the projection, with m′ ∈ MY being the unique
maximal ideal such that φ−1(m′) = m and 0m is the zero map. For Fi as above we
denote by mFi (respectively mYFi) the element of M (resp. of MY ) corresponding

to Fi. In particular, mY0 := mYF0
:= mYY (f1⊗f2) ∈ M

Y is such that φ−1(mY0 ) = mF0 .

However, to ease notation we will write TY
m0

instead of TY
mY0

.

We now define the Selmer group relevant for our purposes. For a profinite group
G and a G-module M (where we assume the action of G on M to be continuous) we
will consider the group H1

cont(G,M) of cohomology classes of continuous cocycles
G →M . To shorten notation we will suppress the subscript ‘cont’ and simply write
H1(G,M). For a field L, and a Gal(L/L)-module M (with a continuous action of
Gal(L/L)) we sometimes write H1(L,M) instead of H1

cont(Gal(L/L),M). We also

write H0(L,M) for the submodule MGal(L/L) consisting of the elements of M fixed
by Gal(L/L).

Let Σ ⊃ {`} be a finite set of primes of Q and denote by GΣ the Galois group
of the maximal Galois extension QΣ of Q unramified outside of Σ. Let V be a
finite dimensional E-vector space with a continuous GΣ-action. Let T ⊂ V be a
GΣ-stable O-lattice. Set W := V/T .

We begin by defining local Selmer groups. For every p ∈ Σ and a GΣ-module M
set

H1
un(Qp,M) := ker{H1(Qp,M)

res−−→ H1(Ip,M)}.
Define the local p-Selmer group (for V ) by

H1
f (Qp, V ) :=

{
H1

un(Qp, V ) p ∈ Σ \ {`}
ker{H1(Qp, V )→ H1(Qp, V ⊗Bcrys)} p = `.

Here Bcrys denotes Fontaine’s ring of `-adic periods (cf. [18]).
For every p, define H1

f (Qp,W ) to be the image of H1
f (Qp, V ) under the natural

map H1(Qp, V ) → H1(Qp,W ). Using the fact that Gal(Fp : Fp) = Ẑ has coho-
mological dimension 1, one easily sees that if W is unramified at p and p 6= `, then
H1

f (Qp,W ) = H1
un(Qp,W ).

For a Z`-module M , we write M∨ for its Pontryagin dual defined as

M∨ = Homcont(M,Q`/Z`).
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Moreover, if M is a Galois module, we denote by M(n) := M ⊗ εn its n-th Tate
twist.

Definition 8.3. For each finite set Σ′ ⊂ Σ \ {`}, the group

SelΣ(Σ′,W ) := ker

H1(GΣ,W )
res−−→

⊕
p∈Σ′∪{`}

H1(Qp,W )

H1
f (Qp,W )


is called the (global) Selmer group of the triple (Σ,Σ′,W ). We also set SΣ(Σ′,W ) :=
SelΣ(Σ′,W )∨. Define SelΣ(Σ′, V ) in the same way with V instead of W .

The group SelΣ(Σ \ {`},W ) is the standard Selmer group H1
f (Q,W ) defined by

Bloch and Kato [6], section 5.
Let Σ,Σ′ be as above. Let ρ : GΣ → GLE(V ) denote the representation giving

the action of GΣ on V . The following two lemmas are easy (cf. [31], Lemma 1.5.7
and [36]).

Lemma 8.4. SΣ(Σ′,W ) is a finitely generated O-module.

Lemma 8.5. If the mod $ reduction ρ of ρ is absolutely irreducible, then the length
of SΣ(Σ′,W ) as an O-module is independent of the choice of the lattice T .

Remark 8.6. For an O-module M , val`(#M) = [O/$ : F`] lengthO(M).

Example 8.7. Let Σ = {N, `} and let V denote the representation space of ρ =
Hom(ρf2 , ρf1(k/2)) of GQ. Let T ⊂ V be some choice of a GQ-stable lattice. Set
W = V/T . Note that the action of GQ on V factors through GΣ. Since the
mod $ reduction of ρ is absolutely irreducible by assumption, val`(SΣ({N},W )) is
independent of the choice of T .

Denote the image of the ideal If1,f2 inside TY
m0

in the same way. Our goal is to
prove the following theorem.

Theorem 8.8. Let Σ and W be as in Example 8.7 and let the notation and as-
sumptions be as in Assumptions 6.1 and 8.2. Then

val`(#SΣ({N},W )) ≥ val`(#TY
m0
/If1,f2).

