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Abstract

The response of business capital formation to its user cost is critical to evaluating tax
reform, deficit reduction, and monetary policy. Evidence for a substantial user cost
elasticity, however, is sparse. Most evidence has been based on aggregate data, although
several recent studies with firm-level data report substantial effects. With a particularly rich
micro dataset containing over 26,000 observations, this paper explores what can be learned
about the user cost elasticity. While the results depend to some extent on the specification
and econometric technique, various diagnostics lead us to prefer a precisely estimated but
small elasticity of approximately 2 0.25.
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1. Introduction

The price sensitivity of business investment spending is a central element in
economic analysis. A substantial response of capital spending to its user cost,
which combines interest, tax, and depreciation rates with relative prices, is critical
in controversies about the impact of fiscal policy, the transmission of monetary
policy, and the performance of business-cycle models. This paper takes a fresh
look at the user cost elasticity, exploring what can be learned about this key
parameter from a particularly rich micro dataset containing over 26,000 observa-
tions.

The user cost elasticity of the capital stock (UCE) is a key parameter in
analyzing fiscal policies. The simulation models of Auerbach and Kotlikoff

~ ˇ(1987), Imrohoroglu et al. (1998), and Razin and Yuen (1996), for example, are
based on a Cobb-Douglas technology. This technology and its implied UCE of
unity play a large role in assessing the quantitative effects of policy changes. For
example, shifting from an income to a consumption tax increases steady-state net
output by 3.8, 6.8, or 9.5% depending on whether the UCE is 0.5, 1.0, or 1.5,
respectively (Engen et al., 1997, Tables 2A and 5). Indeed, the UCE is important
in estimating the effects of a wide variety of fiscal measures designed to spur
capital formation, such as cuts in the capital gains tax rate, reinstatement of the
investment tax credit, and the adoption of a ‘‘flat tax.’’ We consider the
implications of our results for the effectiveness of these policies in Section 6.

The price sensitivity of investment is also important in the long-standing
controversy about how monetary policy impacts real variables. In the standard
description of the ‘‘transmission mechanism,’’ monetary policy affects real activity
by altering bank reserves and changing short-term interest rates and, through the
term structure, long-term interest rates. With a substantial UCE, monetary policy
can have an important effect on business investment spending. The absence of a
significant UCE casts doubt on the validity of this version of the monetary

1transmission mechanism.
Implicit assumptions about the UCE also loom large in real business cycle

models. For example, Christiano and Eichenbaum (1992, p. 433) and Farmer
(1997, p. 578) use a Cobb-Douglas production function, and hence they maintain
that the UCE is unity. Thus, the ability of these RBC models to reproduce certain
features of macroeconomic data is based in part on capital formation (defined in
terms of foregone consumption) being quite responsive to variations in interest
rates. We also note that business cycle models typically employ the user cost
elasticity of the capital stock, not the often-estimated responsiveness of investment
to the level of interest rates or the cost of capital. For this reason, our study

1This empirical shortcoming has led some researchers to favor a ‘‘credit view’’ of the transmission
mechanism, which holds that monetary policy remains effective even with a low UCE. See Bernanke
and Gertler (1995) for further discussion.
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provides evidence more directly relevant to the empirical assessment of modern
business cycle models than much previous research.

Despite the key role played by the UCE across a wide spectrum of economic
analyses, the supporting evidence for a substantial UCE is sparse. A recent survey
found little compelling evidence that, as historically implemented, tax and interest
rate policies effectively stimulate business fixed investment (Chirinko, 1993).
Blanchard (1986, p. 153) writes ‘‘[i]t is well known that to get the user cost to
appear at all in the investment equation, one has to display more than the usual
amount of econometric ingenuity.’’ Bernanke and Gertler (1995, p. 27) add that
‘‘empirical studies of supposedly ‘interest-sensitive’ components of aggregate
spending have in fact had great difficulty in identifying a quantitatively important
effect of the neoclassical cost-of-capital variable.’’ What should one make of the
apparent inconsistency between widely held beliefs about a large UCE and the
paucity of empirical support for such beliefs? Is the true UCE much lower than
most economists assume, perhaps due to limited substitution possibilities in
production? Most empirical studies of the price sensitivity of investment have been
based on aggregate data, and the resulting estimates may be biased due to
problems of simultaneity, capital market frictions, or firm heterogeneity that may
be better addressed with micro data. Indeed, several recent studies (discussed in
Section 5) with firm-level data report substantial effects of user cost variables on

2investment spending.
We explore these questions with an extensive panel of firm data, constructed

from Compustat ‘‘full coverage’’ files, that contain 4,095 manufacturing and
non-manufacturing firms. The data account for almost half of aggregate U.S.
capital spending in 1987, the middle of the sample period. This extensive coverage
increases confidence when extrapolating the empirical results to the economy at
large. We also tap a new source to construct the user cost of capital and have
merged user cost variables defined at the industry level with Compustat firm data.
Thus, our user cost data vary in both time-series and cross-sectional dimensions,
reducing concerns about measurement error bias and likely improving the
precision of estimation.

The paper is organized as follows. The data set is central to this study, and it is
described in Section 2. Substantial firm heterogeneity is documented. Section 3
derives the econometric equation and discusses the interpretation of the estimates.
Section 4 presents our empirical results. We consider a variety of regression
specifications, equation diagnostics, and estimation techniques, including the new
‘‘orthogonal deviations’’ estimator from Arellano and Bover (1995). After
accounting for a number of biases, we obtain a range of estimates for the UCE
from close to zero to roughly 2 0.50. Several diagnostic tests lead to our preferred

2See Cummins and Hassett (1992), Cummins et al. (1994, 1996), Cabellero et al. (1995), and
surveys by Chirinko (1993) and Hassett and Hubbard (1997). Earlier studies that have used firm-level
data include Eisner (1967, 1978) and Jorgenson and Siebert (1968).
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instrumental variables estimates of the UCE, with a parsimonious specification,
that fall in a narrow range around 2 0.25 with a standard error of 0.03 to 0.06.
These estimates are statistically far from zero, but also far from unity and hence
much different from values often assumed in policy analysis. We compare our
approach and findings to other recent research based on micro data in Section 5.
Section 6 presents some simple policy evaluations, and Section 7 concludes.

2. Data and firm-specific variation

To estimate the UCE, we link two data sources that each provide information
particularly well-suited to our objectives. Investment, sales and cash flow data
come from the extensive Compustat ‘‘full coverage’’ files. The user cost variable is
constructed from industry-level information maintained by Data Resources, Inc.
After deleting observations with missing data, trimming outliers, and computing
the necessary lags, we have a sample of 4,095 firms from all sectors of the
economy that provide 26,071 annual observations for the regressions from the
period 1981 to 1991 (we estimate some regressions with fewer than 26,071

3observations because differencing the data lowers the observation count). In the
middle of the sample (1987) our data account for 48% of aggregate U.S.
non-residential fixed investment and 43% of sales of final and intermediate goods.

`Compustat firm data provide us with substantial benefits vis-a-vis the aggregate
time-series used in most empirical research on the UCE. One clear benefit arises
from statistical efficiency. Obviously, we have a huge number of degrees of
freedom. Even though many of the questions of interest deal with the effect of
economy-wide changes (such as movements in tax or interest rates that affect all
firms), micro data provide a large number of replicated ‘‘experiments’’ that greatly
improve the precision of our results. Improved precision may be important for
identifying the UCE, especially to the extent that aggregate results are imprecisely
estimated and are therefore not able to reject the hypotheses of a UCE equal to
zero or unity. Furthermore, with micro data a given parameter can be estimated
over a relatively short time frame, thus lessening the role played by parameter
instability across time.

