
Forum Math. 2023; aop

Research Article

Moshe Adrian and Shuichiro Takeda*

A local converse theorem for Archimedean
GL(n)
https://doi.org/10.1515/forum-2022-0230
Received August 6, 2022; revised December 28, 2022

Abstract:We prove a local converse theorem for GLn over the Archimedean local fields which characterizes an
infinitesimal equivalence class of irreducible admissible generic representations of GLn(ℝ) or GLn(ℂ) in terms
of twisted local gamma factors.

Keywords: Representations of reductive groups, Langlands program

MSC 2020: 20G05


Communicated by: Freydoon Shahidi

1 Introduction

Let F be a local field of characteristic 0, and let Irrn be the set of (infinitesimal) equivalence classes of irreducible
admissible representations of GLn(F). A so-called local converse theorem for GLn(F) characterizes the set Irrn
in terms of local factors with some suitable twists. If F is non-Archimedean, the first major result is the one by
Henniart [5] in which he shows that if two generic representations π, π󸀠 ∈ Irrn satisfy

γ(s, π × τ, ψ) = γ(s, π󸀠 × τ, ψ)

for all generic τ ∈ Irrt for all t = 1, . . . , n − 1, where the γ-factor is the one defined by Jacquet, Piatetski-Shapiro
and Shalika, then π = π󸀠. Later, Chen [4] improved this result by requiring t be only up to n − 2 with the extra
assumption that π and π󸀠 have the same central character. It had been conjectured by Jacquet for some time
that one only needs t ≤ [ n2 ]. Recently, this conjecture has been proven by Chai [3], and Jacquet and Liu [9] (see
also [1, 10]). Let us also mention that Nien [13] has shown an analogous result when F is a finite field.

In this paper, we prove the Archimedean analogue of the local converse theorem as follows.

Theorem. Let F = ℂ or ℝ. If π, π󸀠 ∈ Irrn are generic representations of GLn(F) that satisfy

γ(s, π × χ, ψ) = γ(s, π󸀠 × χ, ψ)

for all unitary characters χ on F×, then π = π󸀠.

Here, the gamma factors are defined on the “Galois side” via the local Langlands correspondence (LLC); namely
they are the gamma factors of Artin type. The basic idea of our proof is that we pass to the Galois side via the
LLC so that the gamma factors, which are essentially products of gamma functions, can be explicitly computed
in terms of the data for the corresponding representations of the Weil group. Then we will compare poles of
the gamma functions. In this sense, what we actually prove is the following assertion: given two local Lang-
lands parameters φ, φ󸀠 : WF → GLn(ℂ) of generic type, if γ(s, φ ⊗ χ, ψ) = γ(s, φ󸀠 ⊗ χ, ψ) for all 1-dimensional
characters χ, then φ = φ󸀠.
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We note that it can be shown that the LLC for Archimedean GL(n) is uniquely characterized by the local
L-factors. This uniqueness result was originally announced by Henniart in [6, Section 1.10, p. 592], although his
proof has never appeared to the best of our knowledge. Yet in [2], we have proven a refined version of the
theorem announced by Henniart. This result will appear elsewhere.

It should also be noted that these gamma factors of Artin type are known to coincide with the local coeffi-
cients of Shahidi [14]. Moreover, in [7], Jacquet has shown that these gamma factors appear as constants of the
functional equations satisfied by Rankin–Selberg integrals. The authors do not know if it is possible to prove the
local converse theorem as above by using purely representation theoretic methods using this theory of Jacquet
without passing to the Galois side, and this is certainly an interesting question to be answered.

Notation 1.1. Throughout, F is either ℝ or ℂ. We let Irrn be the set of infinitesimal equivalence classes of irre-
ducible admissible representations of GLn(F). For z ∈ F, we let |z| = √zz̄, so that if F = ℝ, it is the absolute value
of z, and if F = ℂ, it is the usualmodulus of z. We also let ‖z‖ = zz̄ = |z|2. By a character we alwaysmean a quasi-
character, and Irr1 is the set of characters of F×. We let ψF be the standard choice of additive character on F;
namely if F = ℝ, then ψℝ(r) = e2πir , and if F = ℂ, then

ψℂ(z) = ψℝ ∘ Trℂ/ℝ(z) = e2πi(z+z̄) .

We let Γ(s) be the gamma function. Recall that Γ(s) has no zeroes, and has infinitely many poles, which are
precisely at s = 0, −1, −2, . . . , all of which are simple.

Finally, ifw, z ∈ ℂ, thenwewritew ⪯ z if z − w ∈ ℤ≥0 . This is a partial order onℂ. Also,w ≺ zmeansw ⪯ z
and w ̸= z. For fixed z, w ∈ ℂ, the gamma functions Γ(s + z) and Γ(s + w) have a common pole if and only if z
and w are comparable under ⪯, namely z − w ∈ ℤ. We use this fact repeatedly throughout the paper.

2 Complex case

In this section, we consider the complex case, so we set F = ℂ.

2.1 Weil group and its representations

We letWF be the Weil group of F, namely
Wℂ = ℂ× .

Each (not necessarily unitary) character ofℂ×, which we also view as a 1-dimensional representation ofWℂ, is
of the form

χ−N,t(z) := z−N‖z‖t

for z ∈ ℂ×, where N ∈ ℤ and t ∈ ℂ. Let us note that if we write z = reiθ with r, θ ∈ ℝ as usual, we have

χ−N,t(z) = r2t−Ne−iNθ .

But when dealing with the local factors, it seems to be more convenient to denote each character as z−N‖z‖t

instead of using reiθ , and hence we choose this convention. Let us note that

χ−N,t = χN,t−N ,

where
χ−N,t(z) := χ−N,t(z) = χ−N,t(z̄)

as usual.
Since Wℂ is abelian, χ−N,t is the only irreducible semisimple representation of Wℂ, and hence each

n-dimensional semisimple representation

φ : Wℂ → GLn(ℂ)
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is of the form
φ = χ−N1 ,t1 ⊕ ⋅ ⋅ ⋅ ⊕ χ−Nn ,tn . (2.1)

Note that the contragredient φ∨ is
φ∨ = χN1 ,−t1 ⊕ ⋅ ⋅ ⋅ ⊕ χNn ,−tn ,

because χ∨−N,t = χ
−1
−N,t = χN,−t .

2.2 Local factors

Recall that the L-, ϵ- and γ-factors of the character χ−N,t are defined as follows:

L(χ−N,t) = 2(2π)−(t−
N
2 +

|N|
2 )Γ(t − N

2
+
|N|
2
), (2.2)

ϵ(χ−N,t , ψℂ) = i|N| , (2.3)

γ(χ−N,t , ψℂ) = ϵ(χ−N,t , ψℂ)
L(χ∨−N,t‖ ⋅ ‖)
L(χ−N,t)

= i|N|(2π)−1+2t−N
Γ(1 − t + N2 +

|N|
2 )

Γ(t − N2 +
|N|
2 )

. (2.4)

If φ : Wℂ → GLn(ℂ) is an n-dimensional representation as in (2.1), we define the local factors multiplicatively
as follows:

L(φ) = L(χ−N1 ,t1 ) ⋅ ⋅ ⋅ L(χ−Nn ,tn ),
ϵ(φ, ψℂ) = ϵ(χ−N1 ,t1 , ψℂ) ⋅ ⋅ ⋅ ϵ(χ−Nn ,tn , ψℂ),
γ(φ, ψℂ) = γ(χ−N1 ,t1 , ψℂ) ⋅ ⋅ ⋅ γ(χ−Nn ,tn , ψℂ).