Corollary 8.9. Let Σ and W be as in Example 8.7 and let the notation and as-
sumptions be as in Assumptions 6.1 and 8.2. Let M be as in Theorem 6.5. With
the same assumptions as before we have

val`(#SΣ({N},W )) ≥M.

If in addition the conditions in Remark 6.6 are satisfied then

val`(#SΣ({N},W )) ≥ val`(#O/Lalg(k/2 + 2, f1 × f2)).

Proof. The corollary follows immediately from Theorem 8.8. �

Remark 8.10. Note that SΣ({N},W ) is just the Pontryagin dual of the Bloch-
Kato Selmer group H1

f (Q,W ). The Bloch-Kato conjecture for the convolution
L-function L(s, f1 × f2) predicts that

(8.1) val`(#SΣ({N},W ) · c) = val`(#O/Lalg(k/2 + 2, f1 × f2)),

where c is the product of the so called Tamagawa factor and the orders of the
spaces of GQ-invariants of the modules A(k/2 + 2) and A(−k/2 − 1), where A =
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Hom(ρf2 , ρf1(k/2)) - see also [7], Conjecture 3.1. In [7] the authors also prove that
these spaces of invariants are trivial in our case ([loc. cit.], Lemma 3.4) and that the
Tamagawa factor is an `-adic unit under some mild conditions ([loc. cit.], Lemma
3.2). Thus Corollary 8.9 yields one inequality in (8.1) hence providing evidence for
the Bloch-Kato conjecture.

8.3. Proof of Theorem 8.8. In this section we will mainly follow [25], sections
9.4 and 9.5 as the arguments presented there can be easily adapted to the current
case. As in [loc. cit.] the key ingredient in the proof of Theorem 8.8 is a result due
to Urban [38], which we state as Lemma 8.11 below. However, we first need some
notation. Let Σ ⊃ {`} be a finite set of primes of Q. Let n′, n′′ ∈ Z≥0 and n :=
n′+n′′. Let V ′ (respectively V ′′) be an E-vector space of dimension n′ (resp. n′′),
affording a continuous absolutely irreducible representation ρ′ : GΣ → AutE(V ′)
(resp. ρ′′ : GΣ → AutE(V ′′)). Assume that the residual representations ρ′ and
ρ′′ are also absolutely irreducible (hence well-defined) and non-isomorphic. Let
V1, . . . , Vm be n-dimensional E-vector spaces each of them affording an absolutely
irreducible continuous representation ρi : GΣ → AutE(Vi), i = 1, . . . ,m. Moreover
assume that the mod $ reductions ρi (with respect to some GΣ-stable lattice in Vi
and hence with respect to all such lattices) satisfy

ρss
i
∼= ρ′ ⊕ ρ′′.

For σ ∈ GΣ, let
∑n
j=0 aj(σ)Xj ∈ O[X] be the characteristic polynomial of

(ρ′ ⊕ ρ′′)(σ) and let
∑n
j=0 cj(i, σ)Xj ∈ O[X] be the characteristic polynomial of

ρi(σ). Put cj(σ) :=

 cj(1, σ)
. . .

cj(m,σ)

 ∈ Om for j = 0, 1, . . . , n − 1. Let T ⊂ Om be

the O-subalgebra generated by the set {cj(σ) | 0 ≤ j ≤ n − 1, σ ∈ GΣ}. By
continuity of the ρi this is the same as the O-subalgebra of Om generated by
{cj(Frobp) | 0 ≤ j ≤ n − 1, p 6∈ Σ}. Note that T is a finite O-algebra. Let I ⊂ T
be the ideal generated by the set {cj(Frobp) − aj(Frobp) | 0 ≤ j ≤ n − 1, p 6∈ Σ}.
From the definition of I it follows that the O-algebra structure map O → T/I
is surjective. Let J be the kernel of this map, so we have O/J = T/I. The
following lemma is due to Urban ([38], Theorem 1.1; see also [25], Lemma 9.21 for
the statement concerning the Fitting ideal).

Lemma 8.11. Suppose F× contains n distinct elements. Then there exists a GΣ-
stable T-submodule L ⊂

⊕m
i=1 Vi, T-submodules L′,L′′ ⊂ L (not necessarily GΣ-

stable) and a finitely generated T-module T such that

(1) as T-modules we have L = L′ ⊕ L′′ and L′′ ∼= Tn′′ ;
(2) L has no T[GΣ]-quotient isomorphic to ρ′;
(3) L′/IL′ is GΣ-stable and there exists a T[GΣ]-isomorphism

L/(IL+ L′) ∼= M ′′ ⊗O T/I

for any GΣ-stable O-lattice M ′′ ⊂ V ′′.
(4) FittT(T ) = 0 and there exists a T[GΣ]-isomorphism

L′/IL′ ∼= M ′ ⊗O T /IT

for any GΣ-stable O-lattice M ′ ⊂ V ′.

