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SIMPLE SUPERCUSPIDAL L-PACKETS OF SPLIT SPECIAL

ORTHOGONAL GROUPS OVER DYADIC FIELDS

MOSHE ADRIAN, GUY HENNIART, EYAL KAPLAN, AND MASAO OI

Abstract. We consider the split special orthogonal group SON defined over
a p-adic field. We determine the structure of any L-packet of SON containing
a simple supercuspidal representation (in the sense of Gross–Reeder). We also
determine its endoscopic lift to a general linear group. Combined with the
explicit local Langlands correspondence for simple supercuspidal representa-
tions of general linear groups, this leads us to get an explicit description of
the L-parameter as a representation of the Weil group of F . Our result is new
when p = 2 and our method provides a new proof even when p 6= 2.
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1. Introduction

The aim of this paper is to give a complete description of the local Langlands
correspondence for simple supercuspidal representations of split special orthogonal
groups.

Let us first briefly recall the local Langlands correspondence. Suppose that G

is a connected reductive group over a p-adic field F . Let Π(G) denote the set
of equivalence classes of irreducible admissible representations of G(F ) and Φ(G)

denote the set of Ĝ-conjugacy classes of L-parameters of G. Here, recall that an

L-parameter of G is a homomorphism WF × SL2(C) → Ĝ⋊WF satisfying certain

conditions, where WF is the Weil group of F and Ĝ is the Langlands dual group
of G over C. The local Langlands correspondence for G, which is still conjectural
in general, asserts that there exists a natural finite-to-one map

LLCG : Π(G) → Φ(G).

In other words, it is expected that the set Π(G) can be partitioned into the disjoint
union of finite sets ΠG

φ := LLC−1
G

(φ) (called L-packets) labelled by L-parameters

φ ∈ Φ(G):

Π(G) =
⊔

φ∈Φ(G)

ΠG

φ .

The local Langlands correspondence has been established for several specific
groups. Especially, when G is GLN , the correspondence was constructed by Harris–
Taylor [HT01] and the second author [Hen00]. Also, for a certain class of classical
groups, the correspondence was constructed by Arthur [Art13] (quasi-split sym-
plectic and orthogonal groups) and Mok [Mok15] (quasi-split unitary groups).

When G is one of these groups (assume that G is split for simplicity), we can
naturally regard LG as a subgroup of GLN (C) ×WF for an appropriate positive
integer N . This means that we may think of an L-parameter of G as a representa-
tion of WF × SL2(C) equipped with additional structure. For example, when G is

the split odd special orthogonal group SO2n+1, Ĝ is given by Sp2n(C) with trivial
Galois action. Thus an L-parameter of SO2n+1 is regarded as a 2n-dimensional
symplectic representation of WF × SL2(C). Given this observation, it is natural to
ask the following question:

Describe LLCG explicitly. More precisely, for a given π ∈ Π(G),
(1) describe its L-parameter φ as a representation ofWF×SL2(C);
(2) determine the L-packet ΠG

φ containing π.

Here we concentrate on the case of simple supercuspidal representations in the
sense of Gross–Reeder (see Section 2). We briefly discuss previous works.

For G = GLN , L-packets are singletons, and the parameter of an irreducible
supercuspidal representation π of GLN (F ) is an N -dimensional irreducible rep-
resentation φ of WF , taken up to equivalence. When π is a simple supercusp-
idal representation, Bushnell–Henniart ([BH14]), using the theory of cyclic base
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change and that of tame base change, explicitly described the projective repre-
sentation determined by φ. They also established a characterization of π via the
ε-factors ε(s, π × χ, ψ), for tame characters χ of F×. That translates into an anal-
ogous characterization of φ, and it suffices to produce such an explicit φ such that
ε(s, φ⊗ χ, ψ) = ε(s, π × χ, ψ). That was done by Adrian–Liu when N is prime to
p ([AL16]), thus giving a more direct proof of the essentially tame local Langlands
correspondence [BH05a, BH05b, BH10] in the case of a simple supercuspidal repre-
sentation. That was also done for general N by Imai and Tsushima ([IT15]), who
determined φ (for a simple supercuspidal π) explicitly using geometry.

When G is one of our split classical groups, the parameter of a simple supercusp-
idal representation π of G(F ) can be seen as a direct sum φ of irreducible represen-
tations φi of WF . The known methods to explicitly describe the parameter rather
determine the supercuspidal representation πi of GLdi(F ) (where di = dim(φi))
with parameter φi (the endoscopic lift to a general linear group), and one can then
apply the results for GLdi(F ) to get φi. There are at least three such methods:

(1) One can use the endoscopic and twisted endoscopic character relations by
which Arthur’s results are expressed.

(2) One can use Mœglin’s criterion using reducibility points of representations
parabolically induced from π⊠τ where τ is a (supercuspidal) representation
of some GLr(F ).

(3) One can use γ-factors for the pairs (π, τ). Indeed the Rankin–Selberg (or
Langlands–Shahidi) factor γ(s, π×τ, ψ) should be the product of the factors
γ(s, πi×τ, ψ), and by the above-mentioned characterization due to [BH14] it
is enough to consider the case where τ is a tame character of F× = GL1(F ).

The three methods can be used separately or jointly. For (2) one has to know
that the criterion does indeed determine Arthur’s parameter (that is due to Bin Xu
[Xu17b], see below Remark 3.2). For (3) one has to know that Arthur’s lifting from
G to GLN preserves the γ-factors. That we establish in Appendices B and C, for
a generic supercuspidal representation π (see the end of this introduction for more
detailed comments).

Method (2) has been used by Blondel–Henniart–Stevens [BHS18] for G = Sp2n,
when p is odd. The method applies to a general supercuspidal representation, but
determines the parameter only up to twist by an unramified quadratic character
(see [BHS18, Section 5])1.

The first definitive result was obtained in [Adr16] for G = SO2n+1 by using
Method (3). In [Adr16], the factors γ(s, π×τ, ψ) is computed for tame characters τ
(and arbitrary p). Moreover, it is also proved that if the L-parameter is irreducible,
it corresponds to a simple supercuspidal representation of GL2n(F ) which is then
explicit, and so is the parameter of π. Then, using results of Kaletha [Kal13, Kal15]
(pertaining to Method (1)), one can determine the parameter of π when p is large.

When G is Sp2n and p is odd, the factor γ(s, π × τ, ψ) is computed for tame
characters τ in [AK19]. Based on this computation, the parameter is explicitly de-
termined when p does not divide n, and, adding the use of (a conjectured extension
of) [BHS18] (Method (2)), for any odd p. When p is 2, γ(s, π × τ, ψ) is computed
in [AK19] only when F = Q2, in which case there is a unique simple supercuspidal
representation of Sp2n(Q2). There is no tame character in the parameter when

1For a simple supercuspidal π, the second author recently realized that the method of [BHS18]
actually allows to determine the full parameter.
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F = Q2, and the parameter is explicitly described in [AK19] provided it is irre-
ducible. Adding Method (1) (and inspired by the work [Oi18] for odd p), the second
author subsequently proved that for F = Q2, the parameter is indeed irreducible,
hence explicit ([Hen23], written in 2021).

Finally when G = SO2n, for a simple supercuspidal representation π, the factor
γ(s, π × τ, ψ) for tame quadratic characters τ (and any p) is computed and the
parameter of π is predicted in [AK21]. We here complete the result of [AK21] (see
below).

Method (1) was used by the fourth author in his thesis and subsequent work
([Oi19a, Oi19b, Oi18]), to get a complete determination of the parameter of a simple
supercuspidal representation π of any of the following classical groups, provided p
is odd:

• SO2n+1 ([Oi19a]),
• unramified quasi-split unitary groups ([Oi19b]), and
• Sp2n and SO2n (not necessarily split but quasi-split) ([Oi18]).

(In Sections A.2 and A.3, we compare these results with those of [Adr16, AK21] in
the case of split special orthogonal groups). Any odd p can be covered uniformly
by this approach, but the dyadic case (i.e., p = 2) still remains. Based on this
motivation, the second and fourth authors investigated the case of Sp2n over a
dyadic field in [HO22] by elaborating on the method of [Oi19a, Oi19b, Oi18]. (As
mentioned above, the second author had already obtained the result for F = Q2 in
[Hen23] prior to [HO22].)

Now let us state the main result of this paper:

Theorem 1.1 (Theorems 6.10, 6.11, 6.12). Let SON be the split special orthogonal
group of degree N . Let πSON be a simple supercuspidal representation of SON (F )
with L-parameter φ. Then, φ is trivial on SL2(C) and described as a representation
of WF as follows:

(1) When N = 2n+ 1, φ is a 2n-dimensional irreducible symplectic represen-
tation of WF . Moreover, φ corresponds to a simple supercuspidal represen-
tation π of GL2n(F ) under the local Langlands correspondence for GL2n.

(2) When N = 2n and p = 2, φ is of the form φ = φ0 ⊕ φ1, where
• φ0 is a (2n − 1)-dimensional irreducible orthogonal representation of
WF , which is the L-parameter of a simple supercuspidal representation
π of GL2n−1(F ), and

• φ1 is the determinant character of φ0.
(3) When N = 2n and p 6= 2, φ is of the form φ = φ0 ⊕ φ1 ⊕ φ2, where

• φ0 is a (2n − 2)-dimensional irreducible orthogonal representation of
WF , which is the L-parameter of a simple supercuspidal representation
π of GL2n−2(F ),

• φ1 is an unramified quadratic character of F×, and
• φ2 is a ramified quadratic character of F×.

Furthermore, in each case, the quadratic characters and π can be determined exactly
from πSON in terms of explicit parametrizing sets of simple supercuspidal represen-
tations (see Theorems 6.10, 6.11, 6.12 and Section 2).

As explained above, this result is new only when p = 2; the case whereN = 2n+1
and p 6= 2 is treated in [Adr16] and [Oi19a], and the case where N = 2n and p 6= 2
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is treated in [AK19] and [Oi18]. However, we emphasize that our method provides
an alternative proof even in these cases.

Let us explain the outline of the proof of Theorem 1.1. We focus only on the
case (2) in the following since the other cases can be treated in a similar manner.
Suppose that πSON is a simple supercuspidal representation of SON (F ) with L-
parameter φ. Then φ is regarded as an orthogonal representation of WF × SL2(C).

The first step is the same as in [Oi18]. We can easily check that any simple
supercuspidal representation of SON (F ) is generic (with respect to a fixed Whit-
taker datum). By combining this fact with a result of Mœglin and Xu ([Mœg11],
[Xu17b]), we see that φ is trivial on SL2(C) and decomposes into the direct sum of
pairwise inequivalent orthogonal representations of WF (say φ = φ0 ⊕ · · · ⊕ φr).

The second step is crucial; we prove that φ is of the form φ0 ⊕ φ1, where φ0
has Swan conductor one and φ1 is a tamely ramified quadratic character. For this,
we utilize the information of two different kinds of γ-factors attached to φ; (1) the
(standard) γ-factor γ(s, πSON × χ, ψ) twisted by a tamely ramified character χ of
F×, and (2) the special value the adjoint γ-factor γ(0,Ad, πSON , ψ0).

(1) In [AK21], the γ-factor twisted by χ is completely determined for any
tamely ramified quadratic character χ of F×. From this result, we im-
mediately see that the Swan conductor of φ is given by 1 and that exactly
one of φ0, . . . , φr is a tamely ramified quadratic character.

(2) In general, it is conjectured by Hiraga–Ichino–Ikeda ([HII08]) that the for-
mal degree of a discrete series representation of a p-adic reductive group is
related to the special value (at 0) of the adjoint γ-factor of the L-parameter
corresponding to the representation under the local Langlands correspon-
dence. Recently, it was announced by Beuzart-Plessis ([BP21]) that this
conjecture is proved for even special orthogonal groups. By specializing the
Hiraga–Ichino–Ikeda conjecture to the case of simple supercuspidal repre-
sentations, we can compute the special value of the adjoint γ-factor of φ.

The argument of this step is as follows. By (2), we know that the special value
of the adjoint γ-factor of φ, which is nothing but the exterior square γ-factor of φ
in the current situation, is given by a rational power of 2. By (1), any irreducible
constituent φi has Swan conductor 0 and dimension greater than 1 if it is neither the
unique irreducible constituent of φ with Swan conductor 1 nor the unique tamely
ramified quadratic character contained in φ. However, if such a constituent φi
existed, then it would contribute to the special value of the exterior square γ-factor
of φ by an odd prime factor, which is not allowed. Thus φ must be of the form
φ0 ⊕ φ1 with φ0 and φ1 as above.

The final step is to determine φ exactly as a representation of WF , but this can
be done by the same argument as in [Adr16] using the γ-factors, which is explained
above. One subtle point here is that we have to look at the γ-factor of πSON twisted
by any tamely ramified character of F× although only the quadratic case is treated
in [AK21]. The computation of the twisted γ-factor in the general case is given in
this paper (Section 5).

Before we finish this introduction, we give one more comment on another subtlety
concerning the γ-factor. In the above arguments, we freely use the fact that Arthur’s
local Langlands correspondence preserves the twisted γ-factors (or more generally,
the Rankin–Selberg local factors for the product of a classical group and a general
linear group). Although we believe that this fact should be well-known to experts,
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we give a justification in this paper (Appendix B) because we could not find a
suitable reference. Since our argument is based on a global method, it is crucially
important that the unramified case of Arthur’s construction of local A-packets is
consistent with the classical one by means of the Satake isomorphism. However,
somehow we were not able to find even this fact in any literature. Hence we decided
to also give a proof of this consistency in the unramified case (Appendix C). The
proof we present in Appendix C is due to Jean-Loup Waldspurger. We would like to
clarify that Appendix C is constructed based on a letter from him (but, of course,
we completely owe the responsibility for it).

Acknowledgment. We would like to express our sincere gratitude to Jean-Loup
Waldspurger for his detailed explanation of the content of Appendix C. The fi-
nal draft of this paper was written while Henniart enjoyed the hospitality of the
Graduate School of Mathematical Sciences at the University of Tokyo. Adrian was
supported by a grant from the Simons Foundation #422638 and by a PSC-CUNY
award, jointly funded by the Professional Staff Congress and The City Univer-
sity of New York. Kaplan was supported by the ISRAEL SCIENCE FOUNDA-
TION (grant No. 376/21). Oi was supported by JSPS KAKENHI Grant Number
20K14287.

Notation. Let F be a p-adic field (i.e., a finite extension of Qp; especially, of
characteristic 0), O its ring of integers, p its maximal ideal, and k its residue field
O/p. We write q for the cardinality of k. We often regard k× as the subgroup of
F× consisting of elements of finite prime-to-p order via the Teichmüller lift. We fix
a uniformizer ̟ of F . For any element x ∈ O, we write x for its image in k.

We fix a nontrivial additive character ψFp : Fp → C× and let ψ : k → C× be the
nontrivial additive character defined by ψ = ψFp ◦Trk/Fp . Note that ψ is invariant
under the Frobenius, i.e., ψ(xp) = ψ(x) for any x ∈ k. We fix a nontrivial additive
character of F whose restriction to O lifts ψ and again write ψ for it by abuse of
notation.

When p 6= 2, we fix an element ǫ ∈ k× r k×2. When p = 2, we have k×2 = k×,
hence we simply put ǫ := 1.

