A REMARK ON THE KOTTWITZ HOMOMORPHISM

MOSHE ADRIAN

Abstract

We prove that for any split, almost simple, connected reductive group G over a p-adic field F, the Kottwitz homomorphism $\kappa: G(F) \rightarrow \Omega$ exhibits a homomorphic section $\Omega \hookrightarrow G(F)$. We then extend this result to certain additional split connected reductive groups.

1. Introduction

Let G be a connected reductive group over a p-adic field F. In [Kot97], Kottwitz defined a canonical homomorphism

$$
\kappa: G(F) \rightarrow X^{*}\left(Z(\widehat{G})^{I}\right)^{\mathrm{Fr}} .
$$

This homomorphism is surjective and, in the case that G is split, simplifies to a homomorphism

$$
\kappa: G(F) \rightarrow X^{*}(Z(\widehat{G})) \cong X_{*}(T) / Q^{\vee}
$$

In this note, we show that the map κ has a homomorphic section in the case that G is split and almost simple, as well as for certain additional split groups. More specifically, fix a fundamental alcove in the building of G corresponding to a maximal split torus T, and let Ω be the subgroup of the extended affine Weyl group W that stabilizes C. We show that there is a homomorphic section of the canonical projection $N_{G}(T) \rightarrow \Omega$, where $N_{G}(T)$ is the normalizer of a maximal torus T in G. If G is almost-simple, then this section can be described as follows: it is known (see Proposition 3.1) that Ω may be identified with a collection of elements $\left\{1, \epsilon_{i} \rtimes w_{i}\right\} \subset W=X_{*}(T) \rtimes W_{\circ}$, where ϵ_{i} are certain fundamental coweights and W_{\circ} is the finite Weyl group. By [Spr98, $\left.\S 9.3 .3\right]$, there is a canonical map $\mathcal{N}_{\circ}: W_{\circ} \rightarrow N_{G}(T)$ (denoted ϕ in loc. cit.) that is compatible with the projection $N_{G}(T) \rightarrow W_{\circ}$. We may then consider the map

$$
\begin{aligned}
& \iota: \Omega \rightarrow N_{G}(T) \\
& \epsilon_{i} w_{i} \mapsto \epsilon_{i}\left(\varpi^{-1}\right) \mathcal{N}_{\circ}\left(w_{i}\right),
\end{aligned}
$$

where ϖ is a uniformizer in F. The map ι is a section of the projection $N_{G}(T) \rightarrow \Omega$, and it turns out that ι is a homomorphism in all cases except the adjoint group of type D_{l} where l is odd, and some cases in type A_{l} (see Theorem 3.5 and Remark 3.6). Nonetheless, we can still use ι to construct a homomorphic section for all almost-simple p-adic groups (see Theorem 3.5). We then show that for certain split connected groups with connected center, the Kottwitz homomorphism exhibits a homomorphic section (see Proposition 4.3).

We would like to remark that if G is any split connected reductive group with simply connected derived group, then κ has a homomorphic section. This follows from the fact that Ω is a free abelian group of finite rank, isomorphic to a free quotient of $X_{*}(T)$. Then one constructs a section by taking a homomorphic section of $X_{*}(T) \rightarrow \Omega$ and then composing that section with the map $X_{*}(T) \rightarrow T, \lambda \mapsto \lambda\left(\varpi^{-1}\right)$. In particular, the image of this section lies in T, not just $N_{G}(T)$. The situation where Ω is finite is much more subtle, which is what this paper is about.
1.1. Acknowledgements. This paper was written in response to a question that Karol Koziol asked me; I wish to thank him for asking the question. I thank the referees for their comments, especially one of the referees for very valuable comments and suggestions; in particular, ideas on how to expand the results beyond split almost-simple groups, and for the proof of Proposition 4.3. I thank Karol Koziol and Sean Rostami for helpful conversations. Support for this project was provided by a grant from the Simons Foundation \#422638 and by a PSC-CUNY award, jointly funded by the Professional Staff Congress and The City University of New York.

2. Preliminaries

Let G be a split connected reductive group over a p-adic field F. Fix a pinning ($B, T,\left\{X_{\alpha}\right\}$) for G. This gives rise to a set of non-zero roots Φ of G with respect to T, a set of positive roots Π in Φ, and a basis $\Delta=\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{l}\right\}$ of the set of positive roots, so that l is the rank of G. We recall that for each $\alpha \in \Phi$, there exists an isomorphism u_{α} of F onto a unique closed subgroup U_{α} of G such that $t u_{\alpha}(x) t^{-1}=u_{\alpha}(\alpha(t) x)$, for $t \in T, x \in F[\operatorname{Spr} 98$, §8.1.1].

Let $X^{*}(T), X_{*}(T)$ be the character, cocharacter lattices of T, respectively. Let Q be the lattice generated by Φ, and P^{\vee} the coweight lattice. Namely, P^{\vee} is the \mathbb{Z}-dual of Q relative to the standard pairing (\cdot, \cdot) : $X^{*}(T) \times X_{*}(T) \rightarrow \mathbb{Z}$. We let Φ^{\vee} be the system of coroots, Q^{\vee} the lattice generated by Φ^{\vee}, and P the weight lattice. Then P^{\vee} is spanned by the l fundamental coweights, which are denoted $\epsilon_{1}, \epsilon_{2}, \ldots, \epsilon_{l}$. We recall that the ϵ_{i} are defined by the relation $\left(\epsilon_{i}, \alpha_{j}\right)=\delta_{i j}$. If α is a root, we denote its associated coroot by α^{\vee}.

We now let $W_{\circ}=N_{G}(T) / T$ be the Weyl group of G relative to T. For each $\alpha \in \Phi$, we let $s_{\alpha} \in W_{\circ}$ be the simple reflection associated to α. Then the u_{α} may be chosen such that for all $\alpha \in R, n_{\alpha}=$ $u_{\alpha}(1) u_{-\alpha}(-1) u_{\alpha}(1)$ lies in $N_{G}(T)$ and has image s_{α} in W_{\circ} (see [Spr98, §8.1.4]). Relative to the pinning that we have chosen, there is a canonical, well-defined map $\mathcal{N}_{\circ}: W_{\circ} \rightarrow N_{G}(T)$ [Spr98, §9.3.3] (the map is denoted ϕ in loc.cit.), defined by $\mathcal{N}_{\circ}(w)=n_{\beta_{1}} n_{\beta_{2}} \cdots n_{\beta_{m}}$ for a reduced expression $w=s_{\beta_{1}} s_{\beta_{2}} \cdots s_{\beta_{m}}$.
2.1. The map \mathcal{N}_{\circ}. In this section, we recall a result about the map \mathcal{N}_{\circ} from [Ros16].

Definition 2.1. For $u, v \in W_{\circ}$, we define

$$
\mathcal{F}(u, v)=\{\alpha \in \Pi \mid v(\alpha) \in-\Pi, u(v(\alpha)) \in \Pi\} .
$$

The following proposition describes the failure of \mathcal{N}_{\circ} to be a homomorphism.
Proposition 2.2. [Ros16, Proposition 3.1.2] For $u, v \in W_{\circ}$,

$$
\mathcal{N}_{\circ}(u) \cdot \mathcal{N}_{\circ}(v)=\mathcal{N}_{\circ}(u \cdot v) \cdot \prod_{\alpha \in \mathcal{F}(u, v)} \alpha^{\vee}(-1)
$$

Definition 2.3. For $w \in W_{\circ}, i \in \mathbb{N}$, we define

$$
\mathcal{F}_{w}(i)=\left\{\alpha \in \Pi \mid w^{i}(\alpha) \in-\Pi, w^{i+1}(\alpha) \in \Pi\right\}
$$

Corollary 2.4. If $w \in W_{\circ}$ and $n \in \mathbb{N}$, then

$$
\mathcal{N}_{\circ}(w)^{n}=\mathcal{N}_{\circ}\left(w^{n}\right) \cdot \prod_{m=1}^{n-1} \prod_{\alpha \in \mathcal{F}_{w}(m)} \alpha^{\vee}(-1)
$$

Proof. By Proposition 2.2, $\mathcal{N}_{\circ}(w)^{2}=\mathcal{N}_{\circ}\left(w^{2}\right) \cdot \prod_{\alpha \in \mathcal{F}_{w}(1)} \alpha^{\vee}(-1)$. Multiplying by $\mathcal{N}_{\circ}(w)$ on the left and using Proposition 2.2 again, we get $\mathcal{N}_{\circ}(w)^{3}=\mathcal{N}_{\circ}\left(w^{3}\right) \cdot \prod_{\alpha \in \mathcal{F}_{w}(2)} \alpha^{\vee}(-1) \cdot \prod_{\alpha \in \mathcal{F}_{w}(1)} \alpha^{\vee}(-1)$. Continuing in this way, the claim follows.