The user cost data complement the extensive firm heterogeneity available from
Compustat by providing additional micro-level variation. We obtained information
on the user costs for 26 different capital assets (24 types of equipment and two

3Firm data often have large outliers, especially when regression variables are expressed in ratio form,
as is common practice to avoid severe heteroscedasticity generated by firms of very different size. To
protect against results driven by a small number of extreme observations, we exclude observations in
the 1% upper and lower tails from the distribution for each independent variable in the regression. In
the reported results, we did not eliminate outliers from the dependent variable to avoid a censored
regression bias. The results did not change much, however, when the 1% tails were also deleted for the
dependent variable.
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types of structures). These underlying user costs, based on Hall and Jorgenson
(1967) and modified by DRI, can be represented as:

I YU 5 [ p /p ] [(1 2 m 2 z ) /(1 2 t )] [r 1 d ] (1)g, j,t j,t g,t j,t j,t t t j

I Ywhere p is the asset-specific purchase price for asset j at time t, p is thej,t g,t

industry g output price at time t, r is the financial cost of capital (the same for allt
4industries and assets), and d is the asset-specific economic depreciation rate. Thej

investment tax credit (m ) and discounted value of tax depreciation allowancesj,t

(z ) also vary across assets. We created industry-specific user costs as a weightedj,t

average of the asset user costs. The weights are the proportion of capital accounted
5for by each asset for 26 different industries. This industry information was then

6merged with the firm-level Compustat data using each firm’s S.I.C. code.
Table 1 provides summary statistics for the regression variables. The variable

I /K is the investment-capital ratio (firm subscripts are suppressed for simplici-t t21

ty). Investment is Compustat’s capital expenditure variable from firms’ uses of
funds statement. Capital is the estimated replacement value of plant and equipment
as described in Appendix A. The t21 subscript on the capital stock indicates that
it is measured at the beginning of each accounting year. Output is measured by

7sales. Nominal sales data are taken from the Compustat net sales figure and
deflated by the industry-specific output price deflator used to define the user cost in

YEq. (1) ( p ). The growth rate of real sales is represented by DS /S . Cash flowg,t t t21

(CF ), which is scaled by the beginning-of-period capital stock, is net after-taxt

income plus non-cash expenses (primarily depreciation). The DU /U variable ist t21

the percentage change in the user cost defined in Eq. (1). Further details about data
definitions appear in Appendix A.

The Compustat variables in the first three rows of Table 1 have positively
skewed distributions as one would expect in firm data. The gross investment-to-

4The financial cost of capital is a weighted average of the cost of equity (the dividend–price ratio for
Standard and Poor’s Composite Stock Price Index plus an expected long-run growth rate of 2.4%, with
a weight of 0.67) and the cost of debt (average yield on new issues of high-grade corporate bonds
adjusted to a AAA basis, with a weight of 0.33). The cost of debt is lowered by its tax deductibility and
the expected inflation rate, defined as a weighted average of past GDP deflator growth rates.

5These weights are from the Bureau of Economic Analysis capital flow tables and reflect asset usage
by establishment. The Compustat data reflect ownership by company. The combination of industry
aggregate data for the user cost and firm data for investment and other items may induce measurement
error because some firms operate in a variety of industries. To the extent that such measurement error is
constant within firms, however, it will be captured in firm fixed effects.

6Because the DRI user cost data are quarterly, we average them to obtain an annual user cost. The
averages are computed at the firm level to account for the fact that firms have different fiscal years. The
user cost information is therefore tailored to each firm’s specific accounting period, which introduces
further cross-sectional heterogeneity in the data and a more accurate measure of the user cost.

7The primary variation in output is due to sales. Blinder and Maccini (1991, Table 3) report that the
ratio of the variance of output to the variance of sales is 1.03.
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Table 1
aSummary statistics for micro data

Variable Mean Median Within-firm Firm-specific
standard deviation time variation

I /K 0.173 0.125 0.163 0.979t t21

DS /S 0.030 0.018 0.223 0.976t t21

CF /K 0.226 0.185 0.272 0.987t t21

DU /U 20.013 20.023 0.071 0.674t t21

a Panel data for Compustat firms from 1981 to 1991, as described in the text. I /K is the ratio oft t21

firm capital spending to the beginning of period capital stock, DS /S is firm sales growth, CF /Kt t21 t t21

is the ratio of firm cash flow to the beginning-of-period capital stock and DU /U is the percentaget t21

change in the user cost of capital. The within-firm standard deviation is computed after subtracting
firm-by-firm means of each variable from each observation. This statistic therefore measures variation

2in the time dimension of the panel only. The firm-specific time variation is one minus the R statistic
from a regression of each mean-differenced variable on a set of time dummies, as described in Eq. (2).
The extent of firm-specific time variation is very robust if cross sectional firm variation is removed by
first differences or orthogonal deviations (discussed in Section 4).

capital ratios (mean of 0.173 and median of 0.125) are consistent with moderate
capital stock growth, assuming that depreciation rates are in the range of 10 to
12%. Mean real sales grew by 3.0% per year in our 1981–1991 sample, although
median sales growth was more modest at 1.8%. The within-firm standard
deviations reported in Table 1 show substantial variability of the firm data across

8time. The within-firm standard deviations exceed the means for all three
Compustat variables.

Of particular note, given the emphasis here on firm-level variation, is the
information on the percentage of firm-specific time variation in the data. This

2percentage is 1 minus the R from the regression:

(X 2 a ) 5 b 1 e (2)i,t i t i,t

where (X 2 a ) represents mean-differenced variables for firm i at time t, b is thei,t i t

coefficient on a time dummy that is one for period t and zero otherwise, and e isi,t

an error term. Because the data are mean differenced, cross-section variation is
eliminated. The statistic reported in Table 1, therefore, indicates the proportion of
time variation in the data that cannot be explained by aggregate time effects, i.e.,
the variance of e relative to the variance of (X 2 a ). If this statistic equals zero,i,t i,t i

firm-specific variation is completely absent. For the Compustat variables (I /K ,t t21

DS /S , and CF /K ), over 97% of time-series variation is firm specific. Thist t21 t t21

statistic is lower for the user cost because variation in the interest rate and the tax

8These standard deviations measure variability in the data across time, not across firms. To eliminate
cross sectional variation, we subtract the firm-by-firm means from each variable prior to computing the
standard deviation.
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parameters is determined to a greater degree by aggregate factors. Nonetheless,
over 67% of the firm-specific time-series variation in the composite user cost is not
explained by aggregate time dummies, indicating that the data we construct from

9the DRI source also has substantial micro-level variation.

3. Econometric investment equations: Specification issues

The primary choice of an econometric specification to estimate the UCE is
between a structural model, with estimating equations derived explicitly from an

10optimization problem, or a distributed lag model that relies less on theory.
Distributed lag models (e.g., Hall and Jorgenson, 1967; Eisner and Nadiri, 1968)
relate investment to current and lagged values of the user cost, sales, and other
factors. These models usually perform well empirically. Furthermore, despite the
availability of alternative specifications, distributed lag models continue to be the
model of choice among forecasters (e.g., Prakken et al., 1991; and Sinai, 1992).
The Lucas Critique, however, raises important questions about interpreting
estimated coefficients from these models.

This concern has led to an alternative approach for specifying investment
models that imposes more structure on the econometric model, such as Q and
Euler equation models. Unfortunately, the resulting investment models do not
usually perform well empirically (see Oliner et al., 1995). The applied econo-
metrician must choose between distributed lag models that are empirically
dependable but conceptually fragile and structural models that have a stronger
theoretical foundation but an unsteady empirical superstructure. While the Lucas
Critique offers a compelling theoretical case for structural models, its empirical

11relevance has been questioned. (Section 6 presents a new test of the empirical
importance of the Lucas Critique that exploits panel data.) Furthermore, distributed
lag models provide a direct estimate of the user cost elasticity of primary concern
to this study. Thus, we estimate a distributed lag model, though our policy
assessments must be tempered by the above caveat.

Our model is based on a firm’s demand for capital and, with the addition of

9We compute similar statistics for two other methods of eliminating cross-section variation: first
differences and orthogonal deviations (discussed in Section 4). The proportion of firm-specific variation
remaining in each variable after these transformations is very similar to the statistics reported in Table
1.

10See Chirinko (1993) for a more detailed survey of econometric investment models and empirical
results and an extensive list of references to several of the issues discussed in this section.