Note that we have
γ(φ, ψℂ) = ϵ(φ, ψℂ)

L(φ∨‖ ⋅ ‖)
L(φ) .

2.3 GL(1)-twist

Let χ−M,s be another character on ℂ×, and let φ be an n-dimensional representation ofWℂ as in (2.1). Then the
twist φ ⊗ χ−M,s by χ−M,s is given by

φ ⊗ χ−M,s = χ−(N1+M),t1+s ⊕ ⋅ ⋅ ⋅ ⊕ χ−(Nn+M),tn+s . (2.5)

We set
L(s, φ) = L(φ ⊗ χ0,s),

ϵ(s, φ, ψℂ) = ϵ(φ ⊗ χ0,s , ψℂ),
γ(s, φ, ψℂ) = γ(φ ⊗ χ0,s , ψℂ).

We then have
γ(s, φ, ψℂ) = ϵ(φ, ψℂ)

L(1 − s, φ∨)
L(s, φ) .

2.4 Local Langlands correspondence for GLn(ℂ)

By the Archimedean local Langlands correspondence, originally established by Langlands [11], there is a one-
to-one correspondence between the set Irrn of (infinitesimal equivalence classes) of irreducible admissible
representations of GLn(ℂ) and the set Φn of (conjugacy classes of) all continuous semisimple n-dimensional
representations ofWℂ. This correspondence can be fairly explicitly described as follows. For each

φ = χ−N1 ,t1 ⊕ ⋅ ⋅ ⋅ ⊕ χ−Nn ,tn ∈ Φn ,

consider the (normalized) induced representation

I(φ) := IndGLn(ℂ)B(ℂ) χ−N1 ,t1 ⊗ ⋅ ⋅ ⋅ ⊗ χ−Nn ,tn ,
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where B(ℂ) is the Borel subgroup of GLn(ℂ) and the character χ−N1 ,t1 ⊗ ⋅ ⋅ ⋅ ⊗ χ−Nn ,tn is viewed as a character
on B(ℂ) as usual. Let us reorder the constituents of φ in the Langlands situation, which means

Re(t1) ≥ ⋅ ⋅ ⋅ ≥ Re(tn).

By the Langlands quotient theorem, I(φ) has a unique irreducible quotient, which we denote by πφ . Then the
local Langlands correspondence is obtained by the map

Φn → Irrn , φ 󳨃→ πφ .

2.4.1 Genericity conditions

It is well known that the (full) induced representation I(φ) is always generic (see, for example, [16, Theo-
rem 15.4.1, p. 381].) The following proposition characterizes when the Langlands quotient πφ is generic.

Proposition 2.1. Let
φ = χ−N1 ,t1 ⊕ ⋅ ⋅ ⋅ ⊕ χ−Nn ,tn

be such that
N1 ≤ ⋅ ⋅ ⋅ ≤ Nn .

Then the following statements are all equivalent.
(i) The representation πφ that corresponds to φ under the local Langlands correspondence is generic.
(ii) πφ = I(φ), namely I(φ) is irreducible.
(iii) For all i ≤ j, whenever tj − ti ∈ ℤ, we have

0 ≤ tj − ti ≤ Nj − Ni .

In particular, if tj − ti ∈ ℤ, then ti ⪯ tj , where we recall fromNotation 1.1 that ti ⪯ tj means tj − ti ∈ ℤ≥0 (note
that if tj − ti ∉ ℤ, then there is no condition.)

(iv) The Rankin–Selberg L-factor
L(s, φ ⊗ φ∨) := L(φ ⊗ φ∨ ⊗ χ0,s)

is holomorphic at s = 1.

Proof. The equivalence of (i) and (ii) is well known. The equivalence of (ii) and (iii) is a special case of [15];
though, presumably, the case of GLn(ℂ) had been known much before. Since the authors were not able to find
an explicit reference for GLn(ℂ), we reproduce essential parts of the proof.

First consider the principal series
IndGLn(ℂ)B(ℂ) χ1 ⊗ ⋅ ⋅ ⋅ ⊗ χn ,

where χi : ℂ× → ℂ× is a character. This is reducible if and only if for some i ̸= j the character χiχ−1j is of the
form

χiχ−1j (z) = z
pzq , p − q ∈ ℤ,

where either both p and q are in ℤ>0 or both p and q are in ℤ<0. (One can prove this by reducing to the
GL2(ℂ) situation by induction in stages and applying [8, Theorem 6.2], or one may apply the general result
of [15, Theorem 1.1] to GLn(ℂ).)

Now for each i < j we have

(χ−Ni ,ti )(χ−Nj ,tj )
−1(z) = z−Ni+Nj‖z‖ti−tj = zNj−Ni+ti−tj zti−tj .

Noting Ni ≤Nj , we know that I(φ) is reducible if and only if ti − tj ∈ℤ>0 or otherwise both Nj − Ni + ti − tj ∈ℤ<0

and ti − tj ∈ ℤ<0. Hence I(φ) is irreducible if and only if, whenever ti − tj ∈ ℤ \ {0}, we have ti − tj ∉ ℤ>0 and
Nj − Ni + ti − tj ∉ ℤ<0. One can then see that these conditions are precisely (iii).

We show the equivalence of (iii) and (iv). Since

φ ⊗ φ∨ ⊗ χ0,s = ∑
i,j
χ−Ni ,ti ⊗ χNj ,−tj ⊗ χ0,s = ∑

i,j
χ−(Ni−Nj), s+ti−tj ,
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we have

L(s, φ ⊗ φ∨) = ∏
i,j
L(χ−(Ni−Nj), s+ti−tj ) = F(s)∏

i
Γ(s)∏

i<j
Γ(s + ti − tj − Ni + Nj)Γ(s + tj − ti),

where F(s) is a holomorphic function without zeros (here to compute the L-factors we used that Ni ’s are in the
increasing order). Hence L(s, φ ⊗ φ∨) is holomorphic at s = 1 if and only if

ti − tj − Ni + Nj ∉ ℤ<0 and tj − ti ∉ ℤ<0 .

But this condition is equivalent to
0 ≤ tj − ti ≤ Nj − Ni

whenever tj − ti ∈ ℤ with i ≤ j.

2.5 Local converse theorem for GLn(ℂ)

For two characters χN,t and χM,s , we define

χN,t ∼ χM,s if t − s ∈ ℤ.

This is certainly an equivalence relation. Then, given a Langlands parameter φ of GLn(ℂ), by grouping the
constituents by this equivalence relation we can write

φ = φ1 ⊕ ⋅ ⋅ ⋅ ⊕ φk ,

where all constituents of φi are equivalent under ∼ and the constituents of different φi and φj are inequivalent
under ∼. Then we know that in the γ-factor

γ(s, φ, ψℂ) = γ(s, φ1 , ψℂ) ⋅ ⋅ ⋅ γ(s, φn , ψℂ)

the zeros and the poles coming from γ(s, φi , ψℂ) do not interfere with those coming from γ(s, φj , ψℂ) for j ̸= i.
Let us first prove the following proposition.