3. Embedding Ω into G

Let G be a split, almost-simple p-adic group. We set $W=N_{G}(T) / T_{\circ}$, where T_{\circ} is the maximal bounded subgroup of T. The group W is the extended affine Weyl group, and we note that we have a semidirect product decomposition $W=X_{*}(T) \rtimes W_{\circ}$. We also set $\Omega=W / W^{\circ}$, where $W^{\circ}=Q^{\vee} \rtimes W_{\circ}$ is the affine Weyl group. We therefore have a canonical projection $N_{G}(T) \rightarrow \Omega$. This projection is exactly the restriction of κ to $N_{G}(T)$.

The group Ω can be identified with the subgroup of W that stabilizes a fundamental alcove \mathcal{C}. Moreover, it is known that Ω acts on the set $\left\{1-\alpha_{0}, \alpha_{1}, \alpha_{2}, \ldots, \alpha_{l}\right\}$, where α_{0} is the highest root in Φ. The action of Ω on this set can be found in [IM65, p. 18-19]. We let Ω_{ad} be the analogous group for the adjoint group $G_{\text {ad }}$.

It is known that there exists in W_{\circ} an element w_{Δ} such that $w_{\Delta}(\Delta)=-\Delta$. The element w_{Δ} is unique and satisfies $w_{\Delta}^{2}=1$. Moreover, if we denote the subset $\Delta-\left\{\alpha_{i}\right\}$ by Δ_{i}, then the subgroup W_{i} of W_{\circ} generated
by $s_{\alpha_{1}}, \ldots, \hat{s}_{\alpha_{i}}, \ldots, s_{\alpha_{l}}\left(\hat{s}_{\alpha_{i}}\right.$ means that $s_{\alpha_{i}}$ is omitted) contains an element $w_{\Delta_{i}}$ such that $w_{\Delta_{i}}\left(\Delta_{i}\right)=-\Delta_{i}$ and $w_{\Delta_{i}}^{2}=1$.

We recall the following result from [IM65].
Proposition 3.1. [IM65, Proposition 1.18] The mapping from the set $\{0\} \cup\left\{\epsilon_{i}:\left(\alpha_{0}, \epsilon_{i}\right)=1\right\}$ onto Ω_{ad} defined by $0 \mapsto 1, \epsilon_{i} \mapsto \epsilon_{i} w_{\Delta_{i}} w_{\Delta}$ is bijective.

The notation ρ_{i} (and sometimes ρ) is used in [IM65] to denote the element $\epsilon_{i} w_{\Pi_{i}} w_{\Delta}$. We will adopt the same notation. We will also let $S_{\text {ad }}$ denote the set $\{0\} \cup\left\{\epsilon_{i}:\left(\alpha_{0}, \epsilon_{i}\right)=1\right\}$. We note that every lattice between Q^{\vee} and P^{\vee} arises as $\left\langle Q^{\vee}, S\right\rangle$, for some subset $S \subset S_{\text {ad }}$. If S is such a subset, we will talk of the almost-simple p-adic group G that is determined by the lattice $\left\langle Q^{\vee}, S\right\rangle$. We note in particular that if Ω_{G} denotes the omega group for G, then one can see that $\Omega_{G}=W / W^{\circ} \cong\left\langle 1, \rho_{i}: \epsilon_{i} \in S\right\rangle$.

We now assume that G is not simply connected. For otherwise, $\Omega=1$, so the claim that $\kappa: G \rightarrow \Omega$ has a homomorphic section is vacuous.

Let ϖ be a uniformizer of F. There is a natural map $X_{*}(T) \rightarrow N_{G}(T)$ given by $\lambda \mapsto \lambda\left(\varpi^{-1}\right)$ (see [Tit79, p. 31]). We also have the map $\mathcal{N}_{\circ}: W_{\circ} \rightarrow N_{G}(T)$. Coupling these maps together, we obtain a natural map

$$
\begin{aligned}
W & \rightarrow N_{G}(T) \\
(\lambda, w) & \mapsto \lambda\left(\varpi^{-1}\right) \mathcal{N}_{\circ}(w)
\end{aligned}
$$

for $\lambda \in X_{*}(T), w \in W_{\circ}$. Most of the time, we will write λw instead of (λ, w). Proposition 3.1 gives us a set-theoretic embedding $\Omega \hookrightarrow W$. We can then consider the composite map $\Omega \hookrightarrow W \rightarrow N_{G}(T)$, which gives us a section of the canonical projection $N_{G}(T) \rightarrow \Omega$:

$$
\begin{gathered}
\iota: \Omega \rightarrow N_{G}(T) \\
\omega=\epsilon_{i} w_{\Delta_{i}} w_{\Delta} \mapsto \epsilon_{i}\left(\varpi^{-1}\right) \mathcal{N}_{\circ}\left(w_{\Delta_{i}} w_{\Delta}\right)
\end{gathered}
$$

That $\epsilon_{i}\left(\varpi^{-1}\right)$ is well-defined follows from the fact that $\epsilon_{i} \in X_{*}(T)$ by our definition of G earlier. That ι is a section follows from Proposition 3.1. In particular, ι is injective. We will sometimes identify ϵ_{i} with $\epsilon_{i}\left(\varpi^{-1}\right)$ for ease of notation.

We will show that ι is a homomorphic embedding for all types except A_{l}, and the specific case when G is adjoint of type D_{l} where l is odd. Nonetheless, we will still produce a homomorphic embedding $\Omega \hookrightarrow N_{G}(T)$ which is a section of $N_{G}(T) \rightarrow \Omega$, in these two outlier cases.

Suppose $\omega=\epsilon_{i} w_{\Delta_{i}} w_{\Delta}$ is a generator of Ω, whose order is r. Propositions 3.2 and 3.3 will be dedicated to showing that $\iota(\omega)$ also has order r. Let $w_{i}=w_{\Delta_{i}} w_{\Delta}$ for convenience of notation. We compute

$$
\begin{gathered}
\iota(\omega)^{r}=\left(\epsilon_{i}\left(\varpi^{-1}\right) \mathcal{N}_{\circ}\left(w_{i}\right)\right)^{r}=\epsilon_{i}\left(\varpi^{-1}\right) \cdot\left(\mathcal{N}_{\circ}\left(w_{i}\right) \epsilon_{i}\left(\varpi^{-1}\right) \mathcal{N}_{\circ}\left(w_{i}\right)^{-1}\right) \cdot\left(\mathcal{N}_{\circ}\left(w_{i}\right)^{2} \epsilon_{i}\left(\varpi^{-1}\right) \mathcal{N}_{\circ}\left(w_{i}\right)^{-2}\right) \\
\cdots\left(\mathcal{N}_{\circ}\left(w_{i}\right)^{r-1} \epsilon_{i}\left(\varpi^{-1}\right) \mathcal{N}_{\circ}\left(w_{i}\right)^{1-r}\right) \mathcal{N}_{\circ}\left(w_{i}\right)^{r}=\left(\epsilon_{i}+w_{i}\left(\epsilon_{i}\right)+w_{i}^{2}\left(\epsilon_{i}\right)+\cdots+w_{i}^{r-1}\left(\epsilon_{i}\right)\right)\left(\varpi^{-1}\right) \mathcal{N}_{\circ}\left(w_{i}\right)^{r}
\end{gathered}
$$

We will now show that $\epsilon_{i}+w_{i}\left(\epsilon_{i}\right)+w_{i}^{2}\left(\epsilon_{i}\right)+\cdots+w_{i}^{r-1}\left(\epsilon_{i}\right)=0$ and $\mathcal{N}_{\circ}\left(w_{i}\right)^{r}=1$.
Proposition 3.2. $\epsilon_{i}+w_{i}\left(\epsilon_{i}\right)+w_{i}^{2}\left(\epsilon_{i}\right)+\cdots+w_{i}^{r-1}\left(\epsilon_{i}\right)=0$.
Proof. We compute $w_{i}^{j}\left(\epsilon_{i}\right)$ for $j=1,2, \ldots, r-1$. The tables on pages 18-19 of [IM65] give the values of i for each type, and the explicit action of w_{i} on the set $\left\{-\alpha_{0}, \alpha_{1}, \alpha_{2}, \ldots, \alpha_{l}\right\}$. We also note that the order of ω equals the order of w_{i} (see [IM65, p. 18]). We begin with type B_{l} and end with type A_{l} (since, computationally, A_{l} is the most intricate).