11For example, the impact of the Lucas Critique [see Lucas (1976)] on investment models is
examined by Chirinko (1988), who assumes that the volatile fiscal environment of the 1980s reflected
unanticipated changes in the policy regime. Instability associated with the Lucas Critique is identified,
but it is not quantitatively important. Using a much different framework, Taylor (1989) arrives at a
similar conclusion.
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dynamics, demand for investment. The demand for capital follows directly from
the first-order conditions for profit-maximizing behavior with static expectations.
Assuming that the production function has a constant elasticity of substitution (s)
between capital and variable inputs, we obtain the following well-known relation

*between the desired (or optimal) stock of capital (K ), the level of sales (ort

output), and the user cost (or rental price) of capital (U ),t

2s*K 5 zS U , (3)t t t

where U is defined in Eq. (1) and z is the CES distribution parameter. Thet

parameter s is the UCE, the focus of our analysis.
*Absent any dynamic considerations, the firm would achieve K instantaneously.t

Dynamics enter when translating the stock demand for capital to a flow demand
for investment, which is divided between replacement and net components. Capital
is assumed to depreciate geometrically at a constant mechanistic rate (d ); hence,

rreplacement investment (I ) is proportional to the beginning-of-period capitalt

stock,
rI /K 5 d. (4)t t21

nNet investment (I ) is the change in the capital stock between periods t21 and t,t

and is scaled by the existing stock. This ratio (plus 1.0) equals K /K , and itt t21

adjusts according to the weighted geometric mean of relative changes in the
desired capital stock,

H
n mh* *I /K 1 1.0 5 K /K 5P [K /K ]t t21 t t21 t2h t2h21

h50

H
mh* *5P [DK /K 1 1.0] (5)t2h t2h21

h50

12where the ms represent the delivery lag distribution extending for H11 periods.
Taking logs of (5), using the approximation ln(11x)¯x, differencing the

* *logarithm of (3) and substituting it into (5) for (DK /K ), using (4) for
replacement investment, and appending a stochastic error (e ), we obtain thet

distributed lag investment equation:

r nI /K 5 I /K 1 I /Kt t21 t t21 t t21

H H

5 d 1 s O m (DU /U ) 1O m (DS /S ) 1 ´ (6)h t2h t2h21 h t2h t2h21 t
h50 h50

We consider two important extensions of Eq. (6). First, it has been frequently

12The geometric adjustment process is employed in Eq. (5) because, with the pronounced trends in I
and DS and large differences in firm sizes, it is preferable to specify the investment equation with all
variables as ratios or rates.
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argued that a measure of liquidity should enter the model to account for access to
internal funds that affect the timing of investment. In this model, liquidity is
measured as cash flow (CF ) and, to avoid units problems, cash flow enterst

relative to the existing capital stock (see Fazzari et al., 1988b). The specification of
this variable – CF /K – implies that the effects of liquidity on investmentt t21

13expenditures are short-run, perhaps distributed over several periods.
Second, in the presence of non-static expectations and delivery lags, the terms in

Eq. (3) would be distributed over current and future periods and interpreted as
*expected values. Approximating K linearly in logs, differencing with respect tot

time, and assuming that expectations of the resulting output and user cost terms are
based on extrapolations of their past values, we obtain an investment equation with
distributed lag coefficients that mix expectation and technology parameters.
Because the number of lags used in the extrapolations need not be equal, the
lengths of the sales and user cost lags may differ. In addition, the possibility that
capital is ‘‘putty-clay’’ implies that output changes lead to a more rapid investment
response than user cost changes (Eisner and Nadiri, 1968; Bischoff, 1971), and
hence the coefficients on DU /U and DS /S may differ. Ani,t2h i,t2h21 i,t2h i,t2h21

examination of alternative lag lengths indicates that annual lags of 0 to 6 for
DU /U and lags of 0 to 4 for DS /S and CF /K are appropriatei,t i,t21 i,t i,t21 i,t i,t21

initially with ordinary least squares (OLS) estimates. These considerations lead to
the following specification that includes an ‘‘i’’ subscript to denote firm-specific
variables and coefficients:

6 4

I /K 5 d 1Oa (DU /U ) 1Ob (DS /S )i,t i,t21 i h i,t2h i,t2h21 h i,t2h i,t2h21
h50 h50

4

1Og (CF /K ) 1 e (7)h i,t2h i,t2h21 i,t
h50

The coefficients are assumed to be the same across firms except for the
depreciation rate, which is firm-specific and varies with a firm’s mix of capital
assets. The response of the long-run capital stock to percentage changes in the user
cost (uniform across firms) is captured by the sum of the as, which we refer to as

14the UCE.

13 *If financing constraints affect K in the long-run, then, like sales and the user cost, CF wouldt t

enter as a percentage change (see Chirinko and Schaller, 1995). There is no evidence in our data that
the percentage change in CF has any positive effect on investment.t

14To see that the sum of the as represents the elasticity of the long-run capital stock with respect to
the user cost, consider the following abbreviated version of Eq. (7):

nI /K 5 d 1 I /K 5 d 1 DK /K 5 d 1 SUM(a)(DU /U ) 1 ? ? ?

Canceling ds and rearranging yields an expression for the elasticity: (DK /K) /(DU /U )5SUM(a). Note
that this derivation assumes that DU /U is uniform across all firms. This assumption is relaxed when
analyzing policy in Section 6.
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4. Econometric results

In this section, we present regression estimates of the UCE. We begin with OLS
regressions. Hausman tests, however, reveal possible correlation between the error
term and the regressors. We therefore employ instrumental variable methods that
lead to our preferred estimate of the UCE, which is approximately 20.25.

4.1. Ordinary least squares estimates

Table 2 presents OLS estimates of Eq. (7), with and without cash flow.

Table 2
Ordinary least squares regressions

aI /K 5 a (L) DU /U 1 b (L)DS /S 1 g (L) CF /K 1 f 1 ei,t i,t21 6 i,t i,t21 4 i,t i,t21 4 i,t i,t21 i i,t

Excluding cash flow Including cash flow

Mean difference First difference Mean difference First difference

DU /Ui,t i,t21

a 20.144 (0.016) 20.082 (0.018) 20.088 (0.016) 20.055 (0.018)0

a 20.205 (0.015) 20.142 (0.023) 20.155 (0.014) 20.117 (0.022)1

a 20.155 (0.015) 20.100 (0.024) 20.123 (0.014) 20.086 (0.023)2

a 20.060 (0.015) 20.015 (0.025) 20.024 (0.014) 20.001 (0.025)3

a 20.054 (0.015) 20.046 (0.026) 20.037 (0.014) 20.038 (0.025)4

a 20.099 (0.015) 20.116 (0.027) 20.087 (0.014) 20.101 (0.026)5

a 20.004 (0.023) 20.037 (0.026) 0.012 (0.022) 20.023 (0.025)6

SUM (a) 20.721 (0.054) 20.538 (0.117) 20.502 (0.053) 20.421 (0.114)

DS /Si,t i,t21

b 0.120 (0.004) 0.085 (0.006) 0.079 (0.004) 0.047 (0.006)0

b 0.082 (0.004) 0.051 (0.007) 0.033 (0.004) 0.004 (0.007)1

b 0.067 (0.005) 0.039 (0.007) 0.029 (0.005) 0.006 (0.007)2

b 0.033 (0.004) 0.008 (0.007) 0.006 (0.005) 0.011 (0.007)3

b 0.021 (0.005) 0.009 (0.006) 0.006 (0.005) 0.002 (0.006)4

SUM (b ) 0.322 (0.012) 0.192 (0.025) 0.153 (0.012) 0.049 (0.025)

CF /Ki,t i,t21

g 0.102 (0.004) 0.130 (0.005)0

g 0.101 (0.004) 0.105 (0.005)1

g 0.036 (0.004) 0.041 (0.005)2

g 0.018 (0.004) 0.015 (0.005)3

g 0.009 (0.004) 0.003 (0.005)4

SUM (g ) 0.265 (0.007) 0.296 (0.016)
2R 0.411 0.422 0.457 0.466

a Estimates with micro data (1981–1991) and ordinary least squares as described in the text.
Standard errors are in parentheses. The polynomials in the lag operator a (L), b (L), and g (L) are of6 4 4

order 6 and 4 and contain contemporaneous values. To maintain comparability across fixed effect
2estimators, the R statistic is defined to account for firm-specific intercepts as described in Appendix A.
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Different depreciation rates in the model give an a priori reason for intercepts to
vary across firms. Statistical considerations, such as persistent measurement error,
also suggest the need to control for firm-specific effects. We therefore present two
alternative estimators that eliminate firm ‘‘fixed effects:’’ mean differences and

15first differences. All four regressions reported in Table 2 give dramatic results for
the UCE. The sum of the distributed lag coefficients on DU /U , our empiricali,t i,t21

measure of the UCE which we denote as SUM (a), ranges from 20.421 to
20.721. We can strongly reject the null hypothesis that the SUM (a) is zero, and
many of the individual coefficients on DU /U are statistically different fromi,t i,t21

zero as well. The hypothesis that the UCE is unity, however, as often assumed in
calibrated models used for policy analysis, is also rejected.