Proposition 2.2. Let
φ = χ−N1 ,t1 ⊕ ⋅ ⋅ ⋅ ⊕ χ−Nn ,tn and φ󸀠 = χ−N󸀠

1 ,t
󸀠
1
⊕ ⋅ ⋅ ⋅ ⊕ χ−N󸀠

n󸀠 ,t󸀠n󸀠
be generic parameters of GLn(ℂ) and GLn󸀠 (ℂ), respectively, such that all constituents χ−Ni ,ti and χ−N󸀠

j ,t
󸀠
j
are equiv-

alent under ∼, namely ti − t󸀠j ∈ ℤ for all i, j. Assume

Fχ(s)γ(s, φ ⊗ χ, ψℂ) = γ(s, φ󸀠 ⊗ χ, ψℂ) (2.6)

for all characters χ,where Fχ(s) is ameromorphic function (depending on χ)whose poles and zeros do not interfere
with those from the gamma factors. Then φ = φ󸀠 (and hence n = n󸀠).

Proof. Since all constituents χ−Ni ,ti and χ−N󸀠
j ,t

󸀠
j
are equivalent under ∼, there exists s0 with Re(s0) large

enough such that all of the γ(s, χ−Ni ,ti , ψℂ) and γ(s, χ−N󸀠
j ,t

󸀠
j
, ψℂ) have a simple pole at s = s0, so that, at s = s0,

γ(s, φ ⊗ χ, ψℂ) has a pole of order n and γ(s, φ󸀠 ⊗ χ, ψℂ) has a pole of order n󸀠. Hence we have n = n󸀠.
Without loss of generality, we may assume

N1 ≤ ⋅ ⋅ ⋅ ≤ Nn and N󸀠1 ≤ ⋅ ⋅ ⋅ ≤ N
󸀠
n .

Since φ is generic and tj − ti ∈ ℤ, by Proposition 2.1 (iii) we have

0 ≤ tj − ti ≤ Nj − Ni (2.7)

for i ≤ j. In particular, t1 ⪯ ⋅ ⋅ ⋅ ⪯ tn . Similarly, this holds for the t󸀠i ’s and N
󸀠
i ’s.
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Let χ = χ−M,0 be such that M + Ni > 0 and M + N󸀠i > 0 for all i. Then (the reciprocal of) identity (2.6) is
equivalent to

F(s)
n
∏
i=1

Γ(s + ti)
Γ(1 − s − ti + Ni + M)

=
n
∏
i=1

Γ(s + t󸀠i )
Γ(1 − s − t󸀠i + N

󸀠
i + M)

, (2.8)

where F(s) is a meromorphic function whose poles and zeros do not interfere.
SetM to be large enough so that all of the gamma functions in the denominators in (2.8) are holomorphic at

s = −t1 , . . . , −tn . Then on the left-hand side, we have a pole at s = −t1 coming from Γ(s + t1). Hence on the right-
hand side we must have a pole at s = −t1 from some Γ(s + t󸀠i ). If t

󸀠
1 is such that t

󸀠
1 ≻ t1 (strict inequality), then,

since the t󸀠i ’s are in increasing order (with respect to ⪯), we never have a pole at s = −t1 for any of the Γ(s + t
󸀠
i )’s.

Hence t󸀠1 ⪯ t1. By switching the roles of t1 and t
󸀠
1, we have t

󸀠
1 ⪰ t1. Hence we have t1 = t

󸀠
1. Thus, Γ(s + t1) and

Γ(s + t󸀠1) can be removed from (2.8). Arguing inductively, we have

ti = t󸀠i

for all i = 1, . . . , n.
Thus we can reduce (2.8) to

F(s)
n
∏
i=1

Γ(1 − s − t󸀠i + N
󸀠
i + M) =

n
∏
i=1

Γ(1 − s − ti + Ni + M), (2.9)

where M is a fixed integer. Let k, ℓ ∈ {1, . . . , n} be such that

tk − Nk ⪰ ti − Ni and t󸀠ℓ − N
󸀠
ℓ ⪰ t
󸀠
i − N
󸀠
i

for all i. Then at s = −tk + Nk + M, the right-hand side (and hence the left-hand side) is holomorphic, which
implies tk − Nk ⪯ t󸀠ℓ − N

󸀠
ℓ. By switching the roles, we obtain tk − Nk ⪰ t

󸀠
ℓ − N
󸀠
ℓ, and hence tk − Nk = t

󸀠
ℓ − N
󸀠
ℓ. By

arguing inductively, we obtain

{t1 − N1 , . . . , tq − Nq} = {t󸀠1 − N
󸀠
1 , . . . , t

󸀠
q − N󸀠q}

as multisets.
Now, we will show Ni = N󸀠i for all i = 1, . . . , n. By the above identity of the multisets, we must have

t1 − N1 = t󸀠i − N
󸀠
i for some i. Since we already know ti = t󸀠i , we have

N󸀠i − N1 = t󸀠i − t1 = t
󸀠
i − t
󸀠
1 ≤ N
󸀠
i − N
󸀠
1 ,

where the last inequality is by the genericity condition (2.7). Hence we have N󸀠1 ≤ N1. Also, we must have
t󸀠1 − N

󸀠
1 = tj − Nj for some j. By applying the same argument, we must have N1 ≤ N󸀠1. Thus we must have

N1 = N󸀠1. By arguing inductively, we have
Ni = N󸀠i

for all i = 1, . . . , n.

Now, we are ready to prove the local converse theorem.

Theorem 2.3. Let π and π󸀠 be generic irreducible admissible representations of GLn(ℂ). Assume that

γ(s, π × χ, ψℂ) = γ(s, π󸀠 × χ, ψℂ)

for all unitary characters χ. Then π = π󸀠.

Proof. Let us first note that if χ is not unitary, then γ(s, π × χ, ψℂ) = γ(s + t, π × χ󸀠 , ψℂ) for some t ∈ ℂ and some
unitary character χ󸀠. Hence we may assume that the identity of the gamma factors holds for all (not necessarily
unitary) characters χ.

Let φ and φ󸀠 be the Langlands parameters of GLn(ℂ) corresponding to π and π󸀠, respectively. Let us write

φ = φ1 ⊕ ⋅ ⋅ ⋅ ⊕ φk and φ󸀠 = φ󸀠1 ⊕ ⋅ ⋅ ⋅ ⊕ φ
󸀠
k󸀠 ,
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where all constituents of each φj are equivalent under ∼ and the constituents of φi and φj are inequivalent
under ∼ for i ̸= j, and similarly for φ󸀠.

We then have
k
∏
i=1

γ(s, φi ⊗ χ, ψℂ) =
k󸀠
∏
i=1

γ(s, φ󸀠i ⊗ χ, ψℂ).

Note that, for i ̸= j, the gamma factors γ(s, φi ⊗ χ, ψℂ) and γ(s, φj ⊗ χ, ψℂ) do not share a zero or a pole, and
similarly for φ󸀠.

Now, assume that φ and φ󸀠 do not share any constituents equivalent under ∼. Then γ(s, φ ⊗ χ, ψℂ) and
γ(s, φ󸀠 ⊗ χ, ψℂ) do not share a zero or pole. So there are at least some φi and φ󸀠j having constituents equivalent
under ∼. By reordering the indices, we may assume i = j = 1. Then the equality of the gamma factors is written
as

Fχ(s)γ(s, φ1 ⊗ χ, ψℂ) = γ(s, φ󸀠1 ⊗ χ, ψℂ),

where Fχ(s) is a meromorphic function whose poles and zeros do not interfere with those of the above two
gamma factors. Hence by the above proposition, we have φ1 = φ󸀠1. Arguing inductively, we conclude φ = φ󸀠.