- In type B_{l}, we have that $r=2$ and $i=1$, so we wish to show that $\epsilon_{1}+w_{1}\left(\epsilon_{1}\right)=0$. Note that $w_{1}\left(\alpha_{1}\right)=-\alpha_{0}$ and w_{1} fixes the other simple roots. To compute $w_{1}\left(\epsilon_{1}\right)$, we pair $w_{1}\left(\epsilon_{1}\right)$ with all of the simple roots. By Weyl-invariance of the inner product (\cdot, \cdot) and the fact that $w_{1}^{2}=1$, we have

$$
\left(w_{1}\left(\epsilon_{1}\right), \alpha_{j}\right)=\left\{\begin{array}{rll}
0 & \text { if } & j \neq 1 \\
\left(\epsilon_{1},-\alpha_{0}\right) & \text { if } & j=1
\end{array}\right.
$$

But since $\alpha_{0}=\alpha_{1}+2\left(\alpha_{2}+\ldots+\alpha_{l}\right)$, we have that $\left(\epsilon_{1},-\alpha_{0}\right)=-1$. Therefore, $w_{1}\left(\epsilon_{1}\right)=-\epsilon_{1}$, so that $\epsilon_{1}+w_{1}\left(\epsilon_{1}\right)=0$.

- In type C_{l}, we have that $i=l$, and the same argument as in type B_{l} holds. Indeed, $w_{l}\left(\alpha_{l}\right)=-\alpha_{0}$, w_{l} permutes the simple roots other than α_{l}, and $\alpha_{0}=2\left(\alpha_{1}+\ldots+\alpha_{l-1}\right)+\alpha_{l}$. Thus, $\left(w_{l}\left(\epsilon_{l}\right), \alpha_{l}\right)=-1$, so $w_{l}\left(\epsilon_{l}\right)=-\epsilon_{l}$, and the result follows.
- We consider type D_{l}. We first consider the case that l is odd and G is adjoint. In this case $\Omega \cong \mathbb{Z} / 4 \mathbb{Z}$ and it is enough to consider $i=l$. The claim is that $\epsilon_{l}+w_{l}\left(\epsilon_{l}\right)+w_{l}^{2}\left(\epsilon_{l}\right)+w_{l}^{3}\left(\epsilon_{l}\right)=0$. One can see from the table on [IM65, p. 19] that w_{l} permutes $\alpha_{2}, \alpha_{3}, \ldots, \alpha_{l-2}$, and also acts by $-\alpha_{0} \mapsto \alpha_{l} \mapsto \alpha_{1} \mapsto \alpha_{l-1} \mapsto-\alpha_{0}$. We therefore conclude that $\left(w_{l}\left(\epsilon_{l}\right), \alpha_{j}\right)=\left(\epsilon_{l}, w_{l}^{3}\left(\alpha_{j}\right)\right)=0$ if $j=2,3, \ldots, l-2$. Moreover, since $w_{l}^{3}\left(\alpha_{1}\right)=\alpha_{l}, w_{l}^{3}\left(\alpha_{l-1}\right)=\alpha_{1}, w_{l}^{3}\left(\alpha_{l}\right)=-\alpha_{0}$, we conclude that $\left(w_{l}\left(\epsilon_{l}\right), \alpha_{1}\right)=1,\left(w_{l}\left(\epsilon_{l}\right), \alpha_{l-1}\right)=0$, and $\left(w_{l}\left(\epsilon_{l}\right), \alpha_{l}\right)=-1$. Therefore, $w_{l}\left(\epsilon_{l}\right)=\epsilon_{1}-\epsilon_{l}$. One can compute similarly that $w_{l}^{2}\left(\epsilon_{l}\right)=\epsilon_{l-1}-\epsilon_{1}$ and $w_{l}^{3}\left(\epsilon_{l}\right)=-\epsilon_{l-1}$. Therefore, $\epsilon_{l}+w_{l}\left(\epsilon_{l}\right)+w_{l}^{2}\left(\epsilon_{l}\right)+w_{l}^{3}\left(\epsilon_{l}\right)=$ 0.

We now consider the case where l is odd and G is neither adjoint nor simply connected. We have that $\rho_{l}^{2}=\rho_{1}$ generates Ω. Thus, we need to show that $\epsilon_{1}+w_{1}\left(\epsilon_{1}\right)=0$. First, we note that w_{1} fixes α_{j}, for $j=2,3, \ldots, l-2$, it exchanges $-\alpha_{0}$ and α_{1}, and it exchanges α_{l-1} and α_{l}. Since w_{1} has order 2 , we compute that

$$
\left(w_{1}\left(\epsilon_{1}\right), \alpha_{j}\right)=\left(\epsilon_{1}, w_{1}\left(\alpha_{j}\right)\right)=0
$$

if $j=2, \ldots, l$. We also have $\left(w_{1}\left(\epsilon_{1}\right), \alpha_{1}\right)=\left(\epsilon_{1},-\alpha_{0}\right)=-1$. Thus, $w_{1}\left(\epsilon_{1}\right)=-\epsilon_{1}$, so the result follows.
We now consider the case that l is even and G is adjoint. In this case, $\Omega \cong \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$. In the notation of [IM65, p. 19], the generators of Ω are $\rho_{1}, \rho_{l-1}, \rho_{l}$. It is straightforward to compute that $w_{1}\left(\epsilon_{1}\right)=-\epsilon_{1}, w_{l}\left(\epsilon_{l}\right)=-\epsilon_{l}$, and that $w_{l-1}\left(\epsilon_{l-1}\right)=-\epsilon_{l-1}$, proving the claim for G.

If l is even and G is neither adjoint nor simply connected, the result follows readily from the adjoint case.

- We now consider type E_{6}. Then $r=3, i=1$, and w_{1} acts by $\alpha_{1} \mapsto \alpha_{6} \mapsto-\alpha_{0}$. Since w_{1} has order 3 , we compute that

$$
\left(w_{1}\left(\epsilon_{1}\right), \alpha_{j}\right)=\left(\epsilon_{1}, w_{1}^{2}\left(\alpha_{j}\right)\right)=\left\{\begin{array}{rll}
0 & \text { if } & j \neq 1,6 \\
-1 & \text { if } & j=1 \\
1 & \text { if } & j=6
\end{array}\right.
$$

which implies that $w_{1}\left(\epsilon_{1}\right)=-\epsilon_{1}+\epsilon_{6}$. Similarly one may compute that $w_{1}^{2}\left(\epsilon_{1}\right)=-\epsilon_{6}$. Therefore, $\epsilon_{1}+w_{1}\left(\epsilon_{1}\right)+w_{1}^{2}\left(\epsilon_{1}\right)=0$.