Insofar as cash flow is an important determinant of investment, omitting it from
the regression will bias the estimated SUM (a) if cash flow and the change in user
cost are correlated. We examine this possibility by including cash flow in the third
and fourth regressions reported in Table 2. Both the mean-difference and first-
difference models strongly reject the null hypothesis that investment is in-
dependent of cash flow. Including cash flow lowers the effect of sales growth,
which is not surprising given the likely positive correlation between sales growth

16and cash flow. More important for our purposes, however, including cash flow
lowers the absolute value of the estimated SUM (a) from 20.721 to 20.502 in
the mean-difference regression and from 20.538 to 20.421 in the first-difference
regression.

One explanation for this finding is ‘‘income effects’’ induced by financing
constraints. For a firm operating in perfect capital markets, a user cost change
induces substitution effects only. But as discussed in Fazzari et al. (1988a),
changes in user costs will change firms’ total costs and their available internal
finance. Changing internal finance can affect the behavior of financially con-
strained firms over and above the effects arising from substitution alone. A lower
investment tax credit, for example, may have standard incentive effects on the
demand for capital and investment but, for financially constrained firms, the
resulting decline in cash flow could reduce investment further than if the firm

15An F test resoundingly rejects the equality of the firm intercepts and hence the appropriateness of a
2pooled estimate. A Hausman (1978) test (x (12)5116.3) strongly rejects the independence of the firm

effects and the regressors, implying that a random effects estimator would not be consistent.
Interestingly, the UCE estimates for the pooled and random effects models of 20.66 and 20.63,
respectively, are between the comparable estimates in the first two columns of Table 2.

16The effect of cash flow on the sales growth coefficients leads to the question of whether the
importance of cash flow arises from financing constraints or cash flow’s role as a proxy for expected
demand. This issue has been considered extensively in the financing constraint literature (see the survey
by Hubbard, 1998). Results vary across different studies, but evidence has been compiled to support the
view that much of the cash flow effect is due to financing constraints. This issue is not of major
concern in our context, however, because of our focus on the UCE.
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17operated in perfect capital markets. The existence of these ‘‘income effects’’ is
consistent with our findings in Table 2. In the regressions without cash flow, the
estimated SUM (a) captures both the conventional substitution effect as well as
the income effect induced by financing constraints, which affect investment in the
same direction. When we add cash flow, however, the estimated SUM (a) can be
interpreted as the user cost elasticity holding cash flow constant; that is, as a
measure of the conventional substitution effect alone. As noted in Section 3, it is
this substitution effect that represents the long-run impact of user cost changes on
the desired capital stock. ‘‘Income effects’’ through cash flow operate only in the
short run.

4.2. Simultaneity and instrumental variables estimates

The estimates in Table 2 may be adversely affected by correlation between the
error term and the regressors (as documented by specification tests below). Indeed,
simultaneity bias provides a possible explanation for low estimates of the UCE
and, in particular, why our estimates are far from unity. Investment comprises a
volatile component of aggregate demand, positively correlated with the business
cycle, and business cycle movements correlate with interest rates. Positive
investment shocks, for example, can cause positive movements in output and the
demand for credit that affect the required rates of return on debt and equity.
Conventional wisdom (e.g., Mankiw and Summers, 1988, p. 716) suggests that
simultaneity between investment shocks and interest rates biases the UCE toward
zero. Furthermore, firm investment shocks may be contemporaneously correlated
with sales and cash flow, or industry investment shocks may affect the relative
price of capital goods (as in Goolsbee, 1998). These problems suggest the need for
instrumental variables (IV) estimation. The extensive variation in micro data will
likely provide better instruments than can be obtained at the aggregate level.

Following common practice, we employ undifferenced lags of the regressors as
instruments. There is a problem with this approach, however, for the mean-
difference estimator when, as in the present case, instruments are pre-determined
but not strictly exogenous. The problem is that the period t error term that arises
following the mean-difference transformation will be correlated with the pre-
determined instruments dated period t, t21, t22, etc. The transformed error term
contains the mean of the firm’s error over the entire sample; that is, (e 1e 1???11 2

17We thank an anonymous referee for pointing out that lower cash flow may also reduce investment
for poorly performing firms that move into tax loss status and lose investment incentives, or higher cash
flow may stimulate investment for firms that move out of tax loss status and shelter taxable income. See
Auerbach and Poterba (1987). The specific reason for the cash flow effect, however, is not important
for our objective of obtaining an unbiased estimate of the UCE.
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18
e ) /T, which invalidates lags of pre-determined regressors as instruments. ToT

solve this problem, Arellano (1988) and Arellano and Bover (1995) propose an
‘‘orthogonal deviation’’ transformation for panel data that sweeps out fixed effects
by subtracting the mean of future observations from each regressor. With this
transformation, once-lagged, pre-determined regressors are valid instruments. The
orthogonal deviations estimator is asymptotically equivalent to the first-difference

19instrumental variables estimator. Moreover, it may be more efficient than the
first-difference estimator with twice-lagged pre-determined regressors as instru-
ments when, as usually happens in practice, a subset of the available orthogonality
conditions is used. Indeed, in the results presented in Tables 3 and 4, the standard
errors on SUM (a) from the orthogonal deviations estimator are 30 to 50% lower
than the comparable standard errors from the first-difference estimator.

We present IV results in Table 3 for the mean-difference (possibly biased),
first-difference, and orthogonal deviations estimators. (The instrument list appears
in the footnote to the table.) Hausman tests reject the least squares specifications
with P values of 5% or less, implying that consistent estimation requires

20instrumental variables. We also present two measures of ‘‘instrument relevance’’
2in Table 3 for each regressor: the conventional R from the first-stage regression

2 2and the Shea partial-R . Shea (1997) shows that the first-stage R can be a
misleading measure of instrument relevance if the regressors are highly correlated

21with only a subset of the instruments. Not surprisingly, instrument relevance (by

18The bias in the mean-difference estimator with pre-determined variables as instruments is of order
1 /T, where T is the number of time observations in the panel. Hence, this estimator is consistent as T
goes to infinity. In practice, however, panel data sets usually provide a relatively small number of
time-series observations for each firm. Our regressions are based on twelve time periods, which is
larger than many panels, but not sufficiently large that we can confidently rely on asymptotic results
that depend on large T. See Arellano and Bover (1995) and Urga (1992). The problem with
pre-determined but not strictly exogenous instruments does not arise for the first-difference estimator
because the first-difference transformation subtracts a single lagged value of each regressor rather than
the mean value of the regressor over the panel.

19With OLS, the orthogonal deviations and mean difference estimates are numerically identical.
20The Hausman test compares the OLS and instrumental variable (IV) estimates from models using

2the same transformation. For the full model, the Hausman test statistic is distributed x (17) under the
null hypothesis of no correlation between the error term and the regressors. The P values are 0.00 for
the OLS mean difference (equivalent to OLS orthogonal deviations) versus IV orthogonal deviations
and 0.04 for OLS first difference versus IV first difference. When the Hausman test statistic is
computed for the DU /U coefficients alone, the comparable P values are 0.03 for either transformation.