3 Real case

In this section, we consider the real case, so we set F = ℝ.

3.1 Weil group and its representations

Recall that the Weil groupWℝ of ℝ is defined by

Wℝ = ℂ× ∪ jℂ× , j2 = −1, jzj−1 = z̄,

where z ∈ ℂ×. We naturally view Wℂ = ℂ× as a subgroup of Wℝ. Note that ℝ× ≅ Wab
ℝ because we have a sur-

jective map
Wℝ → ℝ× , z 󳨃→ zz̄, j 󳨃→ −1, (3.1)

whose kernel is the commutator group [Wℝ ,Wℝ], which is of the form {z ∈ ℂ× : |z| = 1}.
An irreducible representation of Wℝ is 1- or 2-dimensional. If it is 1-dimensional, it factors through

Wab
ℝ ≅ ℝ

×, and hence is identified with a character, which is of the form

λε,t(r) := r−ε|r|t = sign(r)ε|r|t−ε , r ∈ ℝ× ,

where ε ∈ {0, 1}, t ∈ ℂ and sign is the sign character. Also, we often write λ0,t = | ⋅ |t . If it is 2-dimensional, it is of
the form

φ−N,t := IndWℝ
Wℂ χ−N,t ,

where χ−N,t is the character on ℂ× as before, namely

χ−N,t(z) = z−N‖z‖t

for z ∈ ℂ×.
If N = 0, then the representation φ−N,t is not irreducible, but we have

φ0,t = λ0,t ⊕ λ1,t+1 .

But otherwise it is irreducible. Furthermore, since

IndWℝ
Wℂ χ−N,t = IndWℝ

Wℂ χ−N,t ,



8  M. Adrian and S. Takeda, A local converse theorem for Archimedean GL(n)

we have
φ−N,t = φN,t−N .

Hence we may and do assume that N ≥ 0. Also, we consider λ0,t ⊕ λ1,t+1 as the induced representation φ0,t . In
general, an n-dimensional representation φ : Wℝ → GLn(ℂ) is of the form

φ = (λε1 ,t1 ⊕ ⋅ ⋅ ⋅ ⊕ λεp ,tp ) ⊕ (φ−N1 ,u1 ⊕ ⋅ ⋅ ⋅ ⊕ φ−Nq ,uq ), (3.2)

where we may assume that Ni ≥ 0 for all i and a representation of the form λ0,t ⊕ λ1,t+1 is treated as φ0,t .
Note that

λε,t∨ = λε,t−1 = λε,−t+2ε

and
φ−N,t∨ = IndWℝ

Wℂ χ−N,t−1 = φ−N,N−t .
3.2 L-, ϵ- and γ-factors

For the 1-dimensional λε,t , the L-, ϵ- and γ-factors are defined as follows:

L(λε,t) = π−
t
2 Γ( t

2
),

ϵ(λε,t , ψℝ) = (−i)ε ,

γ(λε,t , ψℝ) = ϵ(λε,t , ψℝ)
L(λε,t∨| ⋅ |)
L(λε,t)

= (−i)επt−ε−
1
2
Γ( 1−t+2ε2 )

Γ( t2 )
.

For the 2-dimensional representation φ−N,t with N ≥ 0, the local factors are defined as follows:

L(φ−N,t) = L(χ−N,t) = 2(2π)−tΓ(t),
ϵ(φ−N,t , ψℝ) = −i ⋅ ϵ(χ−N,t , ψℂ) = −i|N|+1 ,

γ(φ−N,t , ψℝ) = ϵ(φ−N,t , ψℝ) ⋅
L(φ−N,t∨| ⋅ |)
L(φ−N,t)

= −i|N|+1(2π)2t−N−1 ⋅ Γ(1 − t + N)
Γ(t) .

In general, if φ : Wℝ → GLn(ℂ) is an n-dimensional representation as in (3.2), we again define the local factors
multiplicatively by

L(φ) = L(λε1 ,t1 ) ⋅ ⋅ ⋅ L(λεp ,tp ) ⋅ L(φ−N1 ,u1 ) ⋅ ⋅ ⋅ L(χ−Nq ,uq ),
ϵ(φ, ψℝ) = ϵ(λε1 ,t1 , ψℝ) ⋅ ⋅ ⋅ ϵ(λεp ,tp , ψℝ) ⋅ ϵ(φ−N1 ,u1 , ψℝ) ⋅ ⋅ ⋅ ϵ(χ−Nq ,uq , ψℝ),
γ(φ, ψℝ) = γ(λε1 ,t1 , ψℝ) ⋅ ⋅ ⋅ γ(λεp ,tp , ψℝ) ⋅ γ(φ−N1 ,u1 , ψℝ) ⋅ ⋅ ⋅ γ(χ−Nq ,uq , ψℝ).

Let us note that for the parameter φ0,t one can check

L(φ0,t) = L(λ0,t)L(λ1,t+1),
ϵ(φ0,t , ψℝ) = ϵ(λ0,t , ψℝ)ϵ(λ1,t+1 , ψℝ),
γ(φ0,t , ψℝ) = γ(λ0,t , ψℝ)γ(λ1,t+1 , ψℝ)

by using the duplication formula
Γ( t

2
)Γ( t + 1

2
) = 21−t√πΓ(t).

3.3 GL(1)-twist

Let λε,t and λδ,s be characters on ℝ×. We set

η =
{
{
{

2 if ε = δ = 1,
0 otherwise,
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so that
ε + δ − η ∈ {0, 1} and ε + δ − η = ε + δ (mod 2).

We then have
λε,t ⊗ λδ,s = λε+δ−η, s+t−η , (3.3)

and hence

L(λε,t ⊗ λδ,s) = π−
s+t−η
2 Γ(

s + t − η
2
),

ϵ(λε,t ⊗ λδ,s , ψℝ) = (−i)ε+δ−η ,

γ(λε,t ⊗ λδ,s , ψℝ) = (−i)ε+δ−ηπs+t−ε−δ+η−
1
2
Γ( 1−s−t+2(ε+δ)−η2 )

Γ( s+t−η2 )
. (3.4)

For the 2-dimensional parameter φ−N,t = IndWℝ
Wℂ χ−N,t , the twisted parameter φ−N,t ⊗ λδ,s is computed as

φ−N,t ⊗ λδ,s = IndWℝ
Wℂ (χ−N,t ⊗ (λδ,s ∘ Nℂ/ℝ))

= IndWℝ
Wℂ (χ−N,t ⊗ χ0,s−δ)

= IndWℝ
Wℂ χ−N,t+s−δ

and
φ−N,t ⊗ λδ,s = φ−N,t+s−δ .

Accordingly, we have

L(φ−N,t ⊗ λδ,s) = 2(2π)−(s+t−δ)Γ(s + t − δ),
ϵ(φ−N,t ⊗ λδ,s , ψℝ) = −i|N|+1 ,

γ(χ−N,t ⊗ λδ,s , ψℝ) = −i|N|+1(2π)2(s+t−δ)−N ⋅
Γ(1 − s − t + δ + N)

Γ(s + t) .