- Type E_{7} is analogous to types B_{l} and types C_{l}. Just note that in this case we have $i=1$ and $w_{1}\left(\alpha_{1}\right)=-\alpha_{0}$, and from [IM65, p. 19] we see that the coefficient of α_{1} in α_{0} is 1 .
- We finally consider type A_{l}. We may identify roots and co-roots, fundamental weights and fundamental co-weights. Recall that we may take $\Delta=\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{l}\right\}$ to be $\alpha_{i}=\alpha_{i}^{\vee}=e_{i}-e_{i+1}$ for $1 \leq i \leq l$. The corresponding fundamental coweights are

$$
\epsilon_{i}=\epsilon_{i}^{\vee}=\left\{\frac{1}{l+1}\left[(l+1-i)\left(e_{1}+e_{2}+\ldots+e_{i}\right)-i\left(e_{i+1}+e_{i+2}+\ldots+e_{l+1}\right)\right] \quad \text { if } \quad i \leq l\right.
$$

We recall that the isogenies of type A_{l} are in one to one correspondence with the subgroups of $\Omega_{\mathrm{ad}}=\mathbb{Z} /(l+1) \mathbb{Z}$. The element ρ_{1} generates Ω_{ad}. Let $a, b \in \mathbb{N}$ such that $l+1=a b$. Let $\omega=\rho_{1}^{a}$, so that $\omega^{b}=1$. Let G be the group of type A_{l} that is given by the subgroup $\langle\omega\rangle$ of Ω_{ad}. In particular, its associated cocharacter lattice, which we denote by $X_{*}\left(A_{l}^{a}\right)$, is given by $\left\langle Q^{\vee}, \epsilon_{a}\right\rangle$. For ease of notation, let $n=l+1$. Then $\omega=\epsilon_{a} w_{a}$, where w_{a} is the a-th power of the n-cycle $(12 \cdots n)$. We need to show that $\epsilon_{a}+w_{a}\left(\epsilon_{a}\right)+\ldots+w_{a}^{b-1}\left(\epsilon_{a}\right)=0$. A computation shows that this sum is

$$
\begin{gathered}
\frac{1}{n}\left[(n-a)\left(e_{1}+e_{2}+\ldots+e_{a}\right)-a\left(e_{a+1}+\ldots+e_{n}\right)\right] \\
+\frac{1}{n}\left[(n-a)\left(e_{a+1}+e_{a+2}+\ldots+e_{2 a}\right)-a\left(e_{2 a+1}+\ldots+e_{n}+e_{1}+e_{2}+\ldots+e_{a}\right)\right] \\
+\ldots+\frac{1}{n}\left[(n-a)\left(e_{n-a+1}+e_{n-a+2}+\ldots+e_{n}\right)-a\left(e_{1}+e_{2}+\ldots+e_{n-a}\right)\right]
\end{gathered}
$$

which equals zero.

Proposition 3.3. $\mathcal{N}_{\circ}\left(w_{i}\right)^{r}=1$.

Proof. We again assume that G is not simply connected. We proceed on a type by type basis, beginning with B_{l} and ending again with type A_{l}. To compute $\mathcal{N}_{0}\left(w_{i}\right)^{r}$, we use Corollary 2.4. We remind the reader again that the order of $\epsilon_{i} w_{i}$ equals the order of w_{i} (see [IM65, p. 18]).

- Suppose that G is of type B_{l} and adjoint. We recall that the roots may be identified with the functionals $\pm e_{i}(1 \leq i \leq l)$ and $\pm e_{i} \pm e_{j}(1 \leq i<j \leq l)$. The corresponding coroots may be identified (in the obvious way) with the functionals $\pm 2 e_{i}, \pm e_{i} \pm e_{j}$. The fundamental coweights corresponding to the standard choice of simple roots are given by $\epsilon_{i}=e_{1}+\ldots+e_{i}$, for $1 \leq i \leq l$.

We note that the cocharacter lattice of type B_{l} adjoint is $\left\langle Q^{\vee}, \epsilon_{1}\right\rangle$. The action of w_{1} exchanges $-\alpha_{0}$ and α_{1}. Therefore, $\mathcal{F}_{w_{1}}(1)$ is the set of positive roots that contain α_{1}. In other words, $\mathcal{F}_{w_{1}}(1)=$ $\left\{e_{1}+e_{j}: j=2,3, \ldots, l\right\} \cup\left\{e_{1}-e_{j}: j=2,3, \ldots, l\right\} \cup\left\{e_{1}\right\}$. One may therefore compute that

$$
\sum_{\alpha \in \mathcal{F}_{w_{1}}(1)} \alpha^{\vee}=\sum_{j>1}\left(e_{1}+e_{j}\right)^{\vee}+\sum_{j>1}\left(e_{1}-e_{j}\right)^{\vee}+e_{1}^{\vee}=\sum_{j>1}\left(e_{1}+e_{j}\right)+\sum_{j>1}\left(e_{1}-e_{j}\right)+2 e_{1},
$$

where we have identified e_{1}^{\vee} with $2 e_{1}$ in the usual way. Writing $e_{1}+e_{j}$ and $e_{1}-e_{j}$ as sums of simple coroots, one may compute that

$$
\sum_{j>1}\left(e_{1}+e_{j}\right)+\sum_{j>1}\left(e_{1}-e_{j}\right)+2 e_{1}=2 l \alpha_{1}^{\vee}+2 l \alpha_{2}^{\vee}+\ldots+2 l \alpha_{l-1}^{\vee}+l \alpha_{l}^{\vee}
$$

Noting that $\epsilon_{1}=\alpha_{1}^{\vee}+\alpha_{2}^{\vee}+\ldots+\alpha_{l-1}^{\vee}+\frac{1}{2} \alpha_{l}^{\vee}$, we have that $\sum_{\alpha \in \mathcal{F}_{w_{1}(1)}} \alpha^{\vee}=2 l \epsilon_{1}$. Therefore, $\mathcal{N}_{\circ}\left(w_{1}\right)^{2}=\left(\epsilon_{1}\right)(-1)^{2 l}=1$.

- We now turn to type C_{l} adjoint. We recall that the roots may be identified with the functionals $\pm 2 e_{i}(1 \leq i \leq l)$ and $\pm e_{i} \pm e_{j}(1 \leq i<j \leq l)$. The corresponding coroots may be identified (in the obvious way) with the functionals $\pm e_{i}, \pm e_{i} \pm e_{j}$. The fundamental coweights corresponding to the standard choice of simple roots are $\epsilon_{i}=e_{1}+\ldots+e_{i}$, for $1 \leq i<l$, and $\epsilon_{l}=\frac{1}{2}\left(e_{1}+e_{2}+\ldots+e_{l}\right)$.

We note that the cocharacter lattice of type C_{l} adjoint is $\left\langle Q^{\vee}, \epsilon_{l}\right\rangle$. The action of w_{l} exchanges $-\alpha_{0}$ and α_{l}. Therefore, $\mathcal{F}_{w_{l}}(1)$ is the set of all positive roots that contain α_{l}, so that $\mathcal{F}_{w_{l}}(1)=$ $\left\{e_{i}+e_{j}: 1 \leq i<j \leq l\right\} \cup\left\{2 e_{i}: 1 \leq i \leq l\right\}$. Therefore, one may compute that

$$
\sum_{\alpha \in \mathcal{F}_{w_{l}}(1)} \alpha^{\vee}=\sum_{i<j}\left(e_{i}+e_{j}\right)^{\vee}+\sum_{i}\left(2 e_{i}\right)^{\vee}=\sum_{i<j}\left(e_{i}+e_{j}\right)+\sum_{i} e_{i} .
$$

Writing $e_{i}+e_{j}$ and e_{i} as sums of simple coroots, we may compute that

$$
\sum_{i<j}\left(e_{i}+e_{j}\right)+\sum_{i} e_{i}=l \alpha_{1}^{\vee}+2 l \alpha_{2}^{\vee}+3 l \alpha_{3}^{\vee}+\ldots+l^{2} \alpha_{l}^{\vee}
$$

Recalling that $\epsilon_{l}=\frac{1}{2}\left(\alpha_{1}^{\vee}+2 \alpha_{2}^{\vee}+3 \alpha_{3}^{\vee}+\ldots+l \alpha_{l}^{\vee}\right)$, we have that $\sum_{\alpha \in \mathcal{F}_{w_{l}}(1)} \alpha^{\vee}=2 l \epsilon_{l}$. Therefore, $\mathcal{N}_{\circ}(w)^{2}=\left(\epsilon_{l}\right)(-1)^{2 l}=1$.