We let IN denote the identity matrix of size N and JN denote the anti-diagonal
matrix of size N whose (i, N + 1− i)-th entry is given by (−1)i−1:

JN =

á
1

−1

. .
.

(−1)N−1

ë

.

For an algebraic group G defined over F , we let G denote the group G(F ) of
F -valued points of G.

2. Simple supercuspidal representations

In this section, we summarize a classification of simple supercuspidal represen-
tations of SON (F ) and also those of GLN (F ) which are self-dual. See [Oi18, Sec-
tions 2.1 and 2.2] for a general recipe and the definition of simple supercuspidal
representations. The classification given here is basically the same as the one of
[Oi19a, Oi18, HO22], but requires a minor modification since we treat any p.
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2.1. Self-dual simple supercuspidal representations of GLN . Let us consider
the case of GLN . Let IGLN be the upper-triangular Iwahori subgroup of GLN :

IGLN =

Ö
O× O

. . .

p O×

è
.

We let I+GLN
be the pro-unipotent radical of IGLN . These subgroups can be thought

of as the first two steps of the Moy–Prasad filtration of the parahoric subgroup of
GLN (F ) associated to the barycenter of an alcove of the Bruhat–Tits building
of GLN (F ). We define I++

GLN
to be the next step of this Moy–Prasad filtration.

Explicitly, these subgroups are given as follows:

I+GLN
=

Ö
1 + p O

. . .

p 1 + p

è
⊃ I++

GLN
=

à
1 + p p O

. . .
. . .

p
. . . p

p2 1 + p

í

.

Then we have

I+GLN
/I++

GLN
∼= k⊕N : (xij)ij 7→

(
x1,2, . . . , xN−1,N , xN,1̟−1

)
.

Let ZGLN be the center of GLN (F ) and ZGLN ,0 the maximal compact subgroup of
ZGLN . For any character ω of k× and a ∈ k×, we define χGLN

ω,a to be the character

on ZGLN ,0I
+
GLN

such that

• χGLN
ω,a |ZGLN,0

is the pull back of ω via the map ZGLN ,0
∼= O×

։ k×, and

• χGLN
ω,a |I+

GLN

is the pull back of the character on k⊕N given by

(x1, . . . , xN−1, xN ) 7→ ψ(x1 + · · ·+ xN−1 + axN )

via the map I+GLN
։ I+GLN

/I++
GLN

∼= k⊕N .

This character is affine generic in the sense of Gross–Reeder (see [Oi18, Definition
2.3]). Then the stabilizer group NGLN (F )(I

+
GLN

;χGLN
ω,a ) := {n ∈ NGLN (F )(I

+
GLN

) |

(χGLN
ω,a )n = χGLN

ω,a } of χGLN
ω,a is given by ZGLN I

+
GLN

〈ϕGLN
a−1 〉, where we put

ϕGLN
a−1 :=

Å
0 IN−1

̟a−1 0

ã
∈ GLN (F )

(note that (ϕGLN
a−1 )N = ̟a−1IN ). Thus, for any ζ ∈ C×, we can extend χGLN

ω,a to a

character χ̃GLN
ω,a,ζ on ZGLN I

+
GLN

〈ϕGLN
a−1 〉 by putting χ̃GLN

ω,a,ζ(ϕ
GLN
a−1 ) := ζ.

Let πGLN
ω,a,ζ be the representation of GLN (F ) defined by

πGLN
ω,a,ζ := c-Ind

GLN (F )

ZGLN
I+
GLN

〈ϕ
GLN
a−1

〉
χ̃GLN
ω,a,ζ.

Then
{πGLN

ω,a,ζ | (ω, a, ζ) ∈ (k×)∨ × k× × C×}

is a complete set of representatives of the set of equivalence classes of simple super-
cuspidal representations of GLN (F ).

Let us investigate when πGLN
ω,a,ζ is self-dual, or equivalently, θ-stable, where θ is

the involution of GLN defined by

θ(g) := JN
tg−1J−1

N .
7



It can be easily checked that

(πGLN
ω,a,ζ)

θ := πGLN
ω,a,ζ ◦ θ

∼= πGLN
ω−1,(−1)Na,ω(−1)ζ−1 .

Hence, we have (πGLN
ω,a,ζ)

θ ∼= πGLN
ω,a,ζ if and only if we have

ω = ω−1, a = (−1)Na, ζ = ω(−1)ζ−1.

We first consider the case where p 6= 2. By the condition that a = (−1)Na, there
exists a self-dual simple supercuspidal representation only when N is even. In this
case,

{πGLN
ω,a,ζ | (ω, a, ζ) ∈ (k×)∨ × k× × C×, ω2 = 1, ζ2 = ω(−1)}

gives a complete set of representatives of the set of equivalence classes of self-dual
simple supercuspidal representations of GLN (F ).

We next consider the case where p = 2. In this case, the condition ω = ω−1

implies that ω is the trivial character of k×. Thus the condition ζ = ω(−1)ζ−1

means that ζ is a sign. Moreover, the condition a = (−1)Na is always satisfied.
Therefore we see that

{πGLN
1,a,ζ | a ∈ k×, ζ ∈ {±1}}

is a complete set of representatives of the set of equivalence classes of self-dual
simple supercuspidal representations of GLN (F ).

2.2. Simple supercuspidal representations of SO2n+1. We next consider the
case of

SO2n+1 := {g ∈ SL2n+1 | tgJ2n+1g = J2n+1}.

We let ISO2n+1
be the Iwahori subgroup of SO2n+1(F ) consisting of the elements

of SO2n+1(F ) belonging to



O× O O
. . .

... 1
2O

p O× O
2p · · · 2p O× O · · · O

2p O× O

2p
...

. . .

2p p O×




.

(we give some details in Section A.1). Similarly to the case of GLN , we let I+SO2n+1
be

the pro-unipotent radical of ISO2n+1
and I++

SO2n+1
the next step of the Moy–Prasad

filtration with respect to the barycenter of the alcove corresponding to ISO2n+1
.

Then we have

I+SO2n+1
/I++

SO2n+1

∼= k⊕n+1 : (gij)ij 7→ (g12, . . . , gn,n+1, g2n,1 · 2−1̟−1).

For any a ∈ k×, we define an affine generic character χ
SO2n+1
a of I+SO2n+1

by pulling

back the character

k⊕n+1 → C× : (x1, . . . , xn+1) 7→ ψ(x1 + · · ·+ xn + axn+1)

via the map I+SO2n+1
։ I+SO2n+1

/I++
SO2n+1

∼= k⊕n+1. Then the stabilizer group of

χ
SO2n+1
a is given by I+SO2n+1

〈ϕ
SO2n+1

a−1 〉, where ϕ
SO2n+1

a−1 is an element of order 2 given

8



by

ϕ
SO2n+1

a−1 := −

Ñ
a2−1̟−1

I2n−1

a−12̟

é
∈ SO2n+1(F ).

Hence, for any ζ ∈ {±1}, we can extend χ
SO2n+1
a to a character χ̃

SO2n+1

a,ζ on

I+SO2n+1
〈ϕ

SO2n+1

a−1 〉 by putting χ̃
SO2n+1

a,ζ (ϕ
SO2n+1

a−1 ) := ζ.

Let π
SO2n+1

a,ζ be the representation of SO2n+1(F ) defined by

π
SO2n+1

a,ζ := c-Ind
SO2n+1(F )

I+
SO2n+1

〈ϕ
SO2n+1

a−1
〉
χ̃
SO2n+1

a,ζ .

Then

{π
SO2n+1

a,ζ | a ∈ k×, ζ ∈ {±1}}

gives a complete set of representatives of the set of equivalence classes of simple
supercuspidal representations of SO2n+1(F ).

Remark 2.1. We caution that the above parametrization of simple supercuspidal
representations differs from the one in [Oi19a], where p is supposed to be odd, by
an extra factor 2. To be more precise, for any a ∈ k×, the simple supercuspidal

representation denoted by “π′
a,ζ” in [Oi19a, Section 2.4] is equal to π

SO2n+1

2a,ζ defined
in this paper.

2.3. Simple supercuspidal representations of SO2n. We finally consider the
case of

SO2n := {g ∈ SL2n | tgJ ′
2ng = J ′

2n},

where J ′
2n is the anti-diagonal matrix of size 2n whose anti-diagonal entries are

given by 1. Here, we suppose that n ≥ 2 because SO2 is abelian.
We let ISO2n

be the Iwahori subgroup of SO2n(F ) consisting of the elements of
SO2n(F ) belonging to




O× O O O
. . .

...
... O

p O× O O
p · · · p O O O · · · O
p · · · p O O O · · · O

p p O× O

p
...

...
. . .

p p p O×




(we give some details in Section A.1). Similarly to the case of GLN , we let I+SO2n

be the pro-unipotent radical of ISO2n
and I++

SO2n
the next step of the Moy–Prasad

filtration with respect to the barycenter of the alcove corresponding to ISO2n
. Then

we have

I+SO2n
/I++

SO2n

∼= k⊕n+1 : (gij)ij 7→ (g12, . . . , gn−1,n, gn−1,n+1, g2n−1,1̟−1).

Let ZSO2n = {±I2n} be the center of SO2n(F ). For (ξ, κ, a) ∈ {±1} × {0, 1} × k×,

we define an affine generic character χSO2n

ξ,κ,a on ZSO2n
I+SO2n

by

• χSO2n

ξ,κ,a (−I2n) = ξ, and
9



• χSO2n

ξ,κ,a |I+
SO2n

is the pull back of the character on k⊕n+1 given by

(x1, . . . , xn−1, xn, xn+1) 7→ ψ(x1 + · · ·+ xn−1 + ǫκxn + axn+1)

via the map I+SO2n
։ I+SO2n

/I++
SO2n

∼= k⊕n+1.

Then the stabilizer group of χSO2n

ξ,κ,a is given by ZSO2n
I+SO2n

〈ϕSO2n

ǫκ,−a−1〉, where we put

ϕSO2n

α,β :=




(β̟)−1

In−2

α−1

α
In−2

β̟




for any α, β ∈ k×. Thus, for any ζ ∈ {±1}, we can extend χSO2n

ξ,κ,a to a character

χ̃SO2n

ξ,κ,a,ζ on ZSO2n
I+SO2n

〈ϕSO2n

ǫκ,−a−1〉 by putting χ̃SO2n

ξ,κ,a,ζ(ϕ
SO2n

ǫκ,−a−1) := ζ.

Let πSO2n

ξ,κ,a,ζ be the representation of SO2n(F ) defined by

πSO2n

ξ,κ,a,ζ := c-IndSO2n

ZSO2nI
+
SO2n

〈ϕ
SO2n

ǫκ,−a−1
〉
χ̃SO2n

ξ,κ,a,ζ.

When p 6= 2,

{πSO2n

ξ,κ,a,ζ | ξ ∈ {±1}, κ ∈ {0, 1}, a ∈ k×, ζ ∈ {±1}}

gives a complete set of representatives of the set of equivalence classes of simple
supercuspidal representations of SO2n(F ). Moreover, any πSO2n

ξ,κ,a,ζ is stable under

the action of O2n(F ) (see [Oi18, Section 2.6]).
When p = 2, since ZSO2n is contained in I++

SO2n
, the parameter ξ must be 1.

Furthermore, since ǫ = 1, we obviously have πSO2n

ξ,1,a,ζ = πSO2n

ξ,0,a,ζ . By noting these
points, we can check that

{πSO2n

1,0,a,ζ | a ∈ k×, ζ ∈ {±1}}

gives a complete set of representatives of the set of equivalence classes of simple
supercuspidal representations of SO2n(F ). In the following, when p = 2, we write

πSO2n

a,ζ (resp. χ̃SO2n

a,ζ ) instead of πSO2n

1,0,a,ζ (resp. χ̃SO2n

1,0,a,ζ), for short. Note that any

πSO2n

a,ζ is stable under the action of O2n(F ) (the same argument as in [Oi18, Section

2.6] works also in the case where p = 2).

3. Local Langlands correspondence for SON

3.1. Local Langlands correspondence for SON . For any connected reductive
groupG over F , we let Ĝ denote the Langlands dual group and put LG := Ĝ⋊WF .
We say that a homomorphism φ : WF × SL2(C) →

LG is an L-parameter of G if φ
is smooth on WF , φ is compatible with the projections to WF , and the restriction

φ|SL2(C) : SL2(C) → Ĝ is algebraic. We let

• Πtemp(G) be the set of equivalence classes of irreducible tempered repre-
sentations of G(F ), and

• Φtemp(G) be the set of Ĝ-conjugacy classes of tempered (i.e., the image of

WF is bounded in Ĝ) L-parameters of G.
10



We are interested in the case where G is the split special orthogonal group SON .
The Langlands dual group of SON is given by

®
Sp2n(C) if N = 2n+ 1,

SO2n(C) if N = 2n.

In both cases, the Galois action on Ĝ is trivial.
Hence, an L-parameter of SO2n+1 can be regarded as a 2n-dimensional symplec-

tic representation ofWF×SL2(C). It is known that two L-parameters of SO2n+1 are
conjugate by Sp2n(C) if and only if they are equivalent as 2n-dimensional represen-
tations of WF × SL2(C) ([GGP12, Theorem 8.1 (ii)]). Thus the set Φtemp(SO2n+1)
can be identified with the set of isomorphism classes of 2n-dimensional symplectic
representations of WF × SL2(C) which are bounded on WF .

Similarly, an L-parameter of SO2n can be regarded as a 2n-dimensional orthog-
onal representation of WF × SL2(C) with trivial determinant. It is known that
two L-parameters of SO2n are conjugate by O2n(C) if and only if they are equiv-
alent as 2n-dimensional representations of WF × SL2(C) ([GGP12, Theorem 8.1

(ii)]). By noting this, we let Φ̃temp(SO2n) be the set of O2n(C)-conjugacy classes

of tempered L-parameters of SO2n. Thus the set Φ̃temp(SO2n) can be identified
with the set of isomorphism classes of 2n-dimensional orthogonal representations
of WF × SL2(C) which are bounded on WF and have trivial determinant. We also

define Π̃temp(SO2n) to be the set of O2n(F )-orbits in Πtemp(SO2n).

For the notational convenience, let us put Φ̃temp(SO2n+1) := Φtemp(SO2n+1) and

Π̃temp(SO2n+1) := Πtemp(SO2n+1) in the case where N = 2n+ 1.

For any φ ∈ Φ̃temp(SON ), we define a finite group Sφ as follows:

Sφ := Cent
Ĝ
(Im(φ)),

Sφ = Sφ/(S
◦
φZĜ

),

where S◦
φ denotes the identity component of Sφ and Z

Ĝ
denotes the center of Ĝ.

Here, we implicitly fix a representative of the equivalence class φ and again write
φ for it by abuse of notation.

Recall that a Whittaker datum of G is a pair w = (B, λ) of an F -rational Borel
subgroup B of G and a generic character λ of U = U(F ), where U is the unipotent
radical of B. In the following, let us fix a Whittaker datum w of G = SON defined
as follows:

(1) When N = 2n + 1, we take B to be the upper-triangular Borel subgroup
of SO2n+1:

B =

Ö
∗ · · · ∗

. . .
...
∗

è
.