21The intuition of Shea’s argument is as follows. Even though the instruments as a group might
explain a large portion of the variance of the regressors, a subset of the instruments (possibly a small
subset) may be responsible for the good fit in all of the first-stage regressions. Other instruments
(possibly most of them) may be of little use in explaining the variance in the regressors. In this case,
there may not be enough independent information in the instrument set to achieve ‘‘practical’’

2 2identification even with high first-stage R s. Shea’s partial R statistic corrects for this problem.
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Table 3
aInstrumental variable estimates I /K 5 a (L) DU /U 1 b (L) DS /S 1 g (L) CF /K 1 f 1 ei,t i,t21 6 i,t i,t21 4 i,t i,t21 4 i,t i,t21 i i,t

Mean difference First difference Orthogonal deviations

Coeff. Std. First- Partial Coeff. Std. First- Partial Coeff. Std. First- Partial
2 2 2 2 2 2estimate error stage R R estimate error stage R R estimate error stage R R

DU /Ui,t i,t21

a 0.021 (0.062) 0.283 0.072 0.128 (0.100) 0.214 0.046 20.020 (0.080) 0.258 0.0510

a 20.129 (0.021) 0.869 0.519 20.121 (0.047) 0.614 0.345 20.212 (0.037) 0.803 0.2791

a 20.120 (0.022) 0.866 0.474 20.110 (0.047) 1.000 0.395 20.128 (0.033) 0.865 0.3442

a 0.013 (0.024) 0.847 0.386 0.066 (0.042) 1.000 0.536 20.023 (0.029) 0.856 0.4243

a 20.009 (0.022) 0.863 0.461 0.015 (0.040) 1.000 0.620 20.051 (0.030) 0.881 0.3824

a 20.063 (0.023) 0.810 0.442 20.033 (0.047) 1.000 0.513 20.095 (0.042) 0.816 0.2345

a 0.034 (0.041) 0.880 0.327 20.006 (0.041) 1.000 0.581 20.028 (0.049) 0.901 0.4176

SUM (a) 20.254 (0.140) 20.060 (0.228) 20.557 (0.157)

DS /Si,t i,t21

b 0.028 (0.048) 0.033 0.001 0.055 (0.097) 0.021 0.005 20.106 (0.130) 0.022 0.0020

b 0.021 (0.009) 0.822 0.267 0.035 (0.021) 0.445 0.165 0.074 (0.018) 0.696 0.1171

b 0.022 (0.009) 0.834 0.293 0.039 (0.013) 1.000 0.474 0.051 (0.008) 0.816 0.6082

b 0.002 (0.007) 0.827 0.509 0.011 (0.012) 1.000 0.522 0.033 (0.010) 0.839 0.3993

b 0.007 (0.006) 0.823 0.622 0.015 (0.009) 1.000 0.740 0.031 (0.008) 0.860 0.5974

SUM (b ) 0.080 (0.068) 0.155 (0.091) 0.084 (0.107)

CF /Ki,t i,t21

g 0.316 (0.115) 0.041 0.001 0.528 (0.102) 0.021 0.002 0.514 (0.097) 0.048 0.0020

g 0.049 (0.026) 0.594 0.023 20.045 (0.039) 0.201 0.029 20.053 (0.039) 0.339 0.0191

g 0.033 (0.005) 0.663 0.704 0.024 (0.010) 1.000 0.396 0.010 (0.008) 0.661 0.4052

g 0.015 (0.005) 0.669 0.735 0.002 (0.008) 1.000 0.594 20.002 (0.008) 0.768 0.4893

g 0.008 (0.005) 0.671 0.560 0.003 (0.007) 1.000 0.788 0.002 (0.006) 0.817 0.6854

SUM (g ) 0.421 (0.092) 0.511 (0.077) 0.472 (0.052)

a See notes to Table 2. The instruments for the mean-difference and orthogonal deviations regressions are the (untransformed) values of DU /U lagged onei,t i,t21

through nine years and DS /S , and CF /K lagged one through seven years. The instruments for the first-difference regression are the (untransformed) valuesi,t i,t21 i,t i,t21
2of DU /U lagged two through ten years and DS /S , and CF /K lagged two through eight years. The partial R statistic is based on Shea (1997).i,t i,t21 i,t i,t21 i,t i,t21
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Table 4
aInstrumental variable estimates for parsimonious lag lengths I /K 5 a (L) DU /U 1 b (L) DS /S 1 g (L) CF /K 1 f 1 ei,t i,t21 2 i,t i,t21 4 i,t i,t21 4 i,t i,t21 i i,t

Mean difference First difference Orthogonal deviations

Coeff. Std. First- Partial Coeff. Std. First- Partial Coeff. Std. First- Partial
2 2 2 2 2 2estimate error stage R R estimate error stage R R estimate error stage R R

DU /Ui,t i,t21

a 20.012 (0.040) 0.283 0.153 20.003 (0.062) 0.214 0.105 20.014 (0.047) 0.258 0.1450

a 20.113 (0.017) 0.869 0.781 20.139 (0.035) 0.614 0.483 20.144 (0.021) 0.803 0.6621

a 20.093 (0.019) 0.866 0.620 20.099 (0.037) 1.000 0.295 20.101 (0.025) 0.864 0.4522

SUM (a) 20.218 (0.046) 20.241 (0.075) 20.260 (0.046)

DS /Si,t i,t21

b 0.066 (0.049) 0.033 0.011 0.047 (0.077) 0.021 0.008 0.044 (0.085) 0.022 0.0040

b 0.019 (0.009) 0.822 0.337 0.044 (0.018) 0.445 0.202 0.056 (0.013) 0.696 0.2271

b 0.027 (0.009) 0.834 0.315 0.044 (0.013) 1.000 0.484 0.052 (0.008) 0.816 0.6132

b 0.006 (0.007) 0.827 0.555 0.019 (0.011) 1.000 0.555 0.028 (0.009) 0.839 0.4843

b 0.009 (0.007) 0.823 0.626 0.016 (0.008) 1.000 0.788 0.028 (0.007) 0.860 0.6684

SUM (b ) 0.127 (0.069) 0.170 (0.077) 0.209 (0.072)

CF /Ki,t i,t21

g 0.404 (0.092) 0.041 0.002 0.491 (0.093) 0.021 0.002 0.492 (0.093) 0.048 0.0010

g 0.027 (0.021) 0.594 0.041 20.033 (0.036) 0.201 0.031 20.043 (0.038) 0.339 0.0201

g 0.031 (0.005) 0.663 0.715 0.024 (0.010) 1.000 0.401 0.012 (0.008) 0.661 0.4072

g 0.014 (0.005) 0.669 0.744 0.002 (0.008) 1.000 0.595 0.001 (0.007) 0.768 0.5133

g 0.008 (0.005) 0.671 0.604 0.002 (0.007) 1.000 0.819 0.002 (0.006) 0.817 0.7064

SUM (g ) 0.485 (0.074) 0.486 (0.071) 0.463 (0.049)

a 20.112 (0.016) 0.869 0.811 20.138 (0.035) 0.614 0.337 20.145 (0.021) 0.803 0.6561

a 20.094 (0.018) 0.866 0.643 20.101 (0.031) 1.000 0.419 20.104 (0.023) 0.865 0.5262

SUM (a) 20.207 (0.026) 20.239 (0.060) 20.249 (0.032)

a See notes to Table 3. The estimates of a and a at the bottom of the table are from a regression including only the first and second lags of DU /U and the1 2 i,t i,t21

contemporaneous and four lags of DS /S and CF /K .i,t i,t21 i,t i,t21
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either measure) is much higher for the lagged regressors than for the contempora-
neous ones because the lagged regressors are simply transformations of the
instruments. (In fact, with the first differences, lags beyond the first year are
perfectly predicted by the instruments.) There is also support in Table 3 for Shea’s

2 2criticism of first-stage R statistics. The partial R measure preferred by Shea is
2much lower than the first-stage R .

The IV point estimates of SUM (a) range from the first-difference value of
20.060 to the orthogonal deviations estimate of 20.557. These estimates imply
that the UCE is likely negative, but in all cases the hypothesis is strongly rejected
that the UCE is unity. Yet, the standard errors of the SUM (a) estimates are
relatively large, both economically and statistically. One cannot even reject the
hypothesis that SUM (a) is zero for the first-difference estimates. Moreover, the
policy implications of a UCE near zero versus a UCE near one half are likely
much different.