- We now consider type D_{l}. We recall that the root system of type D_{l} is realized as the set of all $\pm e_{i} \pm e_{j}$, with $i<j$. Since all roots α satisfy $\|\alpha\|^{2}=2$, we may identify roots and co-roots, fundamental weights and fundamental co-weights. Recall that we may take $\Delta=\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{l}\right\}$ to be

$$
\alpha_{i}=\alpha_{i}^{\vee}=\left\{\begin{array}{lll}
e_{i}-e_{i+1} & \text { if } \quad i \leq l-1 \\
e_{l-1}+e_{l} & \text { if } \quad i=l
\end{array}\right.
$$

The corresponding fundamental weights are

$$
\epsilon_{i}=\epsilon_{i}^{\vee}=\left\{\begin{array}{lll}
e_{1}+\ldots+e_{i} & \text { if } i<l-1 \\
\frac{1}{2}\left(e_{1}+\ldots+e_{l-1}-e_{l}\right) & \text { if } i=l-1 \\
\frac{1}{2}\left(e_{1}+\ldots+e_{l-1}+e_{l}\right) & \text { if } i=l
\end{array}\right.
$$

First we consider the case where l is even. By [IM65, p. 19], Ω_{ad} is generated by the elements $\rho_{1}, \rho_{l-1}, \rho_{l}$, and the actions of their corresponding Weyl elements w_{1}, w_{l-1}, w_{l} on the set
$\left\{-\alpha_{0}, \alpha_{1}, \alpha_{2}, \ldots, \alpha_{l}\right\}$ are given by

$$
\begin{gathered}
w_{1}\left(-\alpha_{0}\right)=\alpha_{1}, \quad w_{1}\left(\alpha_{1}\right)=-\alpha_{0}, \quad w_{1}\left(\alpha_{i}\right)=\alpha_{i} \quad(2 \leq i \leq l-2) \\
w_{1}\left(\alpha_{l-1}\right)=\alpha_{l}, \quad w_{1}\left(\alpha_{l}\right)=\alpha_{l-1} \\
w_{l}\left(-\alpha_{0}\right)=\alpha_{l}, \quad w_{l}\left(\alpha_{l}\right)=-\alpha_{0}, \quad w_{l}\left(\alpha_{i}\right)=\alpha_{l-i} \quad(1 \leq i \leq l-1) . \quad w_{l-1}=w_{l} w_{1}
\end{gathered}
$$

Consider the isogeny given by the subgroup $\left\langle\rho_{l}\right\rangle$ in Ω_{ad}. Its associated cocharacter lattice, which we denote by $X_{*}\left(D_{l}^{l}\right)$, is given by $X_{*}\left(D_{l}^{l}\right)=\left\langle Q^{\vee}, \epsilon_{l}\right\rangle$. We must compute $\mathcal{F}_{w_{l}}(1)$. As w_{l} exchanges $-\alpha_{0}$ and $\alpha_{l}, \mathcal{F}_{w_{l}}(1)$ is the set of positive roots that contain α_{l}. By [Bou02, Plate IV], the sum of all of the (co)roots in $\mathcal{F}_{w_{l}}(1)$ is then equal to

$$
(l-1)\left(\alpha_{1}+2 \alpha_{2}+3 \alpha_{3}+\ldots+(l-2) \alpha_{l-2}+\frac{1}{2}(l-2) \alpha_{l-1}+\frac{1}{2} l \alpha_{l}\right) .
$$

But notice that $\epsilon_{l}=\frac{1}{2}\left(\alpha_{1}+2 \alpha_{2}+3 \alpha_{3}+\ldots+(l-2) \alpha_{l-2}+\frac{1}{2}(l-2) \alpha_{l-1}+\frac{1}{2} l \alpha_{l}\right)$. Therefore, $\mathcal{N}_{\circ}\left(w_{l}\right)^{2}=$ $\left(\epsilon_{l}\right)(-1)^{2(l-1)}=1$.

We now consider the isogeny given by the subgroup $\left\langle\rho_{1}\right\rangle$ of Ω_{ad}. Its associated cocharacter lattice, which we denote by $X_{*}\left(D_{l}^{1}\right)$, is given by $X_{*}\left(D_{l}^{1}\right)=\left\langle Q^{\vee}, \epsilon_{1}\right\rangle$. Since w_{1} exchanges $-\alpha_{0}$ and $\alpha_{1}, \mathcal{F}_{w_{1}}(1)$ is the set of all positive roots containing α_{1}. By [Bou02, Plate IV], the sum of all of the (co)roots in $\mathcal{F}_{w_{1}}(1)$ is

$$
(l-1)\left(2 \alpha_{1}+2 \alpha_{2}+2 \alpha_{3}+\ldots+2 \alpha_{l-2}+\alpha_{l-1}+\alpha_{l}\right)
$$

But notice that $\epsilon_{1}=\alpha_{1}+\alpha_{2}+\alpha_{3}+\ldots+\alpha_{l-2}+\frac{1}{2} \alpha_{l-1}+\frac{1}{2} \alpha_{l}$, so $\mathcal{N}_{\circ}\left(w_{1}\right)^{2}=\left(\epsilon_{1}\right)(-1)^{2(l-1)}=1$.
We now consider the isogeny given by the subgroup $\left\langle\rho_{l-1}\right\rangle$ of Ω_{ad}, whose associated cocharacter lattice we denote by $X_{*}\left(D_{l}^{l-1}\right)$. To describe $\mathcal{F}_{w_{l-1}}(1)$, we must describe all positive roots that contain α_{l-1}. By [Bou02, Plate IV], the sum of all of the (co)roots in $\mathcal{F}_{w_{l-1}}(1)$ is

$$
(l-1)\left(\alpha_{1}+2 \alpha_{2}+3 \alpha_{3}+\ldots+(l-2) \alpha_{l-2}+\frac{l}{2} \alpha_{l-1}+\frac{l-2}{2} \alpha_{l}\right)
$$

But $X_{*}\left(D_{l}^{l-1}\right)=\left\langle Q^{\vee}, \epsilon_{l-1}\right\rangle$, and $\epsilon_{l-1}=\frac{1}{2}\left(\alpha_{1}+2 \alpha_{2}+3 \alpha_{3}+\ldots+(l-2) \alpha_{l-2}+\frac{l}{2} \alpha_{l-1}+\frac{l-2}{2} \alpha_{l}\right)$. Thus, $\mathcal{N}_{\circ}\left(w_{l-1}\right)^{2}=\left(\epsilon_{l-1}\right)(-1)^{2(l-1)}=1$.

We now turn to D_{l} with l odd. First we consider the adjoint case, denoting the associated cocharacter lattice by $X_{*}\left(D_{l}^{a d}\right)$. To show that $\mathcal{N}_{\circ}\left(w_{l}\right)^{4}=1$, we need to compute the sum

$$
\gamma:=\sum_{\alpha \in \mathcal{F}_{w_{l}}(1)} \alpha+\sum_{\beta \in \mathcal{F}_{w_{l}}(2)} \beta+\sum_{\delta \in \mathcal{F}_{w_{l}}(3)} \delta .
$$

Noting that

$$
\begin{gathered}
\mathcal{F}_{w_{l}}(1)=\left\{\alpha \in \Pi: \alpha \text { contains } \alpha_{l-1} \text { but doesn't contain } \alpha_{1}\right\} \\
\mathcal{F}_{w_{l}}(2)=\left\{\alpha \in \Pi: \alpha \text { contains } \alpha_{1} \text { but doesn't contain } \alpha_{l}\right\} \\
\mathcal{F}_{w_{l}}(3)=\left\{\alpha \in \Pi: \alpha \text { contains } \alpha_{l}\right\}
\end{gathered}
$$

one computes that

$$
\begin{aligned}
\gamma= & 2(l-2)\left(\alpha_{1}+2 \alpha_{2}+\ldots+(l-2) \alpha_{l-2}\right)+2\left(\alpha_{1}+\alpha_{2}+\ldots+\alpha_{l-2}\right) \\
& +((l-2)(l-1)+1) \alpha_{l-1}+\left(\frac{(l-3)(l-2)}{2}+\frac{(l-1) l}{2}\right) \alpha_{l}
\end{aligned}
$$

Modulo $2 X_{*}\left(D_{l}^{a d}\right), \gamma$ is equivalent to $\alpha_{l-1}+\alpha_{l}$. But $\alpha_{l-1}+\alpha_{l} \equiv 2 \epsilon_{1}\left(\bmod 2 X_{*}\left(D_{l}^{a d}\right)\right)$, so $\mathcal{N}_{\circ}\left(w_{l}\right)^{4}=$ 1 as needed.