We define a generic character λ of U by

λ(y) = ψ(y1,2 + · · ·+ yn−1,n + yn,n+1)

for any y = (yij) ∈ U .
11



(2) When N = 2n, we take B to be the upper-triangular Borel subgroup of
SO2n:

B :=




∗ · · · ∗ ∗ ∗
. . .

...
...

... ∗
∗ ∗ ∗

∗ ∗ ∗ · · · ∗
∗ ∗ ∗ · · · ∗

∗ · · · ∗
. . .

...
∗




.

We define a generic character λ of U by

λ(y) = ψ(y1,2 + · · ·+ yn−1,n + yn−1,n+1)

for any y = (yij) ∈ U .

The local Langlands correspondence for tempered representations of SON , which
was established by Arthur ([Art13, Theorems 1.5.1 and 2.2.1]), asserts that there
exists a natural map

LLCSON : Π̃temp(SON ) → Φ̃temp(SON ),

which is surjective and with finite fibers. In other words, by letting Π̃SON
φ be the

fiber of the map LLCSON at an L-parameter φ, we have a natural partition

Π̃temp(SON ) =
⊔

φ∈Φ̃temp(SON )

Π̃SON
φ ,

where each Π̃SON
φ is finite. For any φ ∈ Φ̃temp(SON ), the finite set Π̃SO2n

φ is called
an L-packet and equipped with a bijective map depending on the chosen Whittaker
datum w of SON

ιw : Π̃SON
φ

1:1
−−→ S

∨

φ

to the set S
∨

φ of irreducible characters of Sφ.

3.2. Result of Mœglin and Xu. We say that a tempered L-parameter φ ∈
Φ̃temp(SON ) is discrete if its centralizer group Sφ is finite, or equivalently, φ is
the direct sum of pairwise inequivalent irreducible symplectic (resp. orthogonal)
representations as a 2n-dimensional representation ofWF×SL2(C) whenN = 2n+1

(resp. when N = 2n). Arthur’s result assures that φ is discrete if and only if Π̃SON
φ

contains a discrete series representation of SON (F ), and that, in this case, every

member of Π̃SON
φ is a discrete series. (We refer the reader to [Xu17b, Section 2] for

details.)

In general, it is possible that the L-packet Π̃SON
φ for a discrete L-parameter φ

contains both a supercuspidal representation and a non-supercuspidal discrete series
representation. In [Mœg11] and [Xu17b], Mœglin and Xu gave a parametrization

of the supercuspidal members in a given discrete series L-packet in terms of S
∨

φ .
As an easy consequence of their result, we have the following (see [Oi18, Corollary
4.9] for the details):

Proposition 3.1. For any discrete L-parameter φ ∈ Φ̃temp(SON ), the following
are equivalent:

12



(1) φ is trivial on SL2(C);

(2) Π̃SON
φ contains a w-generic supercuspidal representation;

(3) every member of Π̃SON
φ is supercuspidal.

Remark 3.2. The logical relationship between [Mœg11] and [Xu17b] is as follows.
In [Mœg11], Mœglin established an explicit construction of discrete series L-packets
(more generally, A-packets) of classical groups modulo the local Langlands corre-
spondence for L-packets consisting only of supercuspidal representations. In partic-
ular, her result gives the above-mentioned parametrization of supercuspidal mem-
bers in each discrete series L-packet. However, a priori, it is not obvious at all
whether her construction is consistent with Arthur’s one [Art13]. What Xu did in
[Xu17b] is to prove that these two constructions indeed coincide.

3.3. Formal degree conjecture of Hiraga–Ichino–Ikeda. In [HII08, Conjec-
ture 1.4], Hiraga–Ichino–Ikeda proposed the following conjecture (here we state the
conjecture according to a reformulation by Gross–Reeder, [GR10, Conjecture 7.1
(5)]):

Conjecture 3.3 (Formal degree conjecture). Let φ ∈ Φ̃temp(SON ) be a discrete

L-parameter. Then, for any π ∈ Π̃SON
φ , we have

| degµ(π)| =
1

|Sφ|
·

|γ(0,Ad ◦φ, ψ0)|

|γ(0,Ad ◦φpr, ψ0)|
.

Here,

• degµ(π) is the formal degree of π with respect to the Euler–Poincare measure
µ of SON (F ) (see [GR10, Section 7.1]),

• Ad is the adjoint representation of Ĝ on its Lie algebra Lie Ĝ,
• γ(s,−, ψ0) is the γ-factor for representations of WF × SL2(C) (see [GR10,
Section 2.2]) with respect to a nontrivial additive character ψ0 of F of level
0, i.e., ψ0 is trivial on O but not on p−1, and

• φpr denotes the principal parameter in the sense of Gross–Reeder (see [GR10,
Section 3.3]).

Remark 3.4. In [HII08], the formal degree conjecture is formulated for any quasi-
split connected reductive group G. In general, the right-hand side of the identity of
Conjecture 3.3 must contain one more term “〈1, π〉” (see [HII08, Conjecture 1.4]).
Here 〈−, π〉 denotes the irreducible character of Sφ corresponding to π under the

map ιw : Π̃SON
φ → S

∨

φ . In fact, the group Sφ is always abelian when G = SON .

Accordingly, 〈1, π〉 is always given by 1.

The formal degree conjecture for the odd special orthogonal group SO2n+1 was
proved by Ichino–Lapid–Mao [ILM17]. For the even special orthogonal group SO2n,
recently Beuzart-Plessis announced that he has proved the formal degree conjecture
([BP21]).

4. Analysis of symmetric and exterior square L-factors

In this section, we prove several results on the symmetric and exterior square
L-factors of self-dual irreducible Galois representations, which will be needed later.

The following lemma is proved in [HO22, Lemma 4.11].
13



Lemma 4.1. Let ρ be a finite-dimensional irreducible smooth representation of
WF .

(1) The number of irreducible components of ρ|IF is equal to the degree of the
maximal unramified extension E of F from which ρ is induced, where IF
denotes the inertia subgroup of WF .

(2) If we let σ be a representation of WE such that ρ ∼= IndWF

WE
σ, then the

restriction of σ to IF is irreducible and Gal(E/F )-regular, i.e., (σ|IF )
γ ≇

σ|IF for any γ ∈ Gal(E/F )r {1}.
(3) An unramified character ω of F× satisfies ρ⊗ ω ∼= ρ if and only if ωd = 1

for d := [E : F ], or equivalently, ω|WE = 1.

Proposition 4.2. Let ρ be a self-dual finite-dimensional irreducible smooth repre-
sentation of WF . Let E and σ be as in Lemma 4.1, thus ρ ∼= IndWF

WE
σ. We put

d := [E : F ].

(1) When ρ is orthogonal, we have

L(s,∧2ρ) =

®
1 if σ is self-dual,

(1 + q−es)−1 if σ is not self-dual.

(2) When ρ is symplectic, we have

L(s, Sym2 ρ) =

®
1 if σ is self-dual,

(1 + q−es)−1 if σ is not self-dual.

Here, the degree d must be even when σ is not self-dual in both cases, hence we put
d = 2e.

Proof. The proof can proceed in the same way in both cases (1) and (2) (by swap-
ping Sym2 and ∧2), so let us consider only the case (1).

We assume that ρ is orthogonal. Recall that

L(s,∧2ρ) = det
(
1− q−s · Frob

∣∣ (∧2ρ)IF
)−1

.

We note that (∧2ρ)IF ⊂ (ρ ⊗ ρ)IF . Let us investigate the unramified characters
appearing in ρ⊗ ρ. If we let ω be such a character of F×, then we have

HomWF (ρ⊗ ω, ρ) ∼= HomWF (ω, ρ⊗ ρ) 6= 0

by the self-duality of ρ. Thus ω must satisfy ωd = 1, or equivalently, ω|WE = 1

by Lemma 4.1 (3). Note that such a character ω occurs only once in ρ ⊗ ρ since
HomWF (ρ⊗ ω, ρ) is at most one-dimensional by the irreducibility of ρ.

We first consider the case where σ is self-dual. Note that then σ must be orthog-
onal since its induction ρ ∼= IndWF

WE
σ is orthogonal. If ω is an unramified character

of WF satisfying ω|WE = 1, then we have

HomWF (ω, Ind
WF

WE
(Sym2 σ)) ∼= HomWE (1, Sym

2 σ) 6= 0

as σ is irreducible and orthogonal. Since IndWF

WE
(Sym2 σ) is contained in Sym2 ρ,

we get HomWF (ω, Sym
2 ρ) 6= 0 and thus HomWF (ω,∧

2ρ) = 0.
We next consider the case where σ is not self-dual. In this case, there is a

nontrivial element γ of Gal(E/F ) such that σγ is equivalent to the contragredient
of σ (compare the Mackey decompositions of ρ and ρ∨). This element γ necessarily
has order 2 (in particular, this implies that d is even; let us put d = 2e). Let E′ be

the subextension of E/F fixed by γ. We put σ′ := Ind
WE′

WE
σ. Then σ′ is irreducible
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and self-dual since σγ is the contragredient of σ and not equivalent to σ. Note that
this implies that σ′ is orthogonal since so is its induction ρ to WF . Furthermore,
by noting that σ|IF is Gal(E/F )-regular, σ′|IF is Gal(E′/F )-regular.

Now let ω be an unramified character of WF which occurs in ρ⊗ ρ. If ω satisfies
ωe = 1 (or, equivalently, ω|WE′

= 1), then the same argument as in the case where

σ is self-dual shows that ω must occur in IndWF

WE′
(Sym2 σ′). Since IndWF

WE′
(Sym2 σ′)

is contained in Sym2 ρ, we get HomWF (ω, Sym
2 ρ) 6= 0 and HomWF (ω,∧

2ρ) = 0.
Let us consider the case where ωe 6= 1. In this case, the restriction ω|WE′

=: ω′ is
necessarily the nontrivial quadratic character of WE′ with kernel WE . Let us write
V for the representation space of σ, and γV for that of σγ ; more precisely, we choose
a lift γ in WE′ of the nontrivial element of Gal(E/E′), and the action of w ∈ WE

on γv in γV gives wγv = γ(γ−1wγ)v. That gives the action of WE on the space

X = V ⊕ γV of σ′ = Ind
WE′

WE
σ, and γ acts on that space via γ(v, γw) = (γ2w, γv).

The action of WE′ on X ⊗X is the direct sum of

(V ⊗ V )⊕ (γV ⊗ γV ) = Ind
WE′

WE
(V ⊗ V )

and

(V ⊗ γV )⊕ (γV ⊗ V ) = Ind
WE′

WE
(V ⊗ γV ).

The first factor cannot contain ω′ since σ is not self-dual. We investigate the second
factor. On (V ⊗γV )⊕(γV ⊗V ), we have the involution sending (v1⊗γv2, γv

′
1⊗v

′
2)

to (v′2 ⊗ γv′1, γv2 ⊗ v1), and the Sym2-part of (V ⊗ γV )⊕ (γV ⊗ V ) is the subspace
where that involution acts trivially, the ∧2-part the subspace where it acts as −1.
From this, it can be easily checked that the ∧2-part is, as a representation of WE′ ,
the twist of the Sym2-part by the character ω′. Since σ′ is orthogonal, the trivial
character occurs in the Sym2-part. Thus the character ω′ must occur in the ∧2-part.

In summary, we see that an unramified character ω of WF is contained in ∧2ρ if
and only if ω|WE′

6= 1. By noting that IndWF

WE′
ω′ is isomorphic to the direct sum

of all such characters of WF , we conclude that

L(s,∧2ρ) = L(s, IndWF

WE′
ω′) = L(s, ω′) = (1 + q−es)−1.

�

Recall that, for any finite-dimensional irreducible smooth representation ρ of
WF , we can consider its Swan conductor Swan(ρ). We refer the reader to [GR10,
Section 2] for the definition of the Swan conductor; note that Swan(ρ) is denoted
by b(ρ) in [GR10]. We also need the following:

Lemma 4.3. Let ρ be a self-dual finite-dimensional irreducible smooth representa-
tion of WF which is not a character and satisfies Swan(ρ) = 0. Then the dimension

of ρ is even (let us say d) and we have ρ ∼= IndWF

WE
χ. Here,

• E is the degree d unramified extension of F , and
• χ is a Gal(E/F )-regular character of E× satisfying χ2 6= 1 and

χ|E′× =

®
1 if ρ is orthogonal,

ω′ if ρ is symplectic,

where E′ is the subextension of E/F such that [E : E′] = 2 and ω′ is the
nontrivial quadratic unramified character of E′×.
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Proof. Let d be the dimension of ρ. Since Swan(ρ) = 0, ρ is trivial on the wild
inertia subgroup PF . Thus, by noting that IF /PF is abelian, the restriction ρ|IF of
ρ to the inertia subgroup IF decomposes into the direct sum of d characters. Hence,
by Lemma 4.1, we have ρ ∼= IndWF

WE
χ, where E is the degree d unramified extension

of F and χ is a Gal(E/F )-regular character of E× (recall that even its restriction
to O×

E is Gal(E/F )-regular). Note that χ is tamely ramified by the assumption
that Swan(ρ) = 0.

Since ρ is self-dual, we have HomWF (ρ, ρ
∨) 6= 0. Hence, by the Frobenius reci-

procity and the Mackey decomposition, χ−1 has to equal χg for some g in Gal(E/F ).
Then g2 fixes χ, so either g is trivial or g has order 2 by the Gal(E/F )-regularity
of χ. If g is trivial, then χ2 = 1. Since χ is tamely ramified, this implies that χ|O×

E

is fixed by Gal(E/F ), which contradicts the Gal(E/F )-regularity of χ|O×

E
. Thus g

must have order 2, hence d is even. Note that then χ2 6= 1.
Let E′ be the fixed field of g, so that E/E′ is a quadratic extension. Then

Ind
WE′

WE
χ is self-dual. Moreover, since we have ρ ∼= IndWF

WE′
(Ind

WE′

WE
χ), Ind

WE′

WE
χ is

irreducible. In particular, Ind
WE′

WE
χ is either symplectic or orthogonal. Note that

∧2(Ind
WE′

WE
χ) ∼= det(Ind

WE′

WE
χ) as Ind

WE′

WE
χ is two dimensional. Hence, Ind

WE′

WE
χ is

symplectic if and only if det(Ind
WE′

WE
χ) is trivial. By [BH06, 29.2, Proposition], we

have

det(Ind
WE′

WE
χ) ∼= det(Ind

WE′

WE
1)⊗ (χ|E′×).

The character det(Ind
WE′

WE
1) equals the nontrivial unramified quadratic character

of WE′ . Indeed, det(Ind
WE′

WE
1) is obviously trivial on WE , hence equals either the

trivial character or the nontrivial unramified quadratic character ofWE′ . If we take

a realization of the representation space of Ind
WE′

WE
1 as in the proof of Prop 4.2, we

can see that the action of any γ ∈ WE′ rWE is represented by a matrix

Å
0 1
1 0

ã
,

whose determinant equals −1. Hence det(Ind
WE′

WE
1) is not the trivial character.