We will now show how Lemma 8.11 implies Theorem 8.8. For this we set
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• n′ = n′′ = 2;
• Σ = {`,N}, Σ′ := {N};
• ρ′ = ρf1 ⊗ εk/2, ρ′′ = ρf2 , V ′, V ′′ = representation spaces of ρ′, ρ′′ respec-

tively;
• T = TY

m0
;

• N Y
0 = {Fi(i = 1, 2, . . . , r) | φ−1(mYFi) = m0} (by reordering the Fi’s we

may assume that N Y
0 = {F1, F2, . . . , Fm} for some m ≥ 0);

• I = If1,f2
• (Vi, ρi) = the representation ρFi , i = 1, . . . ,m.

Lemma 8.11 guarantees the existence of L, L′, L′′ and T with properties (1)-(4)
as in the statement of the lemma. Let M ′ (resp. M ′′) be a GΣ-stable O-lattice
inside V ′ (resp. V ′′). The split short exact sequence of T-modules (cf. Lemma
8.11, (1))

(8.2) 0→ L′ → L → L/L′ → 0

gives rise to a short exact sequence of (T/I)[GΣ]-modules, which splits as a sequence
of T/I-modules (cf. Lemma 8.11, (3) and (4))

(8.3) 0→M ′ ⊗O T /IT → L/IL →M ′′ ⊗O T/I → 0.

(Note that L/IL ∼= L⊗T T/I ∼= L⊗O T/I, hence (8.3) recovers the sequence from
Theorem 1.1 of [38].) Let s : M ′′ ⊗O T/I → L/IL be a section of T/I-modules.
Define a class c ∈ H1(GΣ,HomT/I(M

′′ ⊗O T/I,M ′ ⊗O T /IT )) by

g 7→ (m′′ ⊗ t 7→ s(m′′ ⊗ t)− g · s(g−1 ·m′′ ⊗ t)).
The following lemma will be used in the proof of Lemma 8.13 and is proved in [7],
Proposition 5.1(3).

Lemma 8.12. Let IN denote the inertia group at N . We have c|IN = 0.

Note that HomT/I(M
′′ ⊗O T/I,M ′ ⊗O T /IT ) ∼= HomO(M ′′,M ′)⊗O T /IT , so

c can be regarded as an element of

H1(GΣ,HomO(M ′′,M ′)⊗O T /IT ).

Define a map

ι : HomO(T /IT , E/O)→H1(GΣ,HomO(M ′′,M ′)⊗O E/O)

f 7→(1⊗ f)(c).
(8.4)

Note that T̃ := HomO(M ′′,M ′) is aGΣ-stableO-lattice inside Ṽ = Hom(ρf2 , ρf1(k/2)) =

HomE(V ′′, V ′). Then W̃ = HomO(M ′′,M ′)⊗O E/O = W , where W is as in The-
orem 8.8.

Since the mod $ reduction of the representation Ṽ is absolutely irreducible,
Lemma 8.5 implies that our conclusion is independent of the choice of T . Hence we
can work with T̃ chosen as above.

The following two lemmas are proved exactly as Lemma 9.25 and 9.26 in [25],
so we will omit their proofs here.

Lemma 8.13. The image of ι is contained inside SelΣ({N}, W̃ ).

Lemma 8.14. ker(ι)∨ = 0.

Let us now show how Lemma 8.13 and Lemma 8.14 imply Theorem 8.8.
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Proof of Theorem 8.8. It follows from Lemma 8.13 that

val`(#SΣ({N}, W̃ )) ≥ val`(# Im(ι)∨),

and from Lemma 8.14 that

(8.5) val`(# Im(ι)∨) = val`(# HomO(T /IT , E/O)∨).

Since HomO(T /IT , E/O)∨ ∼= (T /IT )∨∨ = T /IT (cf. [22], page 98), we have

val`(# Im(ι)∨) = val`(#T /IT ).

So, it remains to show that val`(#T /IT ) ≥ val`(#T/I). Since FittT(T ) = 0
(Lemma 8.11 (4)), we have FittT(T ⊗T T/I) ⊂ I and thus val`(#(T ⊗T T/I)) ≥
val`(#T/I). As val`(#T /IT ) = val`(#(T ⊗T T/I)), the claim follows. �
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