We now consider the group G, of type D_{l}, with l odd, that is neither simply connected nor adjoint. We need to show that $\mathcal{N}_{\circ}\left(w_{l}^{2}\right)^{2}=1$. First, we recall that w_{l}^{2} fixes α_{i}, for $i=2,3, \ldots, l-2$ and it exchanges $-\alpha_{0}$ and α_{1}, and exchanges α_{l-1} and α_{l}. We must therefore count the positive roots that contain α_{1}. But this has already been computed in the D_{l} cases with l even, and our results there imply that $\mathcal{N}_{\circ}\left(w_{l}^{2}\right)^{2}=1$, noting that the cocharacter lattice in the current case is given by $\left\langle Q^{\vee}, \epsilon_{1}\right\rangle$.

- We now turn to the group G of type E_{6} and adjoint. We follow here [Bou02, Plate V], which has different conventions than [IM65]. The Weyl element w in question acts by $\alpha_{1} \mapsto \alpha_{6} \mapsto-\alpha_{0}$. Therefore, we need to compute the sum of all roots α that contain α_{1}, together with all roots that contain α_{6} that also do not contain α_{1}. One computes that this sum is

$$
\sum_{\alpha \in \mathcal{F}_{w}(1)} \alpha^{\vee}+\sum_{\beta \in \mathcal{F}_{w}(2)} \beta^{\vee}=16 \alpha_{1}+16 \alpha_{2}+24 \alpha_{3}+32 \alpha_{4}+24 \alpha_{5}+16 \alpha_{6} \in 2 Q^{\vee} .
$$

Therefore, $\mathcal{N}_{\circ}(w)^{3}=1$.

- We now turn to E_{7} adjoint. We need to show that $\mathcal{N}_{\circ}(w)^{2}=1$, where w is the Weyl element in question. We follow here [Bou02, Plate VI], which has different conventions than [IM65]. Using the fact that w exchanges α_{7} and $-\alpha_{0}$, one counts that the sum of all of the positive roots that contain α_{7} is

$$
\sum_{\alpha \in \mathcal{F}_{w}(1)} \alpha^{\vee}=18 \alpha_{1}+27 \alpha_{2}+36 \alpha_{3}+54 \alpha_{4}+45 \alpha_{5}+36 \alpha_{6}+27 \alpha_{7}
$$

But this sum is exactly equal to $18 \epsilon_{7}$, so $\mathcal{N}_{\circ}(w)^{2}=\left(\epsilon_{7}\right)(-1)^{18}=1$.

- We finally consider type A_{l}. We re-adopt our conventions and notation from the proof of Proposition 3.2 in the case of type A_{l}. That is, we let $a, b \in \mathbb{N}$ such that $l+1=a b$. Let $\omega=\rho_{1}^{a}$, so that $\omega^{b}=1$, and for ease of notation, let $n=l+1$. Then $\omega=\epsilon_{a} w_{a}$, where w_{a} is the a-th power of the n-cycle (12 $\cdots n$).

A computation then shows that

$$
\begin{aligned}
& \sum_{m=1}^{b-1} \sum_{\alpha \in \mathcal{\mathcal { F } _ { w _ { a } } (m)}} \alpha^{\vee}=(n-a)\left[e_{1}+e_{2}+\ldots+e_{a}\right]+(n-3 a)\left[e_{a+1}+e_{a+2}+\ldots+e_{2 a}\right] \\
& +(n-5 a)\left[e_{2 a+1}+\ldots+e_{3 a}\right]+\ldots+(a-n)\left[e_{n-a+1}+e_{n-a+2}+\ldots+e_{n-1}+e_{n}\right] .
\end{aligned}
$$

We denote this sum by γ. We recall that the cocharacter lattice of this isogeny is given by $X_{*}\left(A_{l}^{a}\right)=$ $\left\langle Q^{\vee}, \epsilon_{a}\right\rangle$, where

$$
\epsilon_{a}=\frac{1}{n}\left[(n-a)\left(e_{1}+e_{2}+\ldots+e_{a}\right)-a\left(e_{a+1}+\ldots+e_{n}\right)\right] .
$$

Suppose first that n is odd, so that a is also odd. Therefore, $n-a, n-3 a, n-5 a, \ldots, a-n$ are all even, so one can see that $\gamma \in 2 Q^{\vee}$, which implies that $\mathcal{N}_{\circ}\left(w_{a}\right)^{b}=1$. Suppose now that n is even. Then

$$
\begin{aligned}
\gamma-n \epsilon_{a}= & (n-2 a)\left[e_{a+1}+e_{a+2}+\ldots+e_{2 a}\right]+(n-4 a)\left[e_{2 a+1}+\ldots+e_{3 a}\right] \\
& +\ldots+(2 a-n)\left[e_{n-a+1}+e_{n-a+2}+\ldots+e_{n-1}+e_{n}\right]
\end{aligned}
$$

One can see that $\gamma-n \epsilon_{a}=: \eta \in 2 Q^{\vee}$. Therefore, $\gamma=\eta+n \epsilon_{a}$ is twice a cocharacter, so $\mathcal{N}_{\circ}\left(w_{a}\right)^{b}=1$.

Remark 3.4. The previous argument in the case of type A_{l} depends on the group not being simply connected. Otherwise, it may not be that $\mathcal{N}_{\circ}\left(w_{a}\right)^{b}=1$. Indeed, if n is even, we relied on the fundamental coweight ϵ_{a} being contained in the cocharacter lattice in order to conclude that $\mathcal{N}_{\circ}\left(w_{a}\right)^{b}=1$. If n is odd, however, it was automatic that $\mathcal{N}_{\circ}\left(w_{a}\right)^{b}=1$. Indeed, this does not conflict with a basic known example; if $G=S L(n)$ and w is the long Weyl element, then

$$
\mathcal{N}_{\circ}(w)^{n}=\left\{\begin{array}{lll}
-1 & \text { if } & n \text { is even } \\
1 & \text { if } & n \text { is odd }
\end{array}\right.
$$

Theorem 3.5. For G a split, almost simple, p-adic group, there exists an embedding $\Omega \hookrightarrow N_{G}(T)$ that is also a section of the canonical map $N_{G}(T) \rightarrow \Omega$.

Proof. Suppose that Ω is cyclic of order n. We have shown that if $\omega=\epsilon_{i} w_{\Delta_{i}} w_{\Delta} \in \Omega$ is a generator, then $\iota(\omega)^{n}=1$. But in fact $\iota(\omega)$ has order n. To see this, note that if $m<n$, then $\iota(\omega)^{m}=\left(\epsilon_{i}+w_{i}\left(\epsilon_{i}\right)+\ldots+\right.$ $\left.w_{i}^{m-1}\left(\epsilon_{i}\right)\right)\left(\varpi^{-1}\right) \cdot \mathcal{N}_{\circ}\left(w_{i}\right)^{m}$. But $\mathcal{N}_{\circ}\left(w_{i}\right)^{m}$ has a nontrivial projection to W_{\circ} since w_{i} has order n. Therefore, $\iota(\omega)^{m}$ has a nontrivial projection to W_{\circ} as well, so in particular must be nontrivial. Since $\iota(\omega)$ has order n,
we may define a homomorphism $\Omega \rightarrow N_{G}(T)$ by sending ω^{j} to $\iota(\omega)^{j}$, and one may check that this map is in fact a section of the $\operatorname{map} N_{G}(T) \rightarrow \Omega$.