The somewhat broad range of point estimates and relatively large standard
errors for SUM (a) in Table 3 could be due to inefficient estimation arising from
including too many lags. This problem is especially likely to arise in IV when
instruments are highly correlated with one another, thus compromising identifica-
tion. Across the three IV regressions, the contemporaneous and third through sixth
lag DU /U coefficients are almost always insignificantly different from zero.t t21

The results in Table 4 support the conjecture that more precise estimates can be
obtained from a more parsimonious lag structure. Here we present regressions that
include only the contemporaneous, first lag, and second lag of DU /U . Fort t21

SUM (a), the standard errors decline by a factor of at least 3, and the range of
point estimates narrows substantially across the estimators. The Shea instrument
relevance statistics rise markedly for the orthogonal deviations and mean differ-
ence estimators. The lower panel of Table 4 presents the coefficients on the first
and second lag of DU /U from a regression that is similar to that presented int t21

the upper panel but that excludes contemporaneous DU /U , which remainedt t21

insignificantly different from zero in the short-lag regression reported in the top
panel of Table 4. All six SUM (a) estimates in Table 4 are negative and precisely

22estimated, ranging narrowly from 20.207 to 20.260. While the panel has much
information for generating instruments, the information is not unlimited. IV models

22To test the robustness of these results, we lagged the instruments an additional year. The results,
which are robust to MA(1) errors, are very consistent with those in Table 4. The six SUM (a) estimates
range from 20.181 to 20.223. An anonymous referee suggested that we estimate the model with only
contemporaneous values of all the variables and lagged instruments. In these regressions the SUM (a)
estimates range from 20.133 to 20.290 when cash flow is excluded from the regression and from
20.007 to 20.130 with cash flow included.



R.S. Chirinko et al. / Journal of Public Economics 74 (1999) 53 –80 69

with long lags may have instruments that are not sufficiently ‘‘relevant’’ and may
23therefore lead to imprecise estimates.

4.3. Summary: What is the user cost elasticity?

All our estimates of the UCE are negative. In our preferred parsimonious
specification (Table 4) the UCE is precisely estimated. None of the UCE estimates
in Tables 3 or 4 differ from 20.25 by more than two standard errors. These results
are far away from the unitary value assumed in many studies based on Cobb-
Douglas technologies. (Even the point estimates from the OLS or long-lag IV
models, that have econometric problems, do not much exceed one half.) The
comparatively low values of the estimated UCE we obtain may help explain why it
has been so difficult for aggregate data studies to uncover the negative effect of
user cost changes on investment predicted by theory. The negative effects exist but
are small. Estimation of a UCE statistically different from zero therefore requires
much more information than can be obtained from the limited variation available
in aggregate data.

5. Comparisons to other micro-data research and additional results

Our results differ from the conclusions offered by several recent panel studies of
investment and capital formation. In their survey, Hassett and Hubbard (1997, p.
375) conclude that recent empirical research on the sensitivity of investment to the
user cost with micro data has resulted in substantial estimates of the UCE ranging
from 20.5 to 21.0. This conclusion contrasts with our findings. While we obtain
a negative and precisely estimated UCE from micro data, the value of the UCE is
rather low. In this section, we compare our approach to recent research and try to
reconcile differences.

Cummins et al. (1994, 1996) employ micro data at times of major tax reforms to
estimate adjustment cost parameters in a q model and a cost-of-capital model

23We examined many different lag lengths for DU /U between two and six years. There was littlet t21

evidence of significant DU /U effects beyond the second lag in regressions that included from threet t21

to six lags of DU /U (both with and without the insignificant contemporaneous value in thet t21

regression). The one exception is the fifth lag, in the orthogonal deviations and mean difference
regressions. The bimodal lag pattern implied by a model with lags one, two, and five, however, is
implausible. Also note that the Shea instrument relevance statistic for the fifth lag in the orthogonal
deviations regression is relatively low and the fifth lag is unimportant in the other consistent regression
employing first differences. (Recall that the mean-difference instrumental variable regression is
inconsistent for a fixed number of time-series observations.) Although we consider the specification
somewhat implausible, we ran regressions with lags one, two, and five (with and without the
insignificant contemporaneous value). The UCE estimates were marginally larger than those in Table 4,
ranging from 20.264 to 20.353, but all within two standard errors of 20.25.



70 R.S. Chirinko et al. / Journal of Public Economics 74 (1999) 53 –80

based on Auerbach (1989). The authors are successful in obtaining more precisely
estimated and economically reasonable adjustment cost parameters than have
typically been found in previous empirical q models (most estimated with
aggregate data). In this sense, this research supports the view that recent results
support a larger sensitivity of investment to price variables, as summarized by q.
The adjustment cost parameters estimated from the q model, however, do not give
a UCE estimate, and these results are therefore not directly comparable to ours.

With some additional assumptions, however, we can roughly compare cost-of-
capital results from Cummins et al. (1994) with those presented in Table 4. The
regression used to obtain the estimates in their Table 9 has the form: I /K 5 a 1

bU, where I /K is the gross investment–capital ratio and U is a distributed lead of
the level (not the percentage change) of the user cost, with preset weights that
decline geometrically and sum to unity. Assuming that the intercept of this
equation represents the geometric depreciation rate and subtracting the deprecia-
tion rate from both sides of this equation yields the percentage change in the
capital stock (the net investment–capital ratio) on the left-hand side as a linear
function of leads in the user cost level. For U.S. data, Cummins et al. (1994)
report an average value for their user cost of about 25% and an average estimated
value for b (the sum of the lead coefficients) of 20.66 across years of major tax
reform. With these average values, a 1% permanent change in future user costs
yields a 0.165% change in the capital stock (.013.25320.66520.00165). Thus,
the implied UCE is 20.165, somewhat lower, but close to the range of results in
Table 4, even though Cummins et al. (1994) employ a very different empirical
approach.

The cost of capital regressions in Cummins et al. (1994) are for equipment
investment rather than total capital spending. If structures are less price sensitive
than equipment, one would expect an implied UCE from their method to be even
closer to zero for total investment (which is the measure used in our study).
Indeed, using the same econometric technique and similar data, Cummins and
Hassett (1992) estimate separate equations for equipment and structures and find
that equipment is more responsive to the user cost. Employing the same
assumptions discussed above to derive UCEs implied by the Cummins and Hassett
(1992) estimates yields 20.23 for equipment and 20.07 for structures. Thus these
estimates also appear to be less than those we present in Table 4. Note that the
Cummins and Hassett equipment UCE is roughly the same as the UCE we

24estimate for equipment and structures combined. While this recent research has

24Using aggregate data and panel data for 15 classes of equipment assets, Clark (1993) measures
variations in the user cost by variations in the investment tax credit (to attenuate measurement error),
and reports UCE estimates ranging from 20.25 to his preferred estimate of 20.40. With the
assumptions that the UCE for structures is lower by the same proportion as in the Cummins and Hassett
study and that equipment’s capital stock share is 0.55, Clark’s UCE estimate for total investment would
be approximately 20.27, very close to our preferred estimate of 20.25.
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had more success in precisely estimating economically reasonable capital adjust-
ment costs, the implied UCE estimates are small in magnitude, consistent with our
findings and in contrast with the general conclusion in the Hassett and Hubbard

25(1997) survey.
Cummins et al. (1994) argue that the sensitivity of investment to q or the user

cost is best estimated in years of major tax reforms, to mitigate concerns about
endogeneity and measurement error. They find that including years without major
reforms lowers the response of investment to q and user cost changes. One of the
major tax reforms they identified, 1986, is in our regression sample. To test
whether our results are driven disproportionately by this year, and hence whether
the estimates presented above may be biased toward zero because they are based
on regressions that include years without major tax reforms, we use dummy
variables to isolate the effects of 1986 on the SUM (a) in the regressions reported
in Table 4. Unlike Cummins et al. (1994), we find that our UCE estimate is not
much different in the major tax reform year than in the other years. Interactions
between a 1986 dummy and DU /U , DU /U , and DU /U are virtuallyt t21 t21 t22 t22 t23

26never significant, either individually or as a sum, in any of our regressions.
Finally, we note that none of the investment results discussed in this section

include cash flow. As we discussed in the previous section, cash flow has strong
statistical effects in investment equations, and we find that its addition reduces the
UCE estimates substantially. This difference in specification may account for some

27of the differences between our results and those of other micro studies.