On the other hand, as we have χ · χg = 1 (i.e., χ is trivial on norms from E× to
E′×), the restriction χ|E′× is either trivial or the nontrivial unramified quadratic

character. Therefore, det(Ind
WE′

WE
χ) is trivial if and only if χ|E′× is the nontrivial

unramified quadratic character. This completes the proof. �

5. Twisted gamma factor for simple supercuspidal representations
of SO2n

This section concerns the case where G := SO2n, n > 1. Let π be a simple
supercuspidal representation of G = G(F ), and τ a tamely ramified character of
F×. We compute the Rankin–Selberg γ-factor γ(s, π × τ, ψ) defined in [Kap13a,
Kap15], thus completing [AK21] which treated the case where τ is quadratic. Then
we deduce consequences for the parameter of π, as in [AK21, Section 5] (see [Adr16,
AK19] for similar results in the SO2n+1 and Sp2n cases).

5.1. Simple supercuspidal representations of SO2n. Following [AK21], we let
π be the simple supercuspidal representation of G given as follows. Fix α ∈ k×

and a uniformizer ̟′ for the ring of integers O of F . (Here, we use the symbol ̟′

rather than ̟ because we want to reserve the symbol ̟ for “the” uniformizer fixed
at the beginning of this paper.) Let us write I and I+ instead of ISO2n and I+SO2n
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for short, respectively. Similarly, we write Z = ZSO2n
. Define an affine generic

character χ of I+ by

χ(y) = ψ(

n−1∑

i=1

yi,i+1 + αyn−1,n+1 +̟′−1y2n−1,1).

Then the stabilizer of χ in I is given by Z〈gχ〉I
+, where

gχ =

Ö
−̟′−1

In−2

α−1

α
In−2

−̟′

è
∈ G.

We put π := IndGZ〈gχ〉I+χ.

Note that this construction exhausts all (equivalence classes of) simple supercus-
pidal representations ofG. See Section A.2.3 for the comparison of this parametriza-
tion of simple supercuspidal representations with the one given in Section 2.3.

5.2. The twisted γ-factors. Let τ be any character of F×. We recall the defi-
nition of the γ-factor γ(s, π × τ, ψ) of [Kap13a] via the theory of Rankin–Selberg
integrals, with the minor change in conventions introduced in [AK21]. Note that
by [Kap15], the γ-factors defined via the Rankin–Selberg method and via the
Langlands–Shahidi method coincide. Fix Haar measures dx on F and d×x on

F× by requiring
∫
O
dx = q1/2 and d×x = q1/2

q−1 |x|
−1dx. For a measurable subset

X ⊂ F put vol(X) =
∫
X dx and similarly for X ⊂ F×, vol×(X) =

∫
X d×x. In

order to define the integral we introduce an auxiliary classical group. Let γ ∈ F×

be a given element. Define

H = {g ∈ SL3 | tgJ3,γg = J3,γ}, J3,γ =

Ñ
1

γ/2
1

é
.

Let BH = TH ⋉ UH denote the Borel subgroup of upper triangular invert-
ible matrices in H. For s ∈ C, let V (τ, s) be the space of the representation

n-IndHBH (| det |
s−1/2τ) (normalized parabolic induction). The vectors in V (τ, s) are

regarded as complex-valued functionsH×F× → C and theH-action on fs ∈ V (τ, s)
is denoted by h ·fs (h ∈ H). Using the Iwasawa decomposition, the representations

n-IndHBH (| det |
s−1/2τ) can be realized on the same space V (τ) = V (τ, 0), then a

standard section fs ∈ V (τ, s) is the image of f ∈ V (τ). A holomorphic (resp.,
meromorphic) section is then an element in C[q∓s]⊗ V (τ) (resp., C(q−s)⊗ V (τ)).

We embed H in G as the stabilizer of the vectors e1, . . . , en−2,
1
4el − γen+1,

where (e1, . . . , e2n) is the standard basis of the column space F 2n. In coordinates,
an element (hij)1≤i,j≤3 ∈ H is mapped to

diag(In−2,

( 1
1
4

1
4

−γ γ
1

)Ç
h11 h12 h13

1
h21 h22 h23

h31 h32 h33

åÑ 1

2 −
1
2γ

−1

2
1
2 γ

−1

1

é
, In−2) ∈ G.

(cf. [Kap15], see [AK21]).
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Also define

Rn,1 =





Ñ
1
r In−2

I2
In−2

r′ 1

é
∈ G



 , wn,1 =

Ñ
1

In−2

I2
In−2

1

é
∈ G.

Recall n > 1. Let U be the unipotent radical of the upper triangular Borel
subgroup of G. Define a generic character of U by

u 7→ ψ(
n−2∑

i=1

ui,i+1 +
1
4un−1,n − γun−1,n+1)(1)

and let ψ denote this character by abuse of notation. (Note that this generic
character is different from λ fixed in Section 3.1.)

Now we can define the Rankin–Selberg integral. Let π be an irreducible ψ−1-
generic representation of G, and denote the corresponding Whittaker model of π
by W(π, ψ−1). For any W ∈ W(π, ψ−1) and a holomorphic section fs, the integral
is defined for Re(s) ≫ 0 by

Ψ(W, fs) =

∫

UH\H

∫

Rn,1
W (rwn,1h)fs(h, 1) dr dh.(2)

This integral extends to a meromorphic function in C(q−s).
In order to define the γ-factor we consider the intertwining operator M(τ, s) :

V (τ, s) → V (τ−1, 1− s) defined in Re(s) ≫ 0 by

M(τ, s)fs(h, a) =

∫

UH

fs(w1uh,−a
−1)du, w1 =

(
1

−1
1

)
,

and in general by meromorphic continuation. Here the measure is defined by iden-
tifying the coordinate u1,2 of u ∈ UH with F and then du is our fixed measure dx.
The intertwining operator is normalized by the Langlands–Shahidi local coefficient
which we denote by C(s, τ, ψ). This factor was computed in [AK21], but the fourth
named author found a typo in the computation, which we hereby correct: the factor
τ(4/γ)|4/γ|s in equation [AK21, (6.4)] should be replaced by its inverse (the effect
of the change z 7→ γ

4 z was computed incorrectly). Consequently the formula reads

C(s, τ, ψ) = τ(γ)|γ|s−1γ(2s− 1, τ2, ψ).(3)

Here γ(s, τ2, ψ) is Tate’s γ-factor [Tat67]. Then we define

M∗(τ, s) = C(s, τ, ψ)M(τ, s) and Ψ∗(W, fs) = Ψ(W,M∗(τ, s)fs)

(which is absolutely convergent for Re(s) ≪ 0). The γ-factor is now defined by the
functional equation

γ(s, π × τ, ψ)Ψ(W, fs) = π(−I2n)τ(−1)nτ(4γ−2)|γ/2|−2s+1Ψ∗(W, fs).(4)

Remark 5.1. The correction to C(s, τ, ψ) does not affect [AK21, Theorem 1.1]
because it does not affect the poles of γ(s, π × τ, ψ), and it also has no impact
on [AK21, Corollary 4.7] and [AK21, Proposition 5.1] because τ was taken to be
quadratic and |γ/4| = 1 (see Section 3 in loc. cit.).
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5.3. The computation of γ(s, π × τ, ψ). Until the end of this appendix, we put

π = IndGZ〈gχ〉I+χ and τ is a tamely ramified character of F×. Recall that the only

difference here compared to [AK21] is that in loc. cit. we assume τ is also quadratic.
Because of this, most of the computations from loc. cit. extend trivially to the case
here; for the remaining arguments we provide full details.

Recall that α ∈ k× was taken in Section 5.1 in as a parameter of the simple
supercuspidal representation π. We define

γ = −4α.

The parameter γ is now used for the definition of the γ-factor as in Section 5.2. We
define a generic character ψα of U by

ψα(u) = ψ(
n−2∑

i=1

ui,i+1 + un−1,n + αun−1,n+1).

Lemma 5.2. The simple supercuspidal representation π is generic with respect to
ψα and also ψ−1.

Proof. Recall that π is said to be generic with respect to ψα of U if HomU (π, ψα) 6=
0. By the Frobenius reciprocities for the compact and smooth inductions, we have

HomU (π, ψα) ∼= HomG(π, Ind
G
U ψα)

∼= HomZ〈gχ〉I+(χ, Ind
G
U ψα).

Thus it suffices to construct a nonzero homomorphism from χ to IndGU ψα which is
Z〈gχ〉I

+-equivariant. Since the character ψα of U coincides with χ on U∩Z〈gχ〉I
+,

we can define a non-zero element W of IndGU ψα by

W (g) =

®
ψα(u)χ(x) if g = ux for u ∈ U, x ∈ Z〈gχ〉I

+,

0 otherwise.

We define a C-linear map f : χ → IndGU ψα by f(1) := W . Then f is Z〈gχ〉I
+-

equivariant. Hence π is ψα-generic.
We note that ψα is rationally conjugate to ψ−1. Indeed, for example, by putting

t := diag(−1, 1,−1, . . . , (−1)n−1

︸ ︷︷ ︸
n−1

, (−1)n4, (−1)n4−1, (−1)n−1, . . . ,−1, 1,−1︸ ︷︷ ︸
n−1

),

we get

ψtα(u) = ψα(tut
−1) = ψ(−u12 − · · · − un−2,n−1 − 4−1un−1,n − 4αun−1,n+1)

= ψ−1(u12 + · · ·+ un−2,n−1 + 4−1un−1,n − γun−1,n+1)

= ψ−1(u)

for any u = (uij) ∈ U (recall that γ = −4α). Hence the ψα-genericity of π is
equivalent to the ψ−1-genericity of π. �

Put ι = diag(In−1, 1/4, 4, In−1) ∈ T and define for g ∈ G, ιg = ι−1gι. The
representation πι acts on the same space as π, by πι(g) = π(ιg). The map
W(π, ψ−1

−γ/4) → W(πι, ψ−1) defined by W 7→ W ι, where W ι(g) = W (ιg), is an

isomorphism. Thus

γ(s, π × τ, ψ) = γ(s, πι × τ, ψ).
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We turn to compute this γ-factor using a specific choice of data (W, fs), which
is the same data taken for a quadratic τ . Regarding the Whittaker function define
W0 ∈ W(π, ψ−1

−γ/4) by

W0(g) =

®
ψ−1
−γ/4(u)χ(g

i
χ)ω(z)χ(y) g = ugiχzy, u ∈ U, z ∈ Z, i ∈ {0, 1}, y ∈ I+,

0 otherwise.

and take W = (wn,1)−1 ·W0. For the section, let I+H be the pro-unipotent part of
the Iwahori subgroup of H corresponding to BH . Define fs by

fs(g, a) =

®
|m|sτ(am) g = diag(m, 1,m−1)uy, m ∈ F×, u ∈ UH , y ∈ I+H ,

0 otherwise.

The computation involves writing the integral dh of (2) over the Borel subgroup
BH < H of lower triangular invertible matrices. Write b ∈ BH in the form

b =
Ä a

1
a−1

äÅ 1
x 1

−
γ
4 x

2 −
γ
2 x 1

ã
, a ∈ F×, x ∈ F.

Since H is defined with respect to J3,γ , if a = 1, then b ∈ I+H if and only if |x| < 1.
The computations related to the inner dr-integral of W ι and Ψ(W ι, fs) follow

just as in [AK21] so that we only cite the statements:

Lemma 5.3 ([AK21, Lemma 4.1]2). Assume b as above.

(1) If ι(rwn,1b(wn,1)−1) ∈ UZI+, then a ∈ 1 + p, |x| < 1, r ∈ pn−2.
(2) If ι(rwn,1b(wn,1)−1) ∈ UgχZI

+, then for some k ≥ 0, we have |a| = q2k+1,
|x| = qk and γ

4x
2a−1 ∈ ̟′ · (1 + p), and also r ∈ pn−2. �

Corollary 5.4 ([AK21, Corollary 4.2]). We have Ψ(W ι, fs) = vol×(1+p) vol(p)n−1.
�

Lemma 5.5 ([AK21, Lemma 4.5]). Assume ι(rwn,1b(wn,1)−1) ∈ UgχZI
+. Then

∫

Rn,1
W ι

0(rw
n,1b(wn,1)−1) dr = χ(gχ) vol(p)

n−2. �

Next, we compute M(τ, s)fs on the support of W . In order to obtain uniform
formulas define

Aτ =

∫

O×

τ2(o)d×o =

®
1 τ2 is unramified,

0 otherwise.

Lemma 5.6 (cf. [AK21, Lemma 4.3]). Assume a ∈ 1 + p and |x| < 1.

M(τ, s)fs(b, 1) = |γ|sτ(γ)τ(2−2)(q − 1)|2|1−2s τ2(̟′)q1/2−2s

1− τ2(̟′)q1−2s
Aτ .

Proof. The proof follows exactly as in loc. cit. except the final step. To start, we
can take a = 1 because τ is tamely ramified. Then, for u 6= I3 we have the identity

w1u =
(

1
−1

1

)Å
1 v −γ−1v2

1 −2γ−1v
1

ã
=

Å
1 γv−1 −γv−2

1 −2v−1

1

ãÅ
−γv−2

2v−1 1
1 v −γ−1v2

ã
,

2The notation U in [AK21, Lemma 4.1] means USO2n .
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Plugging this into the integral defining M(τ, s) we obtain

M(τ, s)fs(b, 1) = |γ|sτ(γ)

∫

F×

τ(v−2)|v|−2sfs(

Ç
1

2v−1+x 1

−
γ
4 (2v−1+x)2 −

γ
2 (2v−1+x) 1

å
, 1) dv.

Next, using the fact that fs is supported in BHI
+
H and the assumption |x| < 1, we

deduce

M(τ, s)fs(b, 1) = |γ|sτ(γ)(q − 1)q−1/2τ(2−2)|2|1−2s

∫

{v∈F×:|v|>1}

τ(v−2)|v|1−2s d×v.

The last integral is equal to the sum
∑∞

l=1 q
l(1−2s)τ(̟′2n)

∫
O× τ

2(o)d×o, which van-

ishes when τ2 is not unramified, and otherwise equals τ2(̟′)q1−2s/(1−τ2(̟′)q1−2s).
�

Lemma 5.7 (cf. [AK21, Lemma 4.4]). Assume |x| = qk with k ≥ 0. Then

M(τ, s)fs(b, 1) = |γ|sτ(γ)|a|1−sτ−1(a)|2|1−2sτ(2−2)τ(x2)q2k(s−1) vol(p).

Proof. As in the proof of Lemma 5.6 but now for any a,

M(τ, s)fs(b, 1)

= |γ|sτ(γ)|a|1−sτ−1(a)

∫

F×

τ(v−2)|v|−2sfs(

Ç
1

2v−1+x 1

−
γ
4 (2v−1+x)2 −

γ
2 (2v−1+x) 1

å
, 1) dv.

We change variables v 7→ 2v. Then, we see that the integrand vanishes unless
v−1 + x ∈ p, equivalently v−1 ∈ −x(1 + x−1p). Since |x| ≥ 1, x−1p < p. Now
because τ is tamely ramified, τ(v−1) = τ(−x). Moreover |v| = q−k and the dv-
integral equals τ(x)2q2k(s−1) vol(p). �

Corollary 5.8 (cf. [AK21, Corollary 4.6]). We have

Ψ(W ι,M(τ, s)fs)

Ψ(W ι, fs)

= (q − 1)|2|1−2s|γ|s
Ç
τ(γ/4)τ2(̟′)q1/2−2s

1− τ2(̟′)q1−2s
Aτ +

χ(gχ)τ(̟
′)q−1/2−s

1− q−1

å
.