If φ : Wℝ → GLn(ℂ) is an n-dimensional representation as in (3.2), we have

φ ⊗ λδ,s = (λε1+δ−η1 ,s+t1−η1 ⊕ ⋅ ⋅ ⋅ ⊕ λεp+δ−ηp ,s+tp−ηp ) ⊕ (φ−N1 ,s+u1−δ ⊕ ⋅ ⋅ ⋅ ⊕ φ−Nq ,s+uq−δ),

where ηi is defined as before, namely ηi = 2 if εi = δi = 1, and ηi = 0 otherwise. Accordingly, we have

γ(φ ⊗ λδ,s , ψℝ) = F(s)
p
∏
i=1

Γ( 1−s−ui+2(εi+δ)−ηi2 )

Γ( s+ui−ηi2 )

q
∏
i=1

Γ(1 − s − ti + δi + Ni)
Γ(s + ti − δi)

,

where F(s) is a holomorphic function without a zero.
We set

L(s, φ) = L(φ ⊗ χ0,s),
ϵ(s, φ, ψℝ) = ϵ(φ ⊗ χ0,s , ψℝ),
γ(s, φ, ψℝ) = γ(φ ⊗ χ0,s , ψℝ).

We then have
γ(s, φ, ψℝ) = ϵ(φ, ψℝ)

L(1 − s, φ∨)
L(s, φ) .

3.4 GL(2)-twist

For 2-dimensional representations φ−N,t and φ−M,s ofWℝ, we have

φ−N,t ⊗ φ−M,s = (IndWℝ
Wℂ χ−N,t) ⊗ (IndWℝ

Wℂ χ−M,s)

= (IndWℝ
Wℂ χ−N,t ⋅ χ−M,s) ⊕ (IndWℝ

Wℂ χ−N,t ⋅ χ−M,s)

= (IndWℝ
Wℂ χ−(N+M),t+s) ⊕ (IndWℝ

Wℂ χ−N,t ⋅ χM,s−M)

= φ−(N+M),t+s ⊕ (IndWℝ
Wℂ χ−(N−M),t+s−M)

= φ−(N+M),t+s ⊕ φ−(N−M),t+s−M .
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3.5 Local Langlands correspondence for GLn(ℝ)

By the Archimedean local Langlands correspondence, originally established by Langlands [11], there is a one-
to-one correspondence between the set Irrn of (infinitesimal equivalence classes) of irreducible admissible
representations of GLn(ℝ) and the set Φn of (conjugacy classes of) all continuous semisimple n-dimensional
representations ofWℝ. This correspondence is explicitly described as follows.

The 1-dimensional representation λε,t corresponds to the character on GL1(ℝ) in the obvious way. The
2-dimensional representation φ−N,t corresponds to the representation of GL2(ℝ) of the form

DN ⊗ |det|t−
N
2 ,

where DN is the discrete series representation of GL2(ℝ) if N ≥ 1, and the limit of discrete series if N = 0.
In general, let

φ = φ1 ⊕ ⋅ ⋅ ⋅ ⊕ φk ∈ Φn ,

where each φi is either λεi ,ti or φ−Ni ,ti with Ni ≥ 0, with the proviso that λ0,t ⊕ λ1,t+1 is considered as φ0,t . For
each i, we let πi be the representation of GLni (ℝ) corresponding to φi as above, so that πi is a character with
ni = 1 or a (limit of) discrete serieswith ni = 2. Note that n1 + ⋅ ⋅ ⋅ + nk = n. Let P(ℝ) be the (n1 , . . . , nk)-parabolic
of GLn(ℝ), so that the Levi part is GLn1 (ℝ) × ⋅ ⋅ ⋅ × GLnk (ℝ), where ni = 1, 2. Consider the (normalized) induced
representation

I(φ) := IndGLn(ℝ)P(ℝ) π1 ⊗ ⋅ ⋅ ⋅ ⊗ πk .

Let us reorder the constituents of φ in the Langlands situation, which means

Re(t1) ≥ ⋅ ⋅ ⋅ ≥ Re(tk).

By the Langlands quotient theorem, the induced representation I(φ) has a unique irreducible quotient (the
Langlands quotient), which we denote by πφ . Then the local Langlands correspondence is obtained by the map

Φn → Irrn , φ 󳨃→ πφ .

3.6 Genericity conditions

It is well known that the induced representation I(φ) is generic (see, for example, [16, Theorem 15.4.1, p. 381]).
The following proposition characterizes when the Langlands quotient πφ is generic.

Proposition 3.1. Let
φ = (λε1 ,t1 ⊕ ⋅ ⋅ ⋅ ⊕ λεp ,tp ) ⊕ (φ−N1 ,u1 ⊕ ⋅ ⋅ ⋅ ⊕ φ−Nq ,uq )

be a Langlands parameter, where λ0,t ⊕ λ1,t+1 (if there is any) is considered as φ0,t . Assume

Re(t1) ≤ ⋅ ⋅ ⋅ ≤ Re(tp) and N1 ≤ ⋅ ⋅ ⋅ ≤ Nq .

Then the following statements are all equivalent:
(i) The representation πφ that corresponds to φ under the local Langlands correspondence is generic.
(ii) πφ = I(φ), namely I(φ) is irreducible.
(iii) The following three assertions hold:

(a) If ti − tj ∈ ℤ, then ti − tj ∈ 2ℤ.
(b) If ui − tj ∈ ℤ, then −εj ≤ ui − tj ≤ Ni − εj .
(c) If ui − uj ∈ ℤ, then 0 ≤ uj − ui ≤ Nj − Ni for i ≤ j. In particular, if ui − uj ∈ ℤ, then ui ⪯ uj for i ≤ j.
(Note that if ti − tj ∉ ℤ, ui − tj ∉ ℤ or ui − uj ∉ ℤ, then there is no condition for the corresponding case.)

(iv) The Rankin–Selberg L-factor
L(s, φ ⊗ φ∨) := L(φ ⊗ φ∨ ⊗ χ0,s)

is holomorphic at s = 1.
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Proof. The equivalence of (i) and (ii) is well known. The equivalence of (ii) and (iii) was obtained by Speh in
her Ph.D thesis, and the results are nicely summarized in [12, Theorem 10b, p. 164]. (But one has to translate [12]
to our situation. For doing that, reorder the constituents of φ in the Langlands situation, and use that her pi is
our Ni , her si with ni = 1 is our ti , and her si with ni = 2 is our ui − Ni

2 . The details are left to the reader.)
To show the equivalence of (iii) and (iv), note that, since

φ∨ = (λε1 , −t1+2ε1 ⊕ ⋅ ⋅ ⋅ ⊕ λεp , −tp+2εp ) ⊕ (φ−N1 ,N1−u1 ⊕ ⋅ ⋅ ⋅ ⊕ φ−Nq ,Nq−uq ),

one can compute

φ ⊗ φ∨ ⊗ λ0,s =⨁
i,j

λεi+εj , s+ti−tj+2εj−γij⨁
i,j

φ−Ni , s+ui−tj+εj

×⨁
i,j

φ−Ni , s+Ni−ui+tj−εj⨁
i,j

φ−(Ni+Nj), s+ui+Nj−uj ⊕ φ−(Ni−Nj), s+ui−uj ,

where εi + εj is viewed modulo 2 as before, and γij = 2 if εi = εj = 2, and 0 otherwise. Hence,