It remains to consider the case where G is adjoint of type D_{l} with l even, since its fundamental group is not cyclic. We denote the associated cocharacter lattice by $X_{*}\left(D_{l}^{a d}\right)$. We show that ι is a homomorphism in this case. Recall that in Proposition 3.3, we showed that $\iota(\omega)^{2}=1$ for each $\omega \in \Omega$. We need to show that $\iota\left(\rho_{1} \rho_{l}\right)=\iota\left(\rho_{1}\right) \iota\left(\rho_{l}\right), \iota\left(\rho_{1} \rho_{l-1}\right)=\iota\left(\rho_{1}\right) \iota\left(\rho_{l-1}\right)$, and $\iota\left(\rho_{l-1} \rho_{l}\right)=\iota\left(\rho_{l-1}\right) \iota\left(\rho_{l}\right)$. We will carry out the case $\iota\left(\rho_{1} \rho_{l}\right)=\iota\left(\rho_{1}\right) \iota\left(\rho_{l}\right)$, noting that the other cases are similar. First note that $\iota\left(\rho_{1} \rho_{l}\right)=\iota\left(\rho_{l-1}\right)=$ $\epsilon_{l-1} \mathcal{N}_{\circ}\left(w_{l-1}\right)$ and $\iota\left(\rho_{1}\right) \iota\left(\rho_{l}\right)=\epsilon_{1} \mathcal{N}_{\circ}\left(w_{1}\right) \epsilon_{l} \mathcal{N}_{\circ}\left(w_{l}\right)=\epsilon_{1} \mathcal{N}_{\circ}\left(w_{1}\right) \epsilon_{l} \mathcal{N}_{\circ}\left(w_{1}\right)^{-1} \mathcal{N}_{\circ}\left(w_{1}\right) \mathcal{N}_{\circ}\left(w_{l}\right)$. One can compute that $\epsilon_{1} \mathcal{N}_{\circ}\left(w_{1}\right) \epsilon_{l} \mathcal{N}_{\circ}\left(w_{1}\right)^{-1}=\epsilon_{l-1}$, so it suffices to show that $\mathcal{N}_{\circ}\left(w_{1}\right) \mathcal{N}_{\circ}\left(w_{l}\right)=\mathcal{N}_{\circ}\left(w_{l-1}\right)$. By Corollary 2.2, we need to show that $\prod_{\alpha \in \mathcal{F}\left(w_{1}, w_{l}\right)} \alpha^{\vee}(-1)=1$. One computes that

$$
\mathcal{F}\left(w_{1}, w_{l}\right)=\left\{\alpha \in \Pi: w_{l}(\alpha) \in-\Pi, w_{1} w_{l}(\alpha) \in \Pi\right\}=\left\{\alpha \in \Pi: \alpha \text { contains } \alpha_{l} \text { and } \alpha \text { does not contain } \alpha_{l-1}\right\}
$$

This last set, by [Bou02, Plate IV], is the set $\left\{e_{i}+e_{l}: 1 \leq i<l\right\}$. Adding these roots together gives $\gamma:=\alpha_{1}+2 \alpha_{2}+3 \alpha_{3}+\ldots+(l-2) \alpha_{l-2}+(l-1) \alpha_{l}$. But $X_{*}\left(D_{l}^{a d}\right)$ contains $\epsilon_{l-1}, \epsilon_{l}$, and we see that $\gamma=(2-l) \epsilon_{l-1}+l \epsilon_{l}$, which lives in $2 X_{*}\left(D_{l}^{a d}\right)$ since l is even. The result follows.

Remark 3.6.

(1) It is not difficult to show that ι is a homomorphism in the case that G is adjoint of type E_{6}. Since we cannot claim this for all types, we do not include the computation.
(2) In the case that G is adjoint of type D_{l} where l is odd, one can show that ι is not a homomorphism. In fact, one can show that $\iota\left(\rho_{l}\right)^{2}=\iota\left(\rho_{l}^{2}\right)$, but it turns out that $\iota\left(\rho_{l}\right)^{3} \neq \iota\left(\rho_{l}^{3}\right)$. This boils down to computing that the sum of all (co)roots in $\mathcal{F}_{w_{l}}(2)$ equals $l e_{1}-\left(e_{1}+e_{2}+\ldots+e_{l}\right)$, which when evaluated at -1 is nontrivial.
(3) In the case that G is type A_{l}, it turns out that ι is sometimes a homomorphism and sometimes not. For example, if $a=1$ (in the notation of Proposition 3.3), then the group in consideration if $P G L_{n}$ (recall that in our notation, $n=l+1=a b$), and one can show that $\iota\left(\rho_{1}\right)^{2} \neq \iota\left(\rho_{1}^{2}\right)$. On the other hand, if both n and a are even, then ι is a homomorphism.

4. Beyond split almost-simple groups

One may ask about generalizing Theorem 3.5 to more general connected reductive groups. The biggest obstacle to generalizing the result, using the methods in this paper, revolves around the fact that if $W_{\circ}(\Omega)$ denotes the projection of Ω onto the finite Weyl group, then $\left.\mathcal{N}_{\circ}\right|_{W_{\circ}(\Omega)}: W_{\circ}(\Omega) \rightarrow N_{G}(T)$ is not necessarily a homomorphism. This problem occurred in some A_{l} types, as well as adjoint D_{l} with l odd. But in these cases, we were able to skirt this issue by adjusting ι as in Theorem 3.5, using the fact that Ω is cyclic.

On the other hand, we are able to extend our result to certain additional split connected reductive groups. Note first that since $G_{\text {ad }}$ is a product of split, almost-simple groups, Theorem 3.5 gives a section $s_{G_{\text {ad }}}$ of $\kappa_{G_{\text {ad }}}: G_{\text {ad }}(F) \rightarrow \Omega_{G_{\text {ad }}}$.

Definition 4.1. Call a homomorphic section s_{G} of κ_{G} good if it is compatible with the one constructed for G_{ad}. In other words, the following diagram commutes:

Remark 4.2. Recall that when $G_{\text {der }}=G_{\text {sc }}$, there is an easy way to produce a homomorphic section with values in $T(F)$. However, this will not generally make the diagram commute, so it is not good.

Proposition 4.3. Let G be a split connected reductive group over F. Let C be an alcove in the apartment corresponding to a split maximal torus T, with associated extended affine Weyl group $W=X_{*}(T) \rtimes W_{\circ}$. Then:
(1) If $Z=Z(G)$ is connected, then the induced map $G(F) / Z\left(\mathcal{O}_{F}\right) \rightarrow \Omega_{G}$ has a good homomorphic section (the analogue of the diagram above commutes).
(2) If Z is connected and $\Omega_{G} \cong \mathbb{Z}$ (e.g. $G=G S p(2 n)$), then κ_{G} has a good homomorphic section.
(3) If Z is connected, $\Omega_{G} \cong \mathbb{Z}^{n}$, with $n>1$, and $\left(\left|\Omega_{G_{\text {ad }}}\right|, q(q-1)\right)=1$, where q is the cardinality of the residue field, then κ_{G} has a good homomorphic section.

Proof. We start with (1). It follows from Theorem 3.5 that $\kappa_{G_{\text {ad }}}$ has a homomorphic section $s_{G_{\text {ad }}}$, since $G_{\text {ad }}$ is known to be a product of almost-simple groups. Moreover, if κ_{Z} denotes the Kottwitz homomorphism for $Z(F)$, then κ_{Z} also has a homomorphic section, which we denote s_{Z}. As $H^{1}(F, Z)=1$, we have a commutative diagram of exact sequences

We naturally have $Z(F) / Z\left(\mathcal{O}_{F}\right) \cong X_{*}(Z)$, therefore obtaining another diagram

where $\overline{\kappa_{Z}}, \overline{\kappa_{G}}$ are the induced maps. Let $\overline{\kappa_{G_{\text {ad }}}}$ denote the map induced from $\kappa_{G_{\text {ad }}}$ on $s_{\text {ad }}\left(\Omega_{\mathrm{ad}}\right)$. Then we have a commutative diagram of groups:

We have that $\overline{\kappa_{Z}}, \overline{\kappa_{G_{\mathrm{ad}}}}$ are isomorphisms, so by the five lemma, $\overline{\kappa_{G}}$ is an isomorphism, and thus the map $\overline{\kappa_{G}}: G(F) / Z\left(\mathcal{O}_{F}\right) \rightarrow \Omega_{G}$ has a homomorphic section.