Proof. In order to compute the integral we write the dh-integral over BH using
the right invariant Haar measure on BH given by db = |a|−1 d∗a dx. Since W0 is
supported in U〈gχ〉ZI

+ and by virtue of Lemma 5.3, Ψ(W ι,M(τ, s)fs) is the sum
of two integrals. The first summand, corresponding to case (1) of the lemma, is

∫

a∈1+p

∫

x∈p

∫

r∈pn−2

W ι
0(rw

n,1b(wn,1)−1)M(τ, s)fs(b, 1) dr da dx.

By Lemma 5.6 this integral equals

vol×(1 + p) vol(p)n−1|γ|sτ(γ)τ(2−2)(q − 1)|2|1−2s τ2(̟′)q1/2−2s

1− τ2(̟′)q1−2s
Aτ .

The second summand corresponds to Lemma 5.3 (2). It is an integral over (a, x)
such that

|a| = q2k+1, |x| = qk, γ
4x

2a−1 ∈ ̟′ · (1 + p), k ≥ 0.
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(It is the same domain as in the case where τ is quadratic.) For each such elements,
by Lemma 5.7 and Lemma 5.5 the integrand equals

|γ|sτ(γ)τ−1(a)|2|1−2sq1−sχ(gχ)τ(2
−2)τ(x2) vol(p)n−1

= |γ|sτ(̟′)|2|1−2sq1−sχ(gχ) vol(p)
n−1,

where we used τ−1(a) = τ(22)τ(γ)−1τ(x−2)τ(̟′) (τ is tamely ramified). The
measure of the above set of (a, x) was computed in the proof of [AK21, Corollary 4.6]
and equals (q − 1)q−3/2 vol×(1 + p)/(1− q−1). Therefore

Ψ(W ι,M(τ, s)fs) = vol×(1 + p) vol(p)n−1(q − 1)|2|1−2s|γ|s

×

Ç
τ(γ/4)τ2(̟′)q1/2−2s

1− τ2(̟′)q1−2s
Aτ +

χ(gχ)τ(̟
′)q−1/2−s

1− q−1

å
.

Now the result follows with the aid of Corollary 5.4. �

Collecting the results above, the immediate analog of [AK21, Corollary 4.7] reads
(note that γ/4 = −α):

Corollary 5.9. For any tamely ramified character τ of F×,

γ(s, π × τ, ψ) = π(−I2n)τ(−1)nγ(2s− 1, τ2, ψ)

×

Ç
(q − 1)τ2(̟′)q1/2−2s

1− τ2(̟′)q1−2s
Aτ + χ(gχ)τ

−1(−α)τ(̟′)q1/2−s
å
.

5.4. L-parameter. In this section we discuss the L-parameter φπ of π in the sense
of Arthur (see Section 3). By Appendices B and C we have γ(s, π×τ, ψ) = γ(s, φπ⊗
τ, ψ), for any character τ of F×, so that the poles of γ(s, π × τ, ψ) tell us when a
given tame character τ is an irreducible component of φπ .

Note that φπ is the direct sum of irreducible orthogonal representations of
WF × SL2(C), which are inequivalent to each other as explained in Section 3.1
(see also Section 6.1). Hence, if φπ contains a character, then it must necessarily
be quadratic. Let us determine those, following [AK21].

Remark 5.10. Since π is supercuspidal and n > 1, by [Kap13b, Corollary 4.2] the
integral Ψ(W, fs) is holomorphic, and by [Sha81, Lemma 2.2.5] the intertwining
operator M(τ, s) is holomorphic when Re(s) > 1/2. Thus, even without appealing
to the local Langlands correspondence, we know that if γ(s, π × τ, ψ) has a pole at
s = 1, then C(s, τ, ψ) must have a pole there, and by (3) this means τ is quadratic.

Assume η is a character of F×. Recall that when η is unramified, by [BH06, 23.4
and 23.5],

γ(s, η, ψ) = qs−1/2η−1(̟′)
1− η(̟′)q−s

1− η(̟′)−1qs−1
(5)

(note that ψ is of level 1, i.e., trivial on p but not on O), and when η is ramified
and tamely ramified, by [BH06, 23.6]

γ(s, η, ψ) = ε(s, η, ψ) = q−1/2G(η−1, ψ).(6)

Here G(η, ψ) is the Gauss sum of η with respect to ψ (see [BH06, 23.6]), and for a
tamely ramified η,

G(η, ψ) =
∑

x∈O×/1+p

η(x)ψ(x).
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(We use the definition of [Oi18].)
Recall p is the characteristic of the residue field.
Let τ1 be the unramified character such that τ1(̟

′) = χ(gχ). If p > 2 we also
let τ2 be the character which restricts to the unique nontrivial quadratic character
of O× and satisfies τ2(̟

′) = χ(gχ)τ2(γ). Both characters are quadratic. They
are also tamely ramified: τ1 trivially, and τ2 because when p > 2, 1 + p ⊂ (F×)2.
Since τ1(̟

′) 6= −χ(gχ)τ1(γ) and for p > 2 also τ2(̟
′) 6= −χ(gχ)τ2(γ), by [AK21,

Theorem 1.1] γ(s, π × τi, ψ) has a pole at s = 1, for both i.
The characters τ1 and τ2 determine 1-dimensional summands φi of φπ , hence we

can write

φπ = φ′ ⊕ φ1[⊕φ2],

where until the end of this section factors in square brackets appear only when
p > 2. Let Π′ be the endoscopic lift of φ′ to a general linear group, i.e., the
irreducible tempered representation of GL2n−2(F ) (for p > 2) or GL2n−1(F ) (when
p = 2) associated with φ′ by the local Langlands correspondence for general linear
groups. We let γ(s,Π′ × τ, ψ) denote the γ-factor of [JPSS83] via the theory of
Rankin–Selberg integrals.

Theorem 5.11. Let τ be a tamely ramified character of F×. Then

γ(s,Π′ × τ, ψ) = π(−I2n)τ((−1)n+1α−1̟′)χ(gχ)[τ
−1(4)τ2(−1)ε(s, τ2, ψ)]q

1/2−s.

In particular for p = 2, γ(s,Π′×τ, ψ) = τ(α−1̟′)χ(gχ)q
1/2−s (α = − γ

4 was defined
in Section 5.3).

Proof. Since φπ = φ′ ⊕ φ1[⊕φ2], the local Langlands correspondence implies

γ(s, π × τ, ψ) = γ(s,Π′ × τ, ψ)γ(s, τ1τ, ψ)[γ(s, τ2τ, ψ)].

Then by Corollary 5.9,

γ(s,Π′ × τ, ψ) =π(−I2n)τ(−1)nγ(2s− 1, τ2, ψ)

(7)

×

Ç
(q − 1)

τ2(̟′)q1/2−2s

1− τ2(̟′)q1−2s
Aτ + χ(gχ)τ

−1(−α)τ(̟′)q1/2−s
å

× γ(s, ττ1, ψ)
−1[γ(s, ττ2, ψ)

−1].

For the computation we treat 3 cases.

• The character τ2 is ramified. Then Aτ = 0. Since τ must also be ramified and τ1
is unramified, we deduce that ττ1 is both ramified and tamely ramified. Next we
observe that (for p > 2) ττ2 is ramified, because otherwise τ |O× = τ−1

2 |O× , but by
definition τ22 |O× ≡ 1 contradicting the assumption that τ2 is ramified. Applying
(6) to ττ1 and τ2, and to ττ2, and noting that G(τ−1τ−1

1 , ψ) = G(τ−1, ψ) because
τ1 is unramified, identity (7) becomes

γ(s,Π′ × τ, ψ) =π(−I2n)τ(−1)nτ−1(−α)G(τ−2, ψ)(8)

× χ(gχ)τ(̟
′)q1/2−sG(τ−1, ψ)−1[q1/2G(τ−1τ−1

2 , ψ)−1].

When p = 2 we can further simplify by noting that G(τ−2, ψ) = G(τ−1, ψ),
because ψ is invariant under Gal(k/F2) (F2 - the finite field of cardinality 2), in
particular under x 7→ x2.
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The character τ2|O× is the nontrivial quadratic character. Hence by the Hasse–
Davenport product relation (see e.g., [Oi18, Lemma A.5(2)])

G(τ−1τ−1
2 , ψ)G(τ−1, ψ) = G(τ−2, ψ)G(τ−1

2 , ψ)τ(4).(9)

Also by [BH06, (23.6.3)], G(τ−1
2 , ψ) = G(τ−1

2 , ψ)−1τ2(−1)q, and after applying
(6) again we have

q1/2G(τ−1τ−1
2 , ψ)−1 = q−1/2G(τ−1, ψ)G(τ−2, ψ)−1G(τ−1

2 , ψ)τ2(−1)τ−1(4)

= τ−1(4)G(τ−1, ψ)G(τ−2, ψ)−1τ2(−1)ε(s, τ2, ψ).

Thus (8) becomes

γ(s,Π′ × τ, ψ) =π(−I2n)τ(−1)nτ−1(−α)τ(̟′)χ(gχ)[τ
−1(4)τ2(−1)ε(s, τ2, ψ)]q

1/2−s.

(10)

• Both τ2 and ττ1 are unramified. Then Aτ = 1. Because τ1 is unramified, we
deduce that τ is unramified. Thus we can apply (5) to ττ1 and to τ2. Note that
by our choice of τ1, τ1(̟

′) = χ(gχ), and also τ(−1) = 1 and τ(α) = 1 (|α| = 1).
Then (7) equals

γ(s,Π′ × τ, ψ) =π(−I2n)q
2s−3/2τ−2(̟′)

1− τ2(̟′)q1−2s

1− τ−2(̟′)q2s−2

×

Ç
(q − 1)

τ2(̟′)q1/2−2s

1− τ2(̟′)q1−2s
+ χ(gχ)τ(̟

′)q1/2−s
å

× q−s+1/2τ(̟′)χ(gχ)
1− τ(̟′)−1χ(gχ)q

s−1

1− τ(̟′)χ(gχ)q−s
[γ(s, ττ2, ψ)

−1].

Cancelling the numerator in the expression for γ(2s− 1, τ2, ψ) with the denomi-
nator in (7) and simplifying we obtain

γ(s,Π′ × τ, ψ) =π(−I2n)q
−1/2 1

1− τ−2(̟)q2s−2

× (1 + τ(̟′)χ(gχ)q
1−s)(1 − τ(̟′)χ(gχ)q

−s)

×
1− τ(̟′)−1χ(gχ)q

s−1

1− τ(̟′)χ(gχ)q−s
[γ(s, ττ2, ψ)

−1]

=π(−I2n)q
−1/2 (1 + τ(̟′)χ(gχ)q

1−s)(1 − τ(̟′)−1χ(gχ)q
s−1)

1− τ−2(̟′)q2s−2

× [γ(s, ττ2, ψ)
−1].

Recall that χ(gχ)
2 = 1. Since for any constant c such that c2 = 1,

1− τ−2(̟′)q2s−2 = (1− τ−1(̟′)cqs−1)(1 + τ−1(̟′)cqs−1),(11)

and using 1+z
1+z−1 = z, we can further simplify the expression for γ(s,Π′ × τ, ψ)

and reach

γ(s,Π′ × τ, ψ) = π(−I2n)τ(̟
′)χ(gχ)[γ(s, ττ2, ψ)

−1]q1/2−s.

In addition for p > 2, because τ is unramified, ττ2 is tamely ramified and not
unramified hence by (6) and [BH06, (23.6.3)] applied to ττ2,

γ(s, ττ2, ψ) = q−1/2G(τ−1τ−1
2 , ψ) = q−1/2G(τ−1

2 , ψ) = τ2(−1)ε(s, τ2, ψ)
−1.
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Thus

γ(s,Π′ × τ, ψ) = π(−I2n)τ(̟
′)χ(gχ)[τ2(−1)ε(s, τ2, ψ)]q

1/2−s.(12)

• τ2 is unramified and ττ1 is ramified. If p = 2 we deduce τ is also unramified,
hence ττ1 cannot be ramified. Thus we can now assume p > 2. Again Aτ = 1.
Now τ is ramified (because τ1 is unramified) whence ττ1 is tamely ramified and
not unramified. In addition since τ2 is unramified, and since there is a unique
nontrivial quadratic character of O×, we deduce that τ |O× = τ2|O× , in particular
ττ2 must be unramified. By (6) applied to ττ1 and (5) applied to τ2 and ττ2,
and using τ2(̟

′) = χ(gχ)τ2(γ),

γ(s,Π′ × τ, ψ) =π(−I2n)τ(−1)nq2s−3/2τ−2(̟′)
1− τ2(̟′)q1−2s

1− τ−2(̟′)q2s−2

×

Ç
(q − 1)

τ2(̟′)q1/2−2s

1− τ2(̟′)q1−2s
+ χ(gχ)τ

−1(−α)τ(̟′)q1/2−s
å

× q1/2−sτ(̟′)χ(gχ)τ2(γ)
1− τ(̟′)−1χ(gχ)τ

−1
2 (γ)qs−1

1− τ(̟′)χ(gχ)τ2(γ)q−s
q1/2G(τ−1τ−1

1 , ψ)−1.

As in the previous case the numerator of γ(2s−1, τ2, ψ) cancels with the denom-
inator in (7). We can further simplify using the fact that now τ2(γ) = τ(γ) (then
τ2(γ)τ

−1(−α) = τ(4) = 1) and also apply (11) with c = χ(gχ)τ(γ). We obtain

γ(s,Π′ × τ, ψ)

= π(−I2n)τ(−1)n
1

1− τ−2(̟′)q2s−2
G(τ−1τ−1

1 , ψ)−1

×
(
(q − 1)τ(γ)χ(gχ)q

−sτ(̟′) + (1− q1−2sτ2(̟′))
) 1− τ(̟′)−1χ(gχ)τ

−1(γ)qs−1

1− τ(̟′)χ(gχ)τ(γ)q−s

= π(−I2n)τ(−1)nG(τ−1τ−1
1 , ψ)−1

×
(1− τ(̟′)χ(gχ)τ(γ)q

−s)(1 + τ(̟′)χ(gχ)τ(γ)q
1−s)

(1 + τ(̟′)−1χ(gχ)τ−1(γ)qs−1)(1 − τ(̟′)χ(gχ)τ(γ)q−s)

= π(−I2n)τ(−1)nτ(̟′)τ(γ)χ(gχ)G(τ
−1τ−1

1 , ψ)−1q1−s.

Next we apply (9) with (τ, τ2) replaced by (τ1, τ) (now τ is the nontrivial qua-
dratic character of O×) and obtain

G(τ−1τ−1
1 , ψ)G(τ−1

1 , ψ) = G(τ−2
1 , ψ)G(τ−1, ψ)τ1(4).

Since τ1 is unramified, G(τ−2
1 , ψ) = G(τ−1

1 , ψ) and τ1(4) = 1 hence

G(τ−1τ−1
1 , ψ) = G(τ−1, ψ) = G(τ−1

2 , ψ) = τ2(−1)ε(s, τ2, ψ)
−1q1/2.