L(φ ⊗ φ∨ ⊗ λ0,s) = ∏
i,j
L(λεi+εj , s+ti−tj+2εj−γij )∏

i,j
L(φ−Ni , s+ui−tj+εj )

×∏
i,j
L(φ−Ni , s+Ni−ui+tj−εj )∏

i,j
L(φ−(Ni+Nj), s+ui+Nj−uj )L(φ−(Ni−Nj), s+ui−uj )

= F(s)∏
i,j
Γ(
s + ti − tj + 2εj − γij

2
)∏

i,j
Γ(s + ui − tj + εj)

×∏
i,j
Γ(s + Ni − ui + tj − εj)∏

i,j
Γ(s + ui + Nj − uj)

×∏
i≥j

Γ(s + ui − uj)∏
i<j

Γ(s + ui − uj − (Ni − Nj))

= F(s)∏
i,j
Γ(
s + ti − tj + 2εj − γij

2
)∏

i,j
Γ(s + ui − tj + εj)

×∏
i,j
Γ(s + Ni − ui + tj − εj)∏

i,j
Γ(s + ui + Nj − uj)

×∏
i
Γ(s)∏

i<j
Γ(s + uj − ui)Γ(s + ui − uj − (Ni − Nj)),

where F(s) is a holomorphic function without a zero. We want this to be holomorphic at s = 1.
To derive (a), assume that

Γ(
s + ti − tj + 2εj − γij

2
)

is holomorphic at s = 1. If ti − tj ∉ ℤ, this is automatic. Assume ti − tj ∈ ℤ. Then we must have either

ti − tj + 2εj − γij ≥ 0 or ti − tj + 2εj − γij ∈ 2ℤ.

The second condition is equivalent to ti − tj ∈ 2ℤ. For the first condition, by switching the roles of i and j, we
also have tj − ti + 2εi − γij ≥ 0. By combining the two, we obtain

−2εj + γij ≤ ti − tj ≤ 2εi − γij .

If εi = εj , then 0 ≤ ti − tj ≤ 0, which implies ti − tj = 0 ∈ 2ℤ. If εi = 0 and εj = 1, then we have −2 ≤ ti − tj ≤ 0.
Hence either

ti − tj ∈ {−2, 0} ⊆ 2ℤ or tj − ti = 1.

But the latter would give us a constituent of the form λ0,ti ⊕ λ1,ti+1, which is considered as φ0,ti .
To derive (b), assume Γ(s + ui − tj + εj) is holomorphic at s = 1. Then we must have ui − tj + εj ∉ ℤ<0. If

ui − tj ∉ ℤ, this is automatic. If ui − tj ∈ ℤ, then we must have ui − tj + εj ≥ 0, which implies −εj ≤ ui − tj . The
other inequality of (iii) follows in the same way from Γ(s + Ni − ui + tj − εj).
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To derive (c), we argue in the same way by looking at Γ(s + uj − ui) and Γ(s + ui − uj − (Ni − Nj)) for i ≤ j.
As for the gamma function Γ(s + ui + Nj − uj), if this is holomorphic at s = 1 and ui − uj ∈ ℤ, then we must

have ui + Nj − uj ≥ 0. By switching the roles of i and j, we also have uj + Ni − ui ≥ 0. By combining the two, we
obtain −Nj ≤ ui − uj ≤ Ni . But this is subsumed under (iii).

Hence we have proven that if π is generic, then conditions (a), (b) and (c) are satisfied. The converse is clear
by looking at s = 1 in the above gamma functions.

Let us note that condition (iii) (c) in the above lemma is essentially the same as the complex case.

3.7 Local converse theorem for GLn(ℝ)

As we did in the complex case, we define

λε,t ∼ λε󸀠 ,t󸀠 if t − t󸀠 ∈ ℤ,

and
φ−N,u ∼ φ−N󸀠 ,u󸀠 if u − u󸀠 ∈ ℤ.

Further, we define
λε,t ∼ φ−N,u if t − u ∈ ℤ.

The relation ∼ is certainly an equivalence relation.
Let us first prove the following lemma.

Lemma 3.2. Let
φ = (λε1 ,t1 ⊕ ⋅ ⋅ ⋅ ⊕ λεp ,tp ) ⊕ (φ−N1 ,u1 ⊕ ⋅ ⋅ ⋅ ⊕ φ−Nq ,uq ),
φ󸀠 = (λε󸀠1 ,t󸀠1 ⊕ ⋅ ⋅ ⋅ ⊕ λε󸀠p󸀠 ,t󸀠p󸀠 ) ⊕ (φ−N󸀠

1 ,u
󸀠
1
⊕ ⋅ ⋅ ⋅ ⊕ φ−N󸀠

q󸀠 u󸀠q󸀠 )
be generic parameters such that all constituents are equivalent under ∼. Further, we assume

t1 ⪯ ⋅ ⋅ ⋅ ⪯ tp and 0 ≤ N1 ≤ ⋅ ⋅ ⋅ ≤ Nq ,

so the genericity condition (iii) (c) implies
u1 ⪯ ⋅ ⋅ ⋅ ⪯ up ,

and similarly for the t󸀠i ’s, u
󸀠
i ’s and N

󸀠
i ’s.

Assume
F(s)γ(s, φ, ψℝ) = γ(s, φ󸀠 , ψℝ),

where F(s) is a meromorphic function whose zeros and poles do not interfere with those of γ(s, φ, ψℝ) and
γ(s, φ󸀠 , ψℝ). Then p = p󸀠 and q = q󸀠, and ti − t󸀠j ∈ 2ℤ for all i, j.

Proof. By computing (the reciprocals of) the gamma factors, we have

F(s)
p
∏
i=1

Γ( s+ti2 )

Γ( 1−s−ti+2εi2 )
⋅
q
∏
i=1

Γ(s + ui)
Γ(1 − s − ui + Ni)

=
p󸀠
∏
i=1

Γ( s+t
󸀠
i

2 )

Γ( 1−s−t
󸀠
i+2ε

󸀠
i

2 )
⋅
q󸀠
∏
i=1

Γ(s + u󸀠i )
Γ(1 − s − u󸀠i + N

󸀠
i )
,

where F(s) is a meromorphic function (possibly different from the one in the lemma) whose zeros and poles do
not interfere with those of the gamma functions appearing here.

Since all constituents are equivalent under ∼, we know ti − tj ∈ ℤ, ui − uj ∈ ℤ and ti − uj ∈ ℤ, and similarly
for the t󸀠i ’s and u

󸀠
i ’s. By the genericity condition (iii) (a), we know that ti − tj ∈ 2ℤ and t󸀠i − t

󸀠
j ∈ 2ℤ. Hence either

ti − t󸀠j ∈ 2ℤ for all i, j, or ti − t
󸀠
j ∈ 2ℤ + 1 for all i, j. Assume ti − t

󸀠
j ∉ 2ℤ. Then

p
∏
i=1

Γ( s + ti
2
) and

p
∏
i=1

Γ(
s + t󸀠i
2
)
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do not share a pole. Hence by choosing M ∈ ℂ comparable to the ti ’s and “large enough” with respect to ⪯, we
get a pole of order p + q at s = −M on the left-hand side, and a pole of order q󸀠 on the right-hand side (note that,
by taking M large enough, the denominators never have a pole at s = −M). Hence we must have p + q = q󸀠. By
switching the roles of φ and φ󸀠, we have p󸀠 + q󸀠 = q. These two imply p + p󸀠 = 0 (namely p = p󸀠 = 0) and q = q󸀠.
Apparently, in this case the assertion ti − t󸀠j ∈ 2ℤ is vacuously true and p + q = p

󸀠 + q󸀠. If p + p󸀠 ̸= 0, we must
have ti − t󸀠j ∈ 2ℤ for all i, j.