6. Implications for tax policy

As we have discussed in Section 1, the empirical UCE is a key parameter for
policy analysis. It represents the long-run effect on the desired capital stock of
policies that change the user cost of capital. In this section, we consider the

25Another extensive recent study of investment with micro data is Caballero et al. (1995). Using a
very different method from ours they obtain a wide range of UCE estimates for equipment (from zero
to 22.0 with a mean around 21.0) with plant-level data across different two-digit SIC industries.
Rather than an investment equation, Caballero et al. (1995) estimate a co-integrating relation between
the capital–output ratio and the user cost (assumed I(1)). This study maintains several different
assumptions and uses different data than in our work, and a reconciliation is beyond the scope of the
present paper.

26The largest effect is in the orthogonal deviations regression including contemporaneous DU /U .t t21

The sum of the coefficients on the 1986 dummy interacted with the contemporaneous, first, and second
lag of DU /U is 0.310 with a standard error of 0.150. Although this estimate is significant at the 5%t t21

level, note that its positive sign suggests a smaller UCE for 1986, in contrast with the findings of
Cummins et al. (1994).

27Cummins et al. (1994, Table 10) include cash flow in additional cost-of-capital regressions. In
tax-reform years, which they use to estimate the sensitivity of investment to the cost of capital, the
addition of cash flow also tends to reduce the cost of capital coefficient, by an average of 12%.
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implications of our econometric findings for evaluating several policy proposals.
We must proceed with caution, however, in using non-structural results for policy
analysis. Panel data allow us to develop a new test of the quantitative importance
of the Lucas Critique and hence to test the sensitivity of our results to possible
instability arising from the major policy changes in the Tax Reform Act of 1986.
The next subsection discusses this test, which shows that the investment
regressions in Table 4 remained quite stable over the tax reform period. We then
use our preferred estimate of the UCE to evaluate the effect of three tax policy
initiatives on capital formation: a cut in the capital gains tax rate, reinstatement of
an investment tax credit, and adoption of a ‘‘flat tax.’’

6.1. The Lucas critique and the tax reform act of 1986

The Tax Reform Act of 1986 was a significant policy change that raised the user
cost during our sample period and provides an opportunity to test the empirical
importance of the Lucas Critique. If it were the case that the empirical UCE
(which is not derived from a policy-invariant structural model) changed with the
Tax Reform Act of 1986, one would expect to observe large residuals around the
time of the policy change in our specification that maintains a uniform UCE over
the sample. Because the user cost increases were, at least in part, anticipated prior
to implementation we might expect systematic increases of investment in 1985,

28possibly 1986, relative to 1987 when the user cost rose.
Including time dummies in the regressions (which obviously requires panel data)

provides a test for the systematic changes in the investment–capital ratio. We
include time dummies in the IV regressions with parsimonious lags and perform
pair-wise equality tests on the 1985, 1986, and 1987 time dummy coefficients. We
also test the joint equality of the time dummy coefficients for 1985, 1986, and
1987. The lowest P values we obtain from these tests are 0.241 for mean
differences, 0.343 for first differences, and 0.165 for orthogonal deviations. The
null hypothesis of stability over the tax reform period cannot be rejected.
Moreover, the time dummy coefficient for 1987 is slightly higher than those for
1985 and 1986, further evidence against the view that the anticipation of tax
reform led firms to intertemporally substitute investment from 1987 to 1985 or

291986. These results help to mitigate concerns about the quantitative importance
of the Lucas Critique in our context.

28The effective implementation dates varied for different parts of the Tax Reform Act of 1986.
29The range of UCE estimates from the instrumental variable regressions with time dummies was

marginally higher in absolute value than those reported in Table 4: 20.231 for mean differences,
20.279 for first difference, and 20.326 for orthogonal deviations.
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6.2. The effects of current tax initiatives

We follow a two-step process to estimate the effect of specific tax initiatives on
the capital stock. First, we determine the effect of the tax change on the user cost
of capital. Because user costs differ across firms, this calculation is performed at
the firm level, and therefore requires micro data. The weighted average percentage
change in the user cost for our sample is defined as:

w w
DU /U 5Ow (DU /U ) (8)i i i

i

where w is firm i’s share of the total sample capital stock (K /K). Second, thei i

percentage change in the aggregate capital stock for our sample (K) is estimated
from:

DK K DU1 i i i
] ]] ] ]]DK /K 5 O DK 5O 5O SUM(a) wi iK K K Ui ii i i

w w
5 SUM(a)DU /U (9)

While the Compustat sample may not perfectly represent the U.S. economy, its
substantial coverage suggests that these estimates will be a good approximation to
the aggregate effect of policies that change the user cost.

To estimate the firm-specific percentage decline in the user cost as the result of
the recent reduction of the top marginal capital gains tax rate from 28% to 19.8%,
we follow the approach of Fazzari and Herzon (1996), who use assumptions about

30corporate financial structure that are representative for the U.S. economy.
Weighting these percentage changes by the firm capital shares from 1991, the final

w wyear in our sample, yields a weighted average reduction in the user cost (DU /U )
of 1.89%. The estimated impact of this change on the long-run capital stock is
given in the first column of Table 5 for a UCE of 20.25, consistent with our

30These assumptions include the following: firms pay 50% of their income as dividends and 50% as
capital gains; 30% of new investment is financed with debt and 70% with equity; the real required rate
of return on equity is 6%; and expected inflation is 3%. For the results reported here, each firm’s
percentage decline in the user cost is determined as follows. The user cost can be expressed as the
product of components representing relative prices (P ), corporate taxes (T ), and a required rate ofi i

return (R ) that includes depreciation and the tax-adjusted opportunity cost of funds r that the firm musti

* *attain to compensate its investors: U 5 P T R and R 5 r 1 d . The capital gains tax rate affects r, andi i i i i i

the percentage change in the user cost from a capital gains tax rate cut can be expressed as
DU /U 5 Dr /(r 1 d ). The term (r1d ) is taken from our micro data. Fazzari and Herzon’s estimatesi i i i

imply that r will fall by 7.42% from a base of 4.53% after the capital gains tax rate cut, which implies
that Dr equals .0742 * .0453. Note that d, which is ignored in many studies, plays a large role in
determining DU /U. If d is set to zero, the percentage change in the user cost triples. In our calculations,
and in contrast with Fazzari and Herzon, we have not adjusted the capital gains tax rate for the
expected holding period of assets. Thus our figures are an upper bound on the impact of cutting the
capital gains tax rate.
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Table 5
aPolicy Effects

Capital gains 10% Flat tax
tax rate cut Investment tax credit

User cost elasticity: 20.25 20.25 20.25

DU /U 21.89% 214.25% 214.15%
DK /K 10.47% 13.56% 13.54%
DY /Y 10.14% 11.07% 11.06%

a The DU /U row shows the estimated percentage decline in the user cost of capital which is a
weighted average of estimated firm-specific percentage changes in the user cost. The weights reflect
each firm’s share of capital in the data sample. The DU /U for the capital gains tax is based on Fazzari
and Herzon (1996), as described in the text. The user cost decline for the investment tax credit assumes
a 10% credit for both equipment and structures. The decline for the flat tax policy is based on the
authors’ calculations as described in the text. The DK /K row shows the percentage change in the
long-run capital stock as a result of the user cost decline given a user cost elasticity of 20.25. The
DY /Y is the long run percentage change in output as a result of the increase in the capital stock
assuming a 0.3 elasticity of output with respect to the capital stock.

regression results. This policy yields only about half a percentage point increase in
the long-run capital stock. Assuming a typical output elasticity with respect to
capital of 0.3, the capital gains tax cut is predicted to have an impact on the level
of output of only 0.14%.