Thus

γ(s,Π′ × τ, ψ) = π(−I2n)τ(−1)nτ(γ)τ(̟′)χ(gχ)τ2(−1)ε(s, τ2, ψ)q
1/2−s(13)

Finally note that (12) and (13) are particular cases of (10), where in the former
case τ(−α)[τ(4)] = 1 and in the latter (which only occurs when p > 2) τ(γ) =
τ(−α−1)τ−1(4). We also mention that for p = 2, we have −1 ∈ 1 + p whence
π(−I2n) = 1 (π is a simple supercuspidal representation, thus its central character
is tamely ramified) and also τ(−1) = 1. �
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6. L-packets and L-parameters for simple supercuspidals of SON

In the following, we consider the special orthogonal group SON for an integer N
greater than 2. Let π be a simple supercuspidal representation of SON (F ) and we
write

π =

®
π
SO2n+1

a,ζ when N = 2n+ 1

πSO2n

ξ,κ,a,ζ when N = 2n

as in Section 2. Let φ be the L-parameter of π in the sense of Arthur, thus π
is contained in the L-packet Π̃SON

φ . As discussed in Section 3.1, when N = 2n

(resp. N = 2n+1), φ is regarded as a 2n-dimensional orthogonal (resp. symplectic)
representation of WF × SL2(C).

Our aim is to determine the structure of Π̃SON
φ and describe φ explicitly as a

2n-dimensional representation of WF × SL2(C).

6.1. Rough form of the L-parameters. We let

φ = φ0 ⊕ · · · ⊕ φr

be the irreducible decomposition of φ. As explained in Section 3.1, the fact that
π is a discrete series representation implies that each φi is irreducible orthogonal
(resp. symplectic) and φi is inequivalent to φj for any i 6= j when N is even (resp.
odd).

The following proposition can be proved in the same way as in Lemma 5.2.

Proposition 6.1. (1) When N = 2n+1, the simple supercuspidal representa-

tion π = π
SO2n+1

a,ζ is w-generic.

(2) When N = 2n, the simple supercuspidal representation π = πSO2n

ξ,κ,a,ζ is w-
generic if κ = 0.

Corollary 6.2. The L-parameter φ is trivial on SL2(C) and all members of Π̃SON
φ

are supercuspidal.

Proof. When N = 2n+ 1, Π̃
SO2n+1

φ contains π, which is a w-generic supercuspidal

representation by Proposition 6.1 (1). Hence the assertion follows from Proposition
3.1.

We next consider the case where N = 2n. We note that the orbit of π with
respect to the action of the adjoint group of SO2n is contained in Π̃SO2n

φ by the

stability of the L-packet Π̃SO2n

φ (see [Oi18, Corollary 4.2]). It is not difficult to

check that πSO2n

ξ,1,a,ζ and πSO2n

ξ,0,aǫ−1,ζ belong to the same orbit (see Section [Oi18, Sec-

tion 5.1] for the argument in the case of symplectic groups; a similar computation

works). Thus, using Proposition 6.1 (2), we see that Π̃SO2n

φ contains a w-generic su-
percuspidal representation, hence the same argument as in the previous paragraph
works. �

6.2. From twisted γ-factor to Swan conductor. The following is a key input
of our proof, which follows from the computation of twisted γ-factors of simple
supercuspidal representations established in [AL16, Adr16, AK21] and Section 5.

Proposition 6.3. (1) Suppose that N = 2n + 1. For any tamely ramified
character τ of F×, we have

γ(s, π
SO2n+1

a,ζ × τ, ψ) = ζ · τ(−a−1̟) · q
1
2
−s.
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(2) Suppose that N = 2n.
(a) When p = 2, there exists a unique tamely ramified quadratic character

contained in φ (say φr), which is

®
the trivial character if ζ = 1,

the nontrivial unramified quadratic character if ζ = −1.

Moreover, for any tamely ramified character τ of F×, we have

γ(s, πSO2n

a,ζ × τ, ψ) = ζ · τ(a−1̟) · q
1
2
−s · γ(s, φr ⊗ τ, ψ).

(b) When p 6= 2, there exist exactly two tamely ramified quadratic (hence
unramified) characters contained in φ (say φr−1 and φr), which are
given as follows:

• φr−1 is the unique unramified quadratic character of F× satis-
fying φr−1(a

−1̟) = ζ,
• φr is the unique ramified quadratic character of F× satisfying
φr(a

−1̟) = ζ · φr(−4ǫκ).
Moreover, for any tamely ramified character τ of F×, we have

γ(s, πSO2n

ξ,κ,a,ζ × τ, ψ) = ξ · ζ · τ((−1)n+1̟/4ǫκa)q1−sG(φr , ψ)
−1

· γ(s, φr−1 ⊗ τ, ψ) · γ(s, φr ⊗ τ, ψ).

Proof. (1) By [Adr16, Corollary 7.3] and Remark 6.5, we have

γ(s, πζχ′ [̟
′]× τ, ψ) = ζ · τ((−1)n̟′) · q

1
2
−s

for any tamely ramified character τ of F×. Here, πζχ′ [̟′] is (a modified

version of) the simple supercuspidal representation constructed in [Adr16],
as reviewed in Section A.2.2. By the discussion in Section A.2.2, if we put

̟′ := (−1)n+1a−1̟, then we have π
SO2n+1

a,ζ
∼= πζχ′ [̟′]. Thus we get

γ(s, π
SO2n+1

a,ζ × τ, ψ) = γ(s, πζχ′ [̟
′]× τ, ψ)

= ζ · τ((−1)n̟′) · q
1
2
−s

= ζ · τ(−a−1̟) · q
1
2
−s.

(2) (a) Let, π11 [̟
′, ζ] be the simple supercuspidal representation of SO2n(F )

constructed in [AK21], as reviewed in Section A.2.3. By the discus-
sion in Section 5.4, there exists a unique tamely ramified character
τ1 contained in the L-parameter of π11 [̟

′, ζ], which is trivial when
ζ = 1 and nontrivial quadratic unramified when ζ = −1. By the dis-
cussion in Section A.2.3, if we put a := ̟̟′−1 ∈ k×, then we have
πSO2n

a,ζ
∼= π11 [̟

′, ζ]. Then, by putting φr := τ1, we get φr as desired.
Moreover, by Theorem 5.11, for any tamely ramified character τ of
F× we have

γ(s, π11 [̟
′, ζ]× τ, ψ) = ζ · τ(̟′) · q

1
2
−s · γ(s, φr ⊗ τ, ψ).
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Thus we get

γ(s, πSO2n

a,ζ × τ, ψ) = γ(s, π11 [̟
′, ζ]× τ, ψ)

= ζ · τ(̟′) · q
1
2
−s · γ(s, φr ⊗ τ, ψ)

= ζ · τ(a−1̟) · q
1
2
−s · γ(s, φr ⊗ τ, ψ).

(b) Let πωα [̟
′, ζ] be the simple supercuspidal representation of SO2n(F )

constructed in [AK21], as reviewed in Section A.2.3. By the discus-
sion in Section 5.4, there exist exactly two tamely ramified quadratic
characters τ1 and τ2 contained in the L-parameter of πωα [̟

′, ζ], which
are given as follows:

• τ1 is the unique unramified quadratic character of F× satisfying
τ1(̟

′) = ζ,
• τ2 is the unique ramified quadratic character of F× satisfying
τ2(̟

′) = ζ · τ2(−4α).
By the discussion in Section A.2.3, if we let α := ǫκ and put ξ := ω(−1)

and a := ̟̟′−1 ∈ k×, then we have πSO2n

ξ,κ,a,ζ
∼= πωα [̟

′, ζ]. Then, by
putting φr−1 := τ1 and φr := τ2, we get φr−1 and φr as desired.
Moreover, by Theorem 5.11, for any tamely ramified character τ of
F×, the twisted γ-factor γ(s, πωα [̟

′, ζ]× τ, ψ) is given by the product
of

ξ · ζ · τ((−1)n+1̟′/4α)q
1
2
−sε(s, φr, ψ)φr(−1)

with γ(s, τ1 ⊗ τ, ψ) · γ(s, φr ⊗ τ, ψ). By the dictionary between πSO2n

ξ,κ,a,ζ

and πωα [̟
′, ζ] and the equality (5), this equals

ξ · ζ · τ((−1)n+1̟/4ǫκa)q1−sG(φr , ψ)
−1.

�

Remark 6.4. The γ-factors on the left-hand sides of the equalities in the above theo-
rem are defined via the Rankin–Selberg integrals (or equivalently via the Langlands–
Shahidi method; see [Sou93, Sou95] for N = 2n+ 1 and [Kap13a] for N = 2n; see
also [Kap15]). Note that γ(s, π × τ, ψ) is denoted by Γ(s, π × τ, ψ) in [Adr16].

Remark 6.5. In fact, the result in [Adr16] contains some errors. We would like to
take this opportunity to describe how to correct them. The statement of [Adr16,
Corollary 7.3] is that

γ(s, πζχ[̟
′]× τ, ψ) = ζ · τ((−1)n̟′) · q

1
2
−s.

The problem is that the element γ = diag(In−1,
1
2 , 1, 2, In−1) taken at the end of

[Adr16, Section 5] should be γ = diag(12In, 1, 2In) correctly. If we repeat the same
computation as in [Adr16] with this change, then we arrive at the formula

γ(s, πζχ[̟
′]× τ, ψ) = ζ · τ((−1)n4−1̟′) · q

1
2
−s.(14)

However, there is also another issue that the definition of the simple supercus-
pidal representation πζχ[̟

′] makes sense only when p 6= 2, as discussed in Section
A.2.2. For this reason, the better way is to adopt the affine generic character χ′

and consider the associated simple supercuspidal representation πζχ′ [̟′] (see Sec-

tion A.2.2). In this case, since χ′ and the generic character “ψ” taken in [Adr16,
28



page 200] have the same restriction on U ∩ I+SO2n+1
, we do not need a twisting pro-

cess as discussed at the end of [Adr16, Section 5] (i.e., the element γ can be taken
to be I2n+1). This makes the computation performed in [Adr16] even simpler and
enables us to get the formula

γ(s, πζχ′ [̟
′]× τ, ψ) = ζ · τ((−1)n̟′) · q

1
2
−s(15)

for any p uniformly. The identity (15) is the one used in the proof of Proposition
6.3 (1). We remark that the formulas (14) and (15) are consistent when p 6= 2 since

we have πζχ′ [̟′] ∼= πζχ[4̟
′] (see Section A.2.2).

Corollary 6.6. We have Swan(φ) = 1.

Proof. Let us consider the case where N = 2n and p 6= 2. Since φr−1 and φr
are tamely ramified characters by Proposition 6.3 (2) (b), we have Swan(φr−1) =

Swan(φr) = 0. Let us check that
∑r−2
i=0 Swan(φi) = 1. It is known that Arthur’s

local Langlands correspondence preserves the Rankin–Selberg γ-factors (we will
explain a justification of this fact in Appendix B). In particular, we have

γ(s, π × τ, ψ) = γ(s, φ⊗ τ, ψ) =
r∏

i=0

γ(s, φi ⊗ τ, ψ)

for any tamely ramified character τ of F×. Thus, by Proposition 6.3 (2) (b), we
have

r−2∏

i=0

γ(s, φi ⊗ τ, ψ) = ξ · ζ · τ((−1)n+1̟/4ǫκa)q1−sG(φr, ψ)
−1.(16)

Recall that we have

γ(s, φi ⊗ τ, ψ) =
L(1− s, φ∨i ⊗ τ∨)

L(s, φi ⊗ τ)
· ε(s, φi ⊗ τ, ψ).

We note that L(s, φi ⊗ τ) (and L(1 − s, φ∨i ⊗ τ∨)) can be nontrivial only when
φi ⊗ τ is an unramified character since φi ⊗ τ is irreducible. However, if φi ⊗ τ
is unramified for 0 ≤ i ≤ r − 2, then φi is a quadratic tamely ramified character,
which is a contradiction since only φr−1 and φr are such characters (Proposition
6.3 (2) (b)). On the other hand, since φi is self-dual, we have

|ε(s, φi, ψ)| = qSwan(φi)(
1
2
−s)

(see [GR10, (10)]; note that ψ is of level 1 here). Hence, by taking the absolute
value of (16), we get

r−2∏

i=0

qSwan(φi)(
1
2
−s) = q

1
2
−s

(recall that |G(φr , ψ)| = q1/2). This implies that
∑r−2

i=0 Swan(φi) = 1.
The case where N = 2n+1 and the case where N = 2n and p = 2 can be treated

by a similar, but simpler, argument. (In the case where N = 2n+1, note that each
irreducible constituent φi is symplectic, hence not a character). �

By Corollary 6.6, we may suppose that

• Swan(φ0) = 1 and
• Swan(φi) = 0 for any 0 < i ≤ r.
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Moreover, by Lemma 4.3, we see that the dimension of φi is even for 0 < i < r
when p = 2 and for 0 < i < r − 1 when p 6= 2. Thus the dimension of φ0 must be®

odd when N = 2n and p = 2,

even when N = 2n and p 6= 2.

6.3. Utilization of the formal degree conjecture. We next utilize the formal
degree conjecture for Π̃SON

φ .

Lemma 6.7. We have

| degµ(π)| =





qn
2+n · γ(0,Ad ◦φpr, ψ0)

−1 when N = 2n+ 1,

qn
2

· γ(0,Ad ◦φpr, ψ0)
−1 when N = 2n and p = 2,

1
2 · qn

2

· γ(0,Ad ◦φpr, ψ0)
−1 when N = 2n and p 6= 2.

Proof. The formal degree of a simple supercuspidal representation with respect to
the Euler–Poincare measure µ is computed in [GR10, Section 9.4]. Although it is
supposed that the connected reductive group is simply-connected in [GR10, Section
7.1], we can easily modify their computation in our setting as follows.

Recall that the simple supercuspidal π is given by the compact induction of a
1-dimensional character of®

I+SO2n+1
〈ϕ

SO2n+1

a−1 〉 if N = 2n+ 1,

ZSO2nI
+
SO2n

〈ϕSO2n

ǫκ,−a−1〉 if N = 2n.

(Section 2). Therefore, the well-known formula of the formal degree of a compactly-
induced supercuspidal representation (e.g., see [BH96, Theorem A.14]) implies that

degµ(π) =





1
2 · µ(I+SO2n+1

)−1 if N = 2n+ 1,
1
2 · µ(I+SO2n

)−1 if N = 2n+ 1 and p = 2,
1
4 · µ(I+SO2n

)−1 if N = 2n+ 1 and p 6= 2.

(17)

By [GR10, (55)], we have

|µ(ISON )| =
L(1,Ad ◦φpr)

L(0,Ad ◦φpr) · |LZ|
· |T (q)| · q−l.(18)

Here,

• LZ denotes the center of the Langlands dual group of SON , hence |LZ| = 2,
• T (q) denotes the set of F -rational elements of the split maximal torus whose
order is finite and prime to p,

• l denotes the rank of SON , hence l = n.

As explained in [GR10, Section 9.4], we have

γ(0,Ad ◦φpr, ψ0) = qM ·
L(1,Ad ◦φpr)

L(0,Ad ◦φpr)
,(19)

where M denotes the number of positive roots in SON , hence

M =

®
n2 when N = 2n+ 1,

n(n− 1) when N = 2n.

Therefore, the equalities (18) and (19) imply that

|µ(ISON )| =
|T (q)|

2
· q−(M+l) · γ(0,Ad ◦φpr, ψ0).
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As we have [ISON : I+SON ] = |T (q)|, we get

|µ(I+SON )| =
1

2
· q−(M+l) · γ(0,Ad ◦φpr, ψ0).

Thus, by the equality (17), we get the desired equality. �

Proposition 6.8. We have

q
1
2
Artin(Ad ◦φ) ·

|L(1,Ad ◦φ)|

|L(0,Ad ◦φ)|
=





2r · qn
2+n when N = 2n+ 1,

2r−1 · qn
2

when N = 2n and p = 2,

2r−2 · qn
2

when N = 2n and p 6= 2.

Proof. Recall that the formal degree conjecture (Conjecture 3.3) gives the identity

| degµ(π)| =
1

|Sφ|
·

|γ(0,Ad ◦φ, ψ0)|

|γ(0,Ad ◦φpr, ψ0)|
.

Note that we have

|Sφ| =

®
2r when N = 2n+ 1,

2r−1 when N = 2n.

Thus, Lemma 6.7 implies that

|γ(0,Ad ◦φ, ψ0)| =





2r · qn
2+n when N = 2n+ 1,

2r−1 · qn
2

when N = 2n and p = 2,

2r−2 · qn
2

when N = 2n and p 6= 2.

By recalling that

• |γ(0,Ad ◦φ, ψ0)| = ε(0,Ad ◦φ, ψ0) ·
L(1,Ad ◦φ)
L(0,Ad ◦φ) , and

• |ε(0,Ad ◦φ, ψ0)| = q
1
2
Artin(Ad ◦φ) (here ψ0 is taken to be of level 0),

we get the desired equality. �

Corollary 6.9. We have L(s,Ad ◦φ) = 1 and

r =





0 when N = 2n+ 1,

1 when N = 2n and p = 2,

2 when N = 2n and p 6= 2.

Proof. Let us consider only the case where N = 2n and p 6= 2 because similar, but
simpler, arguments work in the case where N = 2n+ 1 and also in the case where
N = 2n and p = 2.

Since Ad ◦φ = ∧2φ when N = 2n, we have

Ad ◦φ =
( r⊕

i=0

∧2φi

)
⊕
( ⊕

0≤i<j≤r

φi ⊗ φj

)
.

We first investigate the terms ∧2φi for 0 ≤ i ≤ r.

(1) We consider the case where i = 0. By Proposition 4.2, L(s,∧2φ0) is given
by either 1 or (1 + q−e0s)−1 for some non-negative integer e0.

(2) We consider the case where 1 ≤ i ≤ r − 2. Note that since φi is tamely
ramified and self-dual, φi cannot be a character by Proposition 6.3 (2)
(b). Thus, by Lemma 4.3, φi is induced from a non-self-dual character
of the Weil group of an unramified extension of F . This implies that, by
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Proposition 4.2, L(s,∧2φi) is given by (1+ q−eis)−1 for some non-negative
integer ei.

(3) We consider the case where i = r − 1, r. Since φr−1 and φr are characters,
we have ∧2φr−1 = ∧2φr = 0. Hence L(s,∧2φr−1) = L(s,∧2φr) = 1.

We next investigate the terms φi ⊗ φj for 0 ≤ i < j ≤ r.

(4) We consider the case where i = 0 and 0 < j ≤ r. Since Swan(φ0) = 1
and Swan(φj) = 0 (0 < j ≤ r), φ0|PF cannot be isomorphic to φj |PF . In
other words, (φ0 ⊗ φj)|PF cannot contain the trivial character of PF . In
particular, φ0 ⊗ φj does not contain any unramified character, hence we
have L(s, φ0 ⊗ φj) = 1.

(5) We consider the case where 0 < i < j ≤ r − 2. As discussed in the case

(2), Lemma 4.3 implies that we have φi ∼= IndWF

WEi
χi for an unramified

extension Ei of F and a character χi of Ei satisfying χi|E′×

i
= 1 (E′

i is the

unramified subextension of Ei/F such that [Ei : E
′
i] = 2). Similarly, we

have φj ∼= IndWF

WEj
χj for an unramified extension Ej of F and a character

χj of Ej satisfying χj|E′×

j
= 1. Suppose that there exists an unramified

character ω ofWF which is contained in φi⊗φj . Then we have φj ∼= ω⊗φi.
In particular, φi and φj have the same dimension, hence we have Ei = Ej
and E′

i = E′
j . We put E := Ei = Ej and E

′ := E′
i = E′

j . By looking at the
restriction of φj ∼= ω ⊗ φi to WE , we see that tensoring ω|WE maps the set
{χwi | w ∈ Gal(E/F )} to the set {χwj | w ∈ Gal(E/F )}. Since both χi and

χj are trivial on E′×, so is any element of {χwi | w ∈ Gal(E/F )} or {χwj |

w ∈ Gal(E/F )}. By recalling that E ⊃ E′ ⊃ F are unramified extensions
and that ω is an unramified character of WF , this implies that ω is trivial,
which furthermore implies that φj ∼= φi. Thus we get a contradiction.
Hence we get L(s, φi ⊗ φj) = 1.

(6) We consider the case where 0 < i ≤ r− 2 and j = r− 1, r. In this case, we
have L(s, φi ⊗ φj) = 1 by the same argument as in the proof of Corollary
6.6.

(7) We consider the case where i = r − 1 and j = r. In this case, φr−1 ⊗ φr is
a ramified character by Proposition 6.3 (2) (b). Thus we have the L-factor
L(s, φr−1 ⊗ φr) is trivial.

In summary, we see that L(s,Ad ◦φ) is given by the product of L(s,∧2φ0) (which
equals either 1 or (1+ q−e0s)−1) and (1+ q−eis)−1’s (1 ≤ i ≤ r−2). Let us suppose
that L(s,∧2φ0) = (1 + q−e0s)−1 for the sake of contradiction. Then we have

|L(1,Ad ◦φ)|

|L(0,Ad ◦φ)|
=
r−2∏

i=0

(1 + q−ei·1)−1

(1 + q−ei·0)−1
=

r−2∏

i=0

2qei

1 + qei
.

Thus, by Proposition 6.8, we get

r−2∏

i=0

2qei

1 + qei
= 2r−2 · qn

2− 1
2
Artin(Ad ◦φ),

or equivalently,

22 · q
∑r−2
i=0

2ei+Artin(Ad ◦φ) = q2n
2

·

r−2∏

i=0

(1 + qei)2.
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By noting that q is odd and prime to 1 + qei , we must have 22 =
∏r−2
i=0 (1 + qei)2.

However, this cannot happen since 1 + qe0 > 2. Thus we get L(s,∧2φ0) = 1.
Now, again by using Proposition 6.8, we have

r−2∏

i=1

2qei

1 + qei
= 2r−2 · qn

2− 1
2
Artin(Ad ◦φ),

or equivalently,

q
∑r−2
i=0 2ei+Artin(Ad ◦φ) = q2n

2

·

r−2∏

i=1

(1 + qei)2.

Since q is prime to 1 + qei , we necessarily have r = 2 so that this equality holds.
Accordingly, we get L(s,Ad ◦φ) = 1. �

6.4. Main Theorem. Now let us determine the L-parameter φ as a 2n-dimensional
representation of WF .

6.4.1. The case of SO2n+1. We first consider the case where N = 2n+ 1.

Theorem 6.10. Let π
SO2n+1

a,ζ be the simple supercuspidal representation of SO2n+1(F )

with a ∈ k× and ζ ∈ {±1}. Then the L-parameter φ of π
SO2n+1

a,ζ is an irreducible
symplectic representation of WF of dimension 2n, which is the L-parameter of the
simple supercuspidal representation πGL2n

1,a,ζ of GL2n(F ).

Proof. We have shown that the L-parameter φ of the simple supercuspidal repre-

sentation π
SO2n+1

a,ζ is an irreducible symplectic representation of WF of dimension
2n and Swan conductor 1. This implies that if we regard φ as an L-parameter
of GL2n, then a simple supercuspidal representation of GL2n(F ) corresponds to φ
(see [BH14]). Since the determinant of φ is trivial, the simple supercuspidal repre-

sentation of GL2n(F ) has trivial central character, hence we may write πGL2n

1,a′,ζ′ for
it.

For any tamely ramified character τ of F×, the Rankin–Selberg γ-factor for
(πGL2n

1,a′,ζ′ , τ) is given by

γ(s, πGL2n

1,a′,ζ′ × τ, ψ) = τ(−1)2n−1 · τ(̟a′−1) · ζ′ · q
1
2
−s

according to [AL16, Corollary 3.12] (see also Section A.2.1). Therefore, by noting
that the local Langlands correspondence for the general linear groups preserves the
Rankin–Selberg local factors, Proposition 6.3 (1) implies that

τ(−1)2n−1 · τ(̟a′−1) · ζ′ · q
1
2
−s = ζ · τ(−a−1̟) · q

1
2
−s.

Since this identity holds for any tamely ramified character τ , we conclude that
ζ′ = ζ and a′ = a. �

6.4.2. The case of SO2n with p = 2. We next consider the case where N = 2n and
p = 2.

Theorem 6.11. Suppose that N = 2n and p = 2. Let πSO2n

a,ζ be the simple supercus-

pidal representation of SO2n(F ) with a ∈ k× and ζ ∈ {±1}. Then the L-parameter

φ of πSO2n

a,ζ is of the form φ = φ0 ⊕ φ1, where
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• φ0 is an irreducible orthogonal representation of WF of dimension 2n− 1,

which is the L-parameter of the simple supercuspidal representation π
GL2n−1

1,a,ζ

of GL2n−1(F ), and
• φ1 the determinant character of φ0, which is the trivial character if ζ = 1
and the unique nontrivial unramified quadratic character if ζ = −1.

Proof. We have shown that the L-parameter φ of a simple supercuspidal represen-
tation πSO2n

a,ζ is of the form φ = φ0 ⊕ φ1, where

• φ0 is an irreducible orthogonal representation of WF of dimension 2n − 1
and Swan conductor one, and

• φ1 is a tamely ramified character of WF , hence equals the determinant
character of φ0. (Recall that φ1 is the trivial character if ζ = 1 and the
unique nontrivial unramified quadratic character if ζ = −1.)

Since the simple supercuspidal representation of GL2n−1(F ) corresponding to φ0
is self-dual, it is of the form π

GL2n−1

1,a′,ζ′ (Section 2.1). Then, for any tamely ramified

character τ of F×, we have

γ(s, π
GL2n−1

1,a′,ζ′ × τ, ψ) = τ(−1)2n−2 · τ(̟a′−1) · ζ′ · q
1
2
−s.

according to [AL16, Corollary 3.12]. Therefore, by Proposition 6.3 (2) (a), we get

τ(−1)2n−2 · τ(̟a′−1) · ζ′ · q
1
2
−s = ζ · τ(a−1̟) · q

1
2
−s.

Since this identity holds for any tamely ramified character τ , we conclude that
ζ′ = ζ and a′ = a. �

6.4.3. The case of SO2n with p 6= 2. We finally consider the case where N = 2n
and p 6= 2.

Theorem 6.12. Let πSO2n

ξ,κ,a,ζ be the simple supercuspidal representation of SO2n(F )

with ξ ∈ {±1}, κ ∈ {0, 1}, a ∈ k×, and ζ ∈ {±1}. Then the L-parameter φ of a

πSO2n

ξ,κ,a,ζ is of the form φ = φ0 ⊕ φ1 ⊕ φ2, where

• φ1 is the unique unramified quadratic character of F× satisfying φ1(a
−1̟) =

ζ,
• φ2 is the unique ramified quadratic character of F× satisfying φ2(a

−1̟) =
ζ · φ2(−4ǫκ), and

• φ0 is an irreducible orthogonal representation of dimension 2n − 2, which

is the L-parameter of the simple supercuspidal representation π
GL2n−2

ω0,a′,ζ′
of

GL2n−2(F ), where ζ
′ = ξ · ζ · q1/2G(φ2, ψ)

−1 and a′ = (−1)n4aǫκ.

Proof. We have shown that the L-parameter φ of a simple supercuspidal represen-
tation πSO2n

ξ,κ,a,ζ is of the form φ = φ0 ⊕ φ1 ⊕ φ2, where

• φ0 is an irreducible orthogonal representation of dimension 2n−2 and Swan
conductor one, and

• φ1 and φ2 are tamely ramified characters as described in Proposition 6.3
(2) (b).

We let π
GL2n−2

ω′,a′,ζ′ be the self-dual simple supercuspidal representation of GL2n−2(F )

corresponding to φ0. Then, for any tamely ramified character τ of F×, we have

γ(s, π
GL2n−2

ω′,a′,ζ′ × τ, ψ) = τ(−1)2n−3 · τ(̟a′−1) · ζ′ · q
1
2
−s.
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according to [AL16, Corollary 3.12]. Therefore, by Proposition 6.3 (2) (b), we get

τ(−1)2n−3 · τ(̟a′−1) · ζ′ · q
1
2
−s = ξ · ζ · τ((−1)n+1̟/4ǫκa)q1−sG(φ2, ψ)

−1.

Since this identity holds for any tamely ramified character τ , we conclude that
ζ′ = ξ · ζ · q1/2G(φ2, ψ)

−1 and a′ = (−1)n4aǫκ. Finally, we note the determinant of
φ is trivial, hence the determinant of φ0 is equal to (the inverse of) the product of
φ1 and φ2. By the description of φ1 and φ2 in Proposition 6.3 (2) (b), the product
φ1φ2 is a nontrivial ramified quadratic character, hence so is the central character

of π
GL2n−2

ω′,a′,ζ′ . This implies that ω′ is the nontrivial quadratic character ω0 of k×. �

Appendix A. Several remarks on simple supercuspidal
representations

A.1. Iwahori subgroups. In Section 2.2, we explained that the Iwahori subgroup
ISO2n+1

of SO2n+1 can be thought of as matrices of the form

(†)




O× O O
. . .

... 1
2O

p O× O
2p · · · 2p O× O · · · O

2p O× O

2p
...

. . .

2p p O×




.

We explain how this intuitive description of the Iwahori subgroup can be derived
from [BT72, Section 10].

In [BT72, Section 10.1], the Bruhat–Tits theory is investigated thoroughly in
the case of classical groups. The description of Bruhat–Tits starts with taking the
following data ([BT72, (10.1.1)]):

• a field K (not necessarily commutative),
• an involution σ of K,
• a sign ε ∈ K×,
• a finite-dimensional right K-vector space X , and
• a σ-sesqui-linear form f on X satisfying

– f(y, x) = εf(x, y)σ for any x, y ∈ X and
– f(x, x) = 0 for any x ∈ X when (σ, ε) = (id,−1).

We put Kσ,ε := {t − εtσ | t ∈ K} and associate a pseudo-quadratic form q : X →
K/Kσ,ε to f , which satisfies

• q(xk) = kσq(x)k for any k ∈ K and x ∈ X , and
• q(x + y) = q(x) + q(y) + f(x, y) +Kσ,ε for any x, y ∈ X .