Next considerM ∈ ℂ such that −M + ti + 1 ∈ 2ℤ for some (and hence all) i. Then, at s = −M, none of Γ( s+ti2 )
and Γ( s+t

󸀠
i

2 ) has a pole. Further, by makingM “large enough”, we know that, at s = −M, all denominators do not
have a pole and the left-hand side has a pole of order q, namely the poles coming from Γ(s + ui). Similarly, we
have a pole of order q󸀠 on the right-hand side, which implies q = q󸀠, and hence p = p󸀠.

Next we prove the following proposition.

Proposition 3.3. Let
φ = (λε1 ,t1 ⊕ ⋅ ⋅ ⋅ ⊕ λεp ,tp ) ⊕ (φ−N1 ,u1 ⊕ ⋅ ⋅ ⋅ ⊕ φ−Nq ,uq ),
φ󸀠 = (λε󸀠1 ,t󸀠1 ⊕ ⋅ ⋅ ⋅ ⊕ λε󸀠p󸀠 ,t󸀠p󸀠 ) ⊕ (φ−N󸀠

1 ,u
󸀠
1
⊕ ⋅ ⋅ ⋅ ⊕ φ−N󸀠

q󸀠 u󸀠q󸀠 )
be generic parameters such that all constituents are equivalent under ∼, where the ti ’s, Ni ’s, t󸀠i ’s and N

󸀠
i ’s are

ordered as in the above lemma. Assume

Fχ(s)γ(s, φ ⊗ χ, ψℝ) = γ(s, φ󸀠 ⊗ χ, ψℝ) (3.5)

for all characters χ,where Fχ(s) is ameromorphic function (depending on χ)whose zeros and poles do not interfere
with those of γ(s, φ ⊗ χ, ψℝ) and γ(s, φ󸀠 ⊗ χ, ψℝ). Then φ = φ󸀠.

Proof. From the above lemma, we already know that p = p󸀠, q = q󸀠 and ti − t󸀠j ∈ 2ℤ.
By choosing χ to be trivial, (the reciprocal of) identity (3.5) is written as

F(s)
p
∏
i=1

Γ( s+ti2 )

Γ( 1−s−ti+2εi2 )
⋅
q
∏
i=1

Γ(s + ui)
Γ(1 − s − ui + Ni)

=
p
∏
i=1

Γ( s+t
󸀠
i

2 )

Γ( 1−s−t
󸀠
i+2ε

󸀠
i

2 )
⋅
q
∏
i=1

Γ(s + u󸀠i )
Γ(1 − s − u󸀠i + N

󸀠
i )
, (3.6)

where F(s) is ameromorphic functionwhose zeros and poles do not interferewith those of the gamma functions
appearing here.

We will show ti = t󸀠i for i = 1, . . . , q by looking at poles of Γ( s+ti2 ) and Γ( s+t
󸀠
i

2 ). By the genericity condi-
tion (iii) (a), we know that ti − tj ∈ 2ℤ for all i, j. Recall that the ti ’s and t󸀠i ’s are in increasing order, so that
t1 ⪯ ti and t󸀠1 ⪯ t

󸀠
i for all i. Assume t1 ≺ t

󸀠
1 (strict inequality). Let us consider the poles at s = −t1. Since Γ(

s+t1
2 )

has a pole at s = −t1, the numerator of the left-hand side has a pole. Certainly, the denominator Γ( 1−s−ti+2εi2 ) does
not have a pole at s = −t1 because 1 + t1 − ti + 2εi is odd. Also, Γ(1 − s − ui + Ni) does not have a pole because
by the genericity condition (iii) (b) we have

1 − (−t1) − ui + Ni ≥ 1 + ε1 ≥ 1.

Hence the left-hand side of (3.6) has a pole. Now since we already know t1 − t󸀠1 ∈ 2ℤ, our assumption t1 ≺ t
󸀠
1

actually implies t1 ≺ t󸀠1 − 1. Apparently, on the right-hand side, Γ( s+t
󸀠
i

2 ) cannot have a pole at s = −t1 for all i.
Hence some Γ(s + u󸀠i )must have a pole at s = −t1. But the genericity condition implies

−t1 + u󸀠i > −t
󸀠
1 + 1 + u

󸀠
i ≥ 1 − ε

󸀠
1 ≥ 0.

Hence Γ(s + u󸀠i ) cannot have a pole at s = −t1, which is a contradiction. Thus wemust have t1 ⪰ t
󸀠
1. By switching

the roles of t1 and t󸀠1, we have t1 ⪯ t
󸀠
1. Hence t1 = t

󸀠
1. Then we can cancel the gamma functions containing t1

and t󸀠1. By repeating the same argument, we obtain

ti = t󸀠i

for all i = 1, . . . , p.
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Next we show that the εi ’s agree with the ε󸀠j ’s. For this purpose, we consider the twist by χ = λ1,s . By
using (3.4), (the reciprocal of) equality (3.5) is written as

F(s)
p
∏
i=1

Γ( s+ti−2εi2 )

Γ( 3−s−ti2 )
⋅
q
∏
i=1

Γ(s + ui − 1)
Γ(1 − s − ui + 1 + Ni)

=
p
∏
i=1

Γ( s+t
󸀠
i−2ε

󸀠
i

2 )

Γ( 3−s−t
󸀠
i

2 )
⋅
q
∏
i=1

Γ(s + u󸀠i − 1)
Γ(1 − s − u󸀠i + 1 + N

󸀠
i )
,

where F(s) is ameromorphic functionwhose zeros and poles do not interferewith those of the gamma functions
appearing here. Now let k ∈ {1, . . . , p} be such that

tk − 2εk ⪯ ti − 2εi

for all i, namely tk − 2εk is minimal with respect to ⪯. Similarly, let ℓ be such that

t󸀠ℓ − 2ε
󸀠
ℓ ⪯ t
󸀠
i − 2ε
󸀠
i

for all i. One can then apply the same argument as above with s = −(tk − 2εk) and conclude that

tk − 2εk = t󸀠ℓ − 2ε
󸀠
ℓ .