We now prove (2). Make an initial choice of a homomorphic section s_{Z}^{0} of κ_{Z}. Given $\sigma \in \Omega_{G}$, let $s^{0}(\sigma)$ be any lift in $G(F)$ of $s_{G_{\text {ad }}}(\operatorname{pr}(\sigma)) \in N_{G_{\text {ad }}}\left(T_{\text {ad }}\right)(F)$; it automatically lies in $N_{G}(T)(F)$. It might happen that s^{0} is not a section of κ_{G}. However, for all $\sigma \in \Omega_{G}$, we have $\operatorname{pr}\left(\kappa_{G}\left(s^{0}(\sigma)\right)\right)=\kappa_{G_{\text {ad }}}\left(\operatorname{pr}\left(s^{0}(\sigma)\right)\right)=$ $\kappa_{G_{\mathrm{ad}}}\left(s_{G_{\mathrm{ad}}}(\operatorname{pr}(\sigma))\right)=\operatorname{pr}(\sigma)$. Thus, the difference between σ and $\kappa_{G}\left(s^{0}(\sigma)\right)$ belongs to Ω_{Z}. Since κ_{Z} is surjective, we may alter each $s^{0}(\sigma)$ by an element $z_{\sigma}^{0} \in Z(F)$ in such a way that $\sigma \mapsto s^{0}(\sigma) z_{\sigma}^{0}$ is a section of κ_{G}.

So we may assume s^{0} is a set-theoretic section of κ_{G}, taking values in $N_{G}(T)(F)$. Because $s_{G_{\text {ad }}}$ is homomorphic, the map

$$
\left(\sigma_{1}, \sigma_{2}\right) \mapsto s^{0}\left(\sigma_{1}\right) s^{0}\left(\sigma_{2}\right) s^{0}\left(\sigma_{1} \sigma_{2}\right)^{-1}
$$

is a 2-cocycle of Ω_{G} with values in $Z(F)$, with Ω_{G} acting trivially on $Z(F)$. Therefore, we get an element of $H^{2}\left(\Omega_{G}, Z(F)\right)$. This group parameterizes isomorphism classes of extensions of Ω_{G} by $Z(F)$ where the induced action of Ω_{G} on the normal subgroup $Z(F)$ is trivial (i.e. $Z(F)$ is central in the extension group). We claim that the extension corresponding to the 2-cocycle is the direct product $Z(F) \times \Omega_{G}$. This follows because $\Omega_{G}=\mathbb{Z}$ and $H^{2}(\mathbb{Z}, A)=1$ for any abelian group A with trivial \mathbb{Z}-action.

The fact that the extension is trivial means that the 2 -cocycle defining it is a 2 -coboundary. This means that we may alter our initial choice of set-theoretic section s^{0} to give a homomorphism $s: \Omega_{G} \rightarrow G(F)$, taking values again in $N_{G}(T)(F)$.

The problem now is that s might not be a section of κ_{G}, which we take care of as before. By construction, $\sigma^{-1} \kappa_{G}(s(\sigma)) \in \Omega_{Z}$ for every $\sigma \in \Omega_{G}$. So we may define $z_{\sigma}:=s_{Z}^{0}\left(\sigma\left(\kappa_{G}(s(\sigma))\right)^{-1}\right) \in Z(F)$, for $\sigma \in \Omega_{G}$. Note that $\sigma \mapsto z_{\sigma}$ is a homomorphism $\Omega_{G} \rightarrow Z(F)$. Now define

$$
s_{G}(\sigma):=z_{\sigma} s(\sigma)
$$

Then s_{G} is the desired homomorphic section of κ_{G} in case (2).

In case (3), the same argument works, as long as we can prove that the 2 -cocycle defined by s^{0} is still a 2-coboundary. But when $n>1$ it is no longer true that $H^{2}(\mathbb{Z}, A)$ always vanishes for abelian groups A with trivial \mathbb{Z}^{n}-action. Nevertheless, we will show that the extension corresponding to the given 2 -cocycle is still trivial. Write $\dot{e}_{i}=s^{0}\left(e_{i}\right)$, where e_{i} corresponds to a standard basis vector in $\Omega_{G} \cong \mathbb{Z}^{n}$. Then the extension is the exact sequence

$$
1 \rightarrow Z(F) \rightarrow Z(F)\left\langle\dot{e}_{1}, \cdots, \dot{e}_{n}\right\rangle \xrightarrow{\kappa_{G}} \Omega_{G} \rightarrow 1
$$

Write $N:=\left|\Omega_{G_{\text {ad }}}\right|$. As $\operatorname{pr}\left(\dot{e}_{j}\right) \in \operatorname{im}\left(s_{G_{\text {ad }}}\right) \cong \Omega_{G_{\text {ad }}}$, we have $\operatorname{pr}\left(\dot{e}_{j}\right)^{N}=1$ and hence $\dot{e}_{j}^{N} \in Z(F)$. Moreover, $\dot{e}_{i} \dot{e}_{j} \dot{e}_{i}^{-1} \dot{e}_{j}^{-1} \in Z(F)$. We may write

$$
a \dot{e}_{j}=\dot{e}_{i} \dot{e}_{j} \dot{e}_{i}^{-1}
$$

for some $a \in Z(F)$. Raising to the N-th power, we get

$$
a^{N} \dot{e}_{j}^{N}=\dot{e}_{j}^{N}
$$

and hence $a^{N}=1$. Therefore, $a \in Z\left(\mathcal{O}_{F}\right)$. Moreover, since N is coprime to the pro-order of the profinite group $Z\left(\mathcal{O}_{F}\right)$, we conclude that $a=1$, and therefore the elements \dot{e}_{i} pairwise commute. Therefore, the extension is an abelian group. But then the extension is trivial, since $\Omega_{G} \cong \mathbb{Z}^{n}$.

This concludes the proof of the proposition. But we make one additional comment. By construction, the $\left.\operatorname{map} s_{G}\right|_{\Omega_{Z}}$ has image in $Z(F)$ and so gives a homomorphic section s_{Z} of κ_{Z}. This section might be different from the initial choice s_{Z}^{0}. But now we have a commutative diagram

$$
\begin{array}{lll}
1 \longrightarrow & Z(F) \longrightarrow & G(F) \longrightarrow G_{\mathrm{ad}}(F) \longrightarrow 1 \\
& \kappa_{Z} \mid \uparrow_{s_{Z}} & \kappa_{G} \mid \uparrow_{s_{G}}
\end{array} \kappa_{\kappa_{G_{\mathrm{ad}}} \mid \uparrow_{s_{G_{\mathrm{ad}}}}} \begin{array}{lll}
& \Omega_{Z} \longrightarrow \Omega_{G} \longrightarrow 1
\end{array}
$$

References

[Bou02] N. Bourbaki, Lie groups and Lie algebras. Chapters 4-6 Elements of Mathematics (Berlin), Springer-Verlag, Berlin, 2002.
[IM65] N. Iwahori and H. Matsumoto On some Bruhat Decomposition and the structure of the Hecke rings of p-adic Chevalley groups. IHES Publ. Math. 25 (1965), 5-48.
[Kot97] R. Kottwitz, Isocrystals with additional structure. II, Compositio Math. 109 (1997), no. 3, 255-339.
[Ros16] S. Rostami, On the canonical representatives of a finite Weyl group, arxiv:1505.07442.
[Spr98] T. Springer, Linear algebraic groups, 2nd ed., Progress in Mathematics, vol. 9, Birkhauser Boston, Inc., Boston, MA 1998.
[Tit79] J. Tits, Reductive Groups over Local Fields, Proceedings of Symposia in Pure Mathematics, Vol. 33 (1979), part 1, pp. 29-69.

Department of Mathematics Queens College, CUNY 65-30 Kissena Blvd., Queens, NY 11367-15971
E-mail address: moshe.adrian@qc.cuny.edu