These data give rise to classical groups such as Is(f, q), which consists of isometries
of X with respect to (f, q), or Sim(f, q), which consists of similitudes of X with
respect to (f, q) (see [BT72, (10.1.4-5)]).

In order to realize the odd special orthogonal group, we choose (K,σ, ε,X, f) as
follows:

• K = F ,
• σ = id,
• ε = 1 (note that then Kσ,ε = 0),
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• X = F⊕2n+1; we let {e−n, . . . , e−1, e0, e1, . . . , en} be the canonical basis of
X and put Xi := Fei),

• f : X ×X → F is the symmetric bilinear form satisfying
– f(ei, ej) = 0 if i 6= −j,
– f(ei, e−i) = 1 for i ∈ {±1, . . . ,±n},
– f(e0, e0) = 2.

Then G := Is(f, q)◦ gives the odd special orthogonal group. Here, we note that the
matrix representation of the symmetric bilinear form f with respect to the basis
{e−n, . . . , e−1, e0, e1, . . . , en} is given by

JBT
2n+1 :=

Ñ
J ′
n

2
J ′
n

é
,

where J ′
n denotes the anti-diagonal matrix of size n whose anti-diagonal entries are

given by 1. In particular, when regarded as matrices of size 2n + 1 via the basis
{e−n, . . . , e−1, e0, e1, . . . , en}, the group G is given by

SO(JBT
2n+1) := {g ∈ SL2n+1 | tgJBT

2n+1g = JBT
2n+1}.

We prefer the bilinear form f represented by JBT
2n+1 rather than J2n+1 because

then we have 1 ∈ q(X0), which is makes the description of Bruhat–Tits simpler (cf.
[BT72, Remarque (10.1.3)]). We note that the translation between SO(JBT

2n+1) and
SO2n+1 is given as follows. Recall that

SO2n+1 := {g ∈ SL2n+1 | tgJ2n+1g = J2n+1}.

For example, by letting X be the diagonal matrix

diag((−1)n2, (−1)n−12, ...,−2︸ ︷︷ ︸
n

, 1, ..., 1︸ ︷︷ ︸
n+1

)

(the first n entries of X are given by 2 and −2 alternatively so that the n-th entry
is given by −2), we have (−1)n2 · J2n+1 = tXJBT

2n+1X . Thus the conjugation by X

gives a group isomorphism between SO2n+1 and SO(JBT
2n+1):

SO2n+1

∼=
−→ SO(JBT

2n+1) : g 7→ XgX−1.

It is not difficult to see that the matrices of the form (†) are mapped to matrices
of the form

(†BT)




O× O 2O
. . .

... O
p O× 2O
p · · · p O× O · · · O

2p O× O

p
...

. . .

2p p O×




under the conjugation by X . Thus, in the following, let us check that the matrices
of G of the form (†BT) constitute an Iwahori subgroup.

We let T be the subgroup of G given by

T := {t ∈ G | t(Xi) ⊂ Xi for any i ∈ {−n, . . . , 0, . . . , n}},
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which is a maximal torus. To describe the root system of G with respect to T , we
introduce a real vector space V ∗ := Rn equipped with a canonical basis {a1, . . . , an}
and the standard inner product. We put a−i := −ai for i ∈ {1, . . . , n} and a0 := 0.
We also put ai,j := ai+ aj for i, j ∈ {−n, . . . , 0, . . . , n}. Then the root system of G
is given by the set

Φ := {ai | i ∈ {±1, . . . ,±n}} ∪ {ai,j | i, j ∈ {±1, . . . ,±n}, i 6= j}.

For each root a ∈ Φ of G, the corresponding root subgroup Ua of G is given as
follows ([BT72, (10.1.2)]):

(1) When a = ai for i ∈ {±1, . . . ,±n}, we have

Uai = {ui(z) | z ∈ X0},

where ui(z) ∈ HomF (X,X) is the isometry defined by




e0 7→ e0 − f(z, e0)e−i

ei 7→ ei + z − q(z)e−i

ej 7→ ej for j ∈ {±1, . . . ,±n}r {i}.

Note that, if we write z = xe0 with x′ ∈ F , then we have
®
e0 − f(z, e0)e−i = e0 − 2xe−i

ei + z − q(z)e−i = ei + xe0 − x2e−i

by our choice of f and q.
(2) When a = aij for i, j ∈ {±1, . . . ,±n} satisfying i 6= j, we have

Uaij = {uij(x) | x ∈ F},

where uij(x) ∈ HomF (X,X) is the isometry defined by




e0 7→ e0

ei 7→ ei + xe−j

ej 7→ ej − xe−i

ek 7→ ek for j ∈ {±1, . . . ,±n}r {i, j}.

We consider the function ϕa : Ua → R∪{∞} for each root a ∈ Φ as follows ([BT72,
(10.1.13)]):

(1) When a = ai for i ∈ {±1, . . . ,±n}, we put

ϕai(ui(z)) :=
1

2
valF (q(z)).

Note that, if we write z = xe0 with x′ ∈ F , then we have ϕai(ui(z)) =
valF (x) by our choice of q.

(2) When a = aij for i, j ∈ {±1, . . . ,±n} satisfying i 6= j, we put

ϕaij (uij(x)) := valF (x).

Then {ϕa}a∈Φ defines a valuation of root datum of G ([BT72, Théorème(10.1.15)]),
hence determines a point o of an apartment A of the Bruhat–Tits building of G.

We put

T0 := {t ∈ T | t(ei) ∈ Oei for any i ∈ {−n, . . . , 0, . . . , n}}.
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If we choose a subset ∆ ⊂ Φ of simple roots, then the set Φ+ (resp. Φ−) of positive
roots (resp. negative roots) is determined. Accordingly, we get an Iwahori subgroup
I∆ of G given by

I∆ = 〈T0, Ua(O), Ub(p) | a ∈ Φ+, b ∈ Φ−〉,

where we put Ua(O) := ϕ−1
a ([0,∞]) ⊂ Ua and Ub(p) := ϕ−1

b ([1,∞]) ⊂ Ub.
Now let us consider the matrix representation of the Iwahori subgroup. For

an element g ∈ EndF (X), we write cij(g)(ej) = c′ij(g) · ei with c′ij(g) ∈ F for

i, j ∈ {−n, . . . , 0, . . . , n}. In other words, the matrix representation of g with respect
to the ordered basis {e−n, . . . , e−1, e0, e1, . . . , en} is given by (c′ij(g))ij . Then each

subspace HomF (Xj , Xi) of EndF (X) is regarded as a root space for the root a−i,j
with respect to the maximal torus T . Therefore, by choosing ∆ so that the upper-
triangular part of the matrix representation of EndF (X) corresponds to the root
spaces for Φ+ (i.e., a−i,j ∈ Φ+ if and only if i < j), we see that any element of the
associated Iwahori subgroup I∆ has the matrix representation of the form (†BT).

Conversely, we can also see that any element of G of the form (†BT) indeed
belongs to I∆ by using the following proposition.

Proposition A.1 ([BT72, (10.1.32)]). We take a pair (x, E) of

• a point x of the apartment A and
• a vectorial facet E of the root system of G

and consider the subgroups Px,E (“parahoric subgroup”) and P̂x,E associated to

(x, E) according to (7.1.8) and (7.2.4) of [BT72]. Then P̂x,E consists of elements
g ∈ G satisfying the inequality

ωij(cij(g))−
1

2
valF (c(g)) ≥ ai,−j(x)

for any i, j ∈ {−n, . . . , 0, . . . , n}, where the equality does not hold when (ai,−j)(E) ⊂
R>0. Here, the meaning of the symbols used in the above inequality are as follows:

• c(g) denotes the similitude of g (hence we always have c(g) = 1 under our
choice of G);

• for any g ∈ EndF (X,X), we let cij(g) be the element of HomF (Xj , Xi)
given by composing g with the injection Xj →֒ X and the projection X ։

Xi;
• for any i, j ∈ {−n, . . . , 0, . . . , n}, we define ωij : HomF (Xj , Xi) → R ∪
{±∞} by

ωij(α) = inf
xj∈Xj

{ωi(α(xj))− ωj(xj)}.

for α ∈ HomF (Xj , Xi). Here, for any i ∈ {−n, . . . , 0, . . . , n}, we define
ωi : Xi → R ∪ {∞} by

ωi(x · ei) =

®
1
2 valF (q(x · e0)) i = 0,

valF (x) i 6= 0,

for x ∈ F (hence x · ei ∈ Fei = Xi).

Let us explain how this proposition can be utilized. By choosing x to be the
origin o of the apartment and E to be the dominant chamber E∆ corresponding to

∆, the group Px,E∆
realizes the Iwahori subgroup I∆ and we have Px,E∆

= P̂x,E∆
.
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Since ai,−j(E∆) ⊂ R>0 if and only if i > j by our choice of E∆, Proposition A.1
implies that I∆ consists of the elements g ∈ G(F ) satisfying the inequality

ωij(cij(g))

®
≥ 0 if i ≤ j,

> 0 if i > j,

for any i, j ∈ {−n, . . . , 0, . . . , n}. We note that, by our choice of f , we have q(x ·
e0) = x2 for any x ∈ F . Thus we simply have ωi(x · ei) = valF (x) for any i ∈
{−n, . . . , 0, . . . , n}. This implies that ωij(cij(g)) = valF (c

′
ij(g)). In other words,

I∆ exactly consists of elements of G whose matrix representations with respect to
the basis {e−n, . . . , e−1, e0, e1, . . . , en} are of the form

(†′)

Ö
O× O

. . .

p O×

è
.

Thus it is enough to check that any element of G of the form (†′) in fact belongs
to (†BT). Let g ∈ G be an element of G of the form (†′). We write

g =

Ñ
g11 g12 g13
g21 g22 g23
g31 g32 g33

é
,

where g11, g13, g31, g33 ∈Mn,n(F ), g12, g32 ∈Mn,1(F ), and g21, g23 ∈M1,n(F ). Our
task is to show that 1

2g12 ∈ Mn,1(O) and 1
2g32 ∈ Mn,1(p). Since g is an element

of G = SO(JBT
2n+1), we have tgJBT

2n+1g = JBT
2n+1, equivalently, J

BT,−1
2n+1

tgJBT
2n+1 = g−1.

We have

JBT,−1
2n+1

tgJBT
2n+1 =

Ñ
J ′
n

1
2

J ′
n

éÑ
tg11

tg21
tg31

tg12
tg22

tg32
tg13

tg23
tg33

éÑ
J ′
n

2
J ′
n

é

=

Ñ
J ′
n

1
2

J ′
n

éÑ
tg31J

′
n 2tg21

tg11J
′
n

tg32J
′
n 2tg22

tg12J
′
n

tg33J
′
n 2tg23

tg13J
′
n

é

=

Ñ
J ′
n
tg33J

′
n 2J ′

n
tg23 J ′

n
tg13J

′
n

1
2
tg32J

′
n

tg22
1
2
tg12J

′
n

J ′
n
tg31J

′
n 2J ′

n
tg21 J ′

n
tg11J

′
n

é
.

Since this equals g−1, which again belongs to (†′), we necessarily have 1
2
tg32J

′
n ∈

M1,n(p) and 1
2
tg12J

′
n ∈ M1,n(O). Hence we get 1

2g12 ∈ Mn,1(O) and 1
2g32 ∈

Mn,1(p).
Thus we conclude that Iwahori subgroup I∆ of G = SO(JBT

2n+1)(F ) exactly con-

sists of elements of the form (†BT).
We finally give a comment on the Iwahori subgroup of SO2n(F ). In this case,

we choose the data (K,σ, ε,X, f) as follows:

• K = F ,
• σ = id,
• ε = 1 (note that then Kσ,ε = 0),
• X = F⊕2n; we let {e−n, . . . , e−1, e1, . . . , en} be the canonical basis of X
and put Xi := Fei),

• f : X ×X → F is the symmetric bilinear form satisfying
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– f(ei, ej) = 0 if i 6= −j,
– f(ei, e−i) = 1 for i ∈ {±1, . . . ,±n}.

Then we can check that the matrices of the form



O× O O O
. . .

...
... O

p O× O O
p · · · p O O O · · · O
p · · · p O O O · · · O

p p O× O

p
...

...
. . .

p p p O×




constitute an Iwahori subgroup in a similar manner to above. Note that, compared
to the case of SO2n+1, every argument is even simpler because the factor X0 does
not exist. For example, there is no root of the form ai in this case. This explains
why “2” does not appear in the above matrix description in contrast to (†) or (†BT).

A.2. Another parametrization of simple supercuspidal representations.

The results of [AL16, Adr16, AK21] (and also Section 5), which are needed for
Proposition 6.3, are stated based on a different parametrization of simple su-
percuspidal representations. For this reason, in this section, we compare our
parametrization of simple supercuspidal representations (Section 2) with those of
[AL16, Adr16, AK21]. The main difference is that the choice of a uniformizer ̟′

can vary in the parametrizations in [AL16, Adr16, AK21] while a uniformizer ̟ is
fixed and a parameter “a” can vary in our parametrization.

A.2.1. The case of GLN . Let us first look at the case of GLN . In [AL16, Section
3.1], a simple supercuspidal representation σ(̟′, ζ, ω) is associated to each tuple
consisting of a uniformizer ̟′, a tamely ramified character ω of F×, and an n-th
root ζ of ω(̟′). By putting a := ̟̟′−1 ∈ k×, we have

πGLN
ω|k× ,a,ζ

∼= σ(̟′, ζ, ω).

A.2.2. The case of SO2n+1. We next compare the parametrization given in Sec-
tion 2.2 with the one of [Adr16]. Firstly, we must be careful that the odd special
orthogonal group is realized as SO(JBT

2n+1) in [Adr16]. Let ISO(JBT
2n+1

) be the Iwa-

hori subgroup I∆ of SO(JBT
2n+1)(F ) as described in Section A.1 and I+

SO(JBT
2n+1

)
its

pro-unipotent radical. Secondly, we must be also careful that the construction of
simple supercuspidal representations given in [Adr16] contains a minor error. Let
us describe the error and how it can be fixed.

In [Adr16, page 205], a simple supercuspidal representation πζχ of SO(JBT
2n+1)(F )

is associated to each pair (̟′, ζ) of a uniformizer ̟′ of F and a sign ζ ∈ {±1}. Let
us write πζχ[̟

′] for this simple supercuspidal representation πζχ in order to empha-
size that it depends on the choice of a uniformizer ̟′. This simple supercuspidal
representation πζχ[̟

′] is associated to a character χ of I+
SO(JBT

2n+1
)
given by

χ : g = (gij) 7→ ψ
(
g12 + · · ·+ gn−1,n + gn,n+1 + g2n,1̟′−1

)
.

The problem is that χ is not affine generic when p = 2. This is because the (n, n+1)-
entry of any element g ∈ I+

SO(JBT
2n+1

)
always belongs to 2O (see the description (†BT)).
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This issue can be fixed by modifying the definition of χ as follows (let χ′ denote
the modified character):

χ′ : g = (gij) 7→ ψ
(
g12 + · · ·+ gn−1,n + gn,n+12−1 + g2n,1̟′−1

)
.

Then χ′ is affine generic for any p including p = 2, hence we can produce a simple
supercuspidal representation of SO(JBT

2n+1)(F ) by using χ′ instead of χ. We