By arguing inductively, we have

{t1 − 2ε1 , ⋅ ⋅ ⋅ , tp − 2εp} = {t1 − 2ε󸀠1 , ⋅ ⋅ ⋅ , tp − 2ε
󸀠
p}

as multisets.
From this identity of multisets, we will derive the identity

{(ε1 , t1), ⋅ ⋅ ⋅ , (εp , tp)} = {(ε󸀠1 , t1), ⋅ ⋅ ⋅ , (ε
󸀠
p , tp)}

of multisets. For this, it suffices to show (εi , ti) = (ε󸀠j , tj) for some i and j, because then we can argue induc-
tively on the size of the multisets. Now, we know t1 − 2ε1 = ti − 2ε󸀠i for some i. But then we must have
ti − t1 = 2(ε󸀠i − ε1) ≥ 0 because of our ordering of the ti ’s. So we must have ε

󸀠
i ≥ ε1. Suppose ε1 = 1. Then we

have ε󸀠i = 1. Hence the equality t1 − 2ε1 = ti − 2ε
󸀠
i implies t1 = ti , and so (ε1 , t1) = (ε

󸀠
i , ti). Next suppose ε1 = 0. If

ε󸀠1 = 0, thenwe have (ε1 , t1) = (ε
󸀠
1 , t1). If ε

󸀠
1 = 1, then by switching the roles of ε1 and ε

󸀠
1 we have (ε

󸀠
1 , t1) = (εj , tj)

for some j. Thus in any case, we know that (εi , ti) = (ε󸀠j , tj) for some i and j.
Now, we can cancel from (3.6) all factors containing ti , εi , t󸀠i and ε

󸀠
i and obtain

F(s)
q
∏
i=1

Γ(s + ui)
Γ(1 − s − ui + Ni)

=
q
∏
i=1

Γ(s + u󸀠i )
Γ(1 − s − u󸀠i + N

󸀠
i )
. (3.7)

Recall that the ui ’s and u󸀠i ’s are in increasing order with respect to ⪯. We will show ui = u󸀠i by induction on i.
Assume u1 ≺ u󸀠1 (strict inequality). Then Γ(s + u1) has a pole at s = −u1 on the left-hand side, and the denom-
inator Γ(1 − s − ui + Ni) does not have a pole at s = −u1 because by the genericity condition (iii) (c) we have
1 + u1 − ui + Ni ≥ 1 + N1 for all i. But since u1 ≺ u󸀠1, the right-hand side cannot have a pole at s = −u1. Hence
we must have u1 ⪰ u󸀠1. By switching the roles of u1 and u

󸀠
1, we have u1 ⪯ u

󸀠
1, from which we have u1 = u󸀠1. Now

assume we have shown ui = u󸀠i for i = 1, . . . , j for some j. Then the above identity (3.7) is reduced to

F(s)
j
∏
i=1

1
Γ(1 − s − ui + Ni)

q
∏
i=j+1

Γ(s + ui)
Γ(1 − s − ui + Ni)

=
j
∏
i=1

1
Γ(1 − s − u󸀠i + N

󸀠
i )

q
∏
i=j+1

Γ(s + u󸀠i )
Γ(1 − s − u󸀠i + N

󸀠
i )
. (3.8)

Assume uj+1 ≺ u󸀠j+1. Then by the same reasoning as above, the product

q
∏
i=j+1

Γ(s + ui)
Γ(1 − s − ui + Ni)

has a pole at s = −uj+1. Also, Γ(1 − s − ui + Ni) does not have a pole at s = −uj+1 for all i = 1, . . . , j, because
1 + uj+1 − ui + Ni ≥ 1 + Ni ≥ 1 by the genericity condition (iii) (c), since j + 1 ≥ i. Hence the left-hand side of (3.8)
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has a pole at s = −uj+1. But the right-hand side does not have a pole at s = uj+1 because uj+1 ≺ u󸀠j+1. Thuswemust
have uj+1 ⪰ u󸀠j+1. By switching the roles of uj+1 and u

󸀠
j+1, we get uj+1 ⪯ u

󸀠
j+1, from which we have uj+1 = u󸀠j+1.

Hence we have
ui = u󸀠i

for all i = 1, . . . , q.
By cancelling the numerators from (3.7), we obtain

q
∏
i=1

Γ(1 − s − ui + Ni) = F(s)
q
∏
i=1

Γ(1 − s − u󸀠i + N
󸀠
i ).

Let k, ℓ ∈ {1, . . . , q} be such that

uk − Nk ⪰ ui − Ni and u󸀠ℓ − N
󸀠
ℓ ⪰ u
󸀠
i − N
󸀠
i

for all i. Then at s = −uk + Nk , the left-hand side (and hence the right-hand side) is holomorphic, which implies
uk − Nk ⪯ u󸀠ℓ − N

󸀠
ℓ. By switching the roles, we obtain uk − Nk ⪰ u

󸀠
ℓ − N
󸀠
ℓ, and hence uk − Nk = u

󸀠
ℓ − N
󸀠
ℓ. By argu-

ing inductively, we obtain
{u1 − N1 , . . . , uq − Nq} = {u󸀠1 − N

󸀠
1 , . . . , u

󸀠
q − N󸀠q}

as multisets.
Then we can show Ni = N󸀠i for all i = 1, . . . , n by exactly the same argument as in the complex case as

follows. By the above identity of the multisets, we must have u1 − N1 = u󸀠i − N
󸀠
i for some i. Since we already

know ui = u󸀠i , we have
N󸀠i − N1 = u󸀠i − u1 = u

󸀠
i − u
󸀠
1 ≤ N
󸀠
i − N
󸀠
1 ,

where the last inequality is by the genericity condition (iii). Hence we have N󸀠1 ≤ N1. Also, we must have
u󸀠1 − N

󸀠
1 = uj − Nj for some j. By applying the same argument, we must have N1 ≤ N󸀠1. Thus we must have

N1 = N󸀠1. By arguing inductively, we have
Ni = N󸀠i

for all i = 1, . . . , n.

Now, we are ready to prove the local converse theorem.

Theorem 3.4. Let π and π󸀠 be generic irreducible admissible representations of GLn(ℝ). Assume that

γ(s, π × χ, ψℝ) = γ(s, π󸀠 × χ, ψℝ)

for all unitary characters χ. Then π = π󸀠.

Proof. As in the complex case, we may assume that the identity of the gamma factors holds for all (not neces-
sarily unitary) characters χ.

Let φ and φ󸀠 be the Langlands parameters of GLn(ℝ) corresponding to π and π󸀠, respectively. Let us write

φ = φ1 ⊕ ⋅ ⋅ ⋅ ⊕ φk and φ󸀠 = φ󸀠1 ⊕ ⋅ ⋅ ⋅ ⊕ φ
󸀠
k󸀠 ,

where all constituents of each φj are equivalent under ∼, and the constituents of φi and φj are inequivalent
under ∼ for i ̸= j, and similarly for φ󸀠. We then have

k
∏
i=1

γ(s, φi ⊗ χ, ψℝ) =
k󸀠
∏
i=1

γ(s, φ󸀠i ⊗ χ, ψℝ).

Note that, for i ̸= j, the gamma factors γ(s, φi ⊗ χ, ψℝ) and γ(s, φj ⊗ χ, ψℝ) do not share a zero or a pole, and
similarly for φ󸀠.

Now, assume that φ and φ󸀠 do not share any constituents equivalent under ∼. Then γ(s, φ ⊗ χ, ψℝ) and
γ(s, φ󸀠 ⊗ χ, ψℝ) do not share a zero or pole. So there are at least some φi and φ󸀠j having constituents equivalent
under ∼. By reordering indices, we may assume i = j = 1. Then the equality of the gamma factors is written as

Fχ(s)γ(s, φ1 ⊗ χ, ψℝ) = γ(s, φ󸀠1 ⊗ χ, ψℝ),

where Fχ(s) is a meromorphic function whose poles and zeros do not interfere with those of the above two
gamma factors. Hence by the above proposition, we have φ1 = φ󸀠1. Arguing inductively, we conclude φ = φ󸀠.
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