Reinstating the investment tax credit to 10% would have a more substantial
31impact. We compute that this change would lower the user cost by 14.25%. With

a UCE of 20.25 and a output–capital elasticity of 0.3, this change raises the
long-run capital stock by 3.56% and output by 1.07%.

In our third policy scenario, we analyze the flat tax, which would allow firms to
‘‘expense’’ investment and would drive the tax component of the user cost

32measure to unity. We calculate the tax component for the final year in the sample
(1991) for each firm and compute the percentage change in the firm’s user cost
that would result if this tax component went to unity. The weighted average of
these percentage changes (with 1991 capital shares as weights) is 214.15%
(remarkably close to the change we compute for a 10% investment tax credit). We

31Note that this a substantial subsidy relative to historical experience because it gives a full credit to
both equipment and structures.

32The flat tax would have another effect on the user cost that we do not measure in this exercise.
Interest payments would no longer be deductible for corporate tax purposes. This change would raise
the user cost, holding pre-tax interest rates constant. Whether pre-tax interest rates rise or fall is
debatable. Hall (1996) and Toder (1995) conclude that pre-tax rates will decline, while Feldstein
(1995) suggests the opposite. Even if pre-tax rates fall, it is unlikely that this channel will be sufficient
to lower the net-of-tax interest rate. For these reasons, we believe the effect of eliminating the corporate
interest expense deduction is not substantial. The calculations presented in Table 5 should be viewed as
an upper bound on the magnitude of the overall stimulus.
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use this figure to estimate the impact of the Hall and Rabushka (1995) flat tax
proposal on the long-run capital stock and output. With our UCE estimate of
20.25, the capital stock is predicted to increase by 3.5% and the long-run level of
output by 1.1%. In his simulation of the Hall-Rabushka flat tax, Auerbach (1996,
Table 2.3, column 2) finds that output per capita increases by 8.4% in the long

33run. This result is based on a unitary UCE implicit in the Cobb-Douglas
production function. Our results are also less than a third of the increase predicted

34by Hall and Rabushka due to the increase in the capital stock alone.

7. Conclusion

This study investigates the empirical user cost elasticity of capital formation
with an extensive micro dataset. The estimated UCE depends to some extent on
the specification and econometric technique employed. Accounting for financing
constraints and simultaneity results in a range of UCE estimates from 20.06 to
20.56. Employing a parsimonious lag specification suggested by various regres-
sion diagnostics leads to a precisely estimated UCE of approximately 20.25. This
value is consistent across several panel-data estimation techniques that control for
firm fixed effects, including the new Arellano and Bover (1995) orthogonal
deviations transformation that generates substantially lower standard errors. Our
results imply that higher user costs do indeed reduce capital formation. Our UCE
estimate, however, is much lower than the value of unity frequently assumed in
applied research.

It has been suggested that a modest response of capital formation to its user cost
is somehow inconsistent with the neoclassical view of the firm. This conclusion,
however, depends on how one defines the ‘‘neoclassical’’ view. There is no logical
inconsistency between a low UCE and the hypothesis that profit-maximizing firms
respond to price incentives. The low UCE suggests simply that substitution
possibilities are limited by the firms’ production technologies. It is the case,
however, that a low UCE implies that price incentives have a quantitatively
smaller impact on capital formation than many economists often assume. For
example, our finding suggests that quantitative models that rely heavily on prices
to allocate capital – especially those in the real business cycle tradition – may be

33Auerbach’s estimate reflects general equilibrium effects not accounted for in our analysis. In
particular, interest rates fall by 1.4 percentage points in Auerbach’s simulations, whereas our
calculations hold the interest rate fixed.

34This calculation is based on the mid-point of the 2 to 4% output increase range that Hall and
Rabushka (1995, p. 87) predict over 7 years. Because Hall and Rabushka assume a 0.25 elasticity of
output with respect to capital, a 3% output increase translates into a 12% increase in capital, which can
be compared to our figures in Table 5. Hall and Rabushka also argue that the flat tax would increase the
efficiency of the capital stock resulting in further increases in output. We cannot assess this prediction
in our framework that focuses on the overall quantity of capital.
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misspecified. Our modest UCE estimate also implies a correspondingly modest
effect of interest rates on investment, weakening the traditional monetary
transmission mechanism. Finally, the effects of policy initiatives to stimulate
capital formation by cutting taxes are attenuated by a low UCE. Cutting the capital
gains tax rate from 28 to 19.8% would raise the long-run capital stock by only a
trivial amount with a UCE in the range of our estimates. A low UCE reduces the
benefits of an investment tax credit relative to its tax cost. Replacing the current
tax system by a flat tax would increase the long-run capital stock by about 3.5%,
much less than is claimed by flat-tax proponents. There may be good reasons for
supporting these tax policies, and thus for shifting the burden of taxation away
from upper-income taxpayers. But a substantial increase in the capital stock is not
one of them.
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2Appendix A. Data and R definitions

The accounting data are from the Compustat Industrial Database maintained by
Standard and Poor are described below. The Data Resources, Inc. (DRI) data used
to construct industry-specific user costs are described in Section 2.

Investment
Capital expenditure (on property, plant, or equipment) from firms’ uses of funds

statement. Nominal investment is deflated by a weighted average of capital asset
price indexes from DRI with weights determined by two-digit S.I.C. industry asset
usage. (See Section 2 for more information.)
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Sales
Gross sales during the year reduced by cash discounts, trade discounts, and

returned sales or allowances to customers. Nominal sales Figs. from Compustat are
deflated by industry-specific output price indexes provided by DRI.

Cash flow
Cash flow is the sum of several variables from Compustat. It includes:

1. Income before extraordinary items;
2. Depreciation and amortization;
3. Deferred Taxes;
4. Equity in net loss (earnings); and
5. Extraordinary items and discontinued operations.

The first two components of cash flow (income and depreciation) are seldom
missing from firms’ income statements. If the a firm reports a missing value for
either one of these variables, we produce a missing value for cash flow. The last
three items, however, are missing a greater percentage of the time. We assume that
when they are missing, their values are economically insignificant, and we set
them to zero.

The replacement value of capital
The capital stock appears in the denominator of our dependent variable. The

book values of gross or net property, plant, and equipment may severely understate
the current value of the capital, especially in periods of high inflation. Salinger and
Summers (1983) present an algorithm for approximating the current replacement
value of capital using accounting data such as that supplied by Compustat. We
modified the original algorithm to make it more useful in approximating capital
stocks for a wider variety of firms.

The basic idea behind the algorithm is to build iteratively a replacement value
series using three steps. First, take the previous year’s value and inflate it in
proportion to aggregate inflation to obtain the capital stock’s replacement value
today in the absence of other changes. Second, add the value of the current year’s
investment, and third, account for capital lost to depreciation. The resulting
nominal capital stock is then deflated as described above for investment. The
details of this calculation appear in an extended appendix available from the
authors.

2Definition of R
2To maintain comparability in the R statistic across models with firm-specific

2intercepts, we compute R in Table 2 as follows. For the models that include lags
2of the percentage change in the user cost and the percentage change in sales, R is

defined with regression residuals (e ) from:i,t
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6 4DU DSi,t2h i,t2hˆ ˆˆ ]]] ]]]e 5 (I /K) 2 f 2O a 2O b (A.1)i,t i,t i h hU Si,t2h21 i,t2h21h50 h50

ˆˆwhere a and b are regression coefficients. The estimated firm-specific intercepth h

is given by:

T 6 4DU DSi,t2h i,t2hˆ ˆˆ ]]] ]]]f 5 (1 /T ) O (I /K) 2O a 2O b (A.2)S Di i,t h hU Si,t2h21 i,t2h21t51 h50 h50

where T is the number of years in the panel. This definition of the residuals gives
2the conventional R for the mean-difference estimator. For the first-difference

2estimators, this definition may result in R statistics that do not necessarily rise
when additional variables are added to the regression model. We use this definition

2of R , appropriately modified to account for the addition of the cash flow-capital
ratio in the regression equation, for all the OLS fixed effects regressions reported
in the paper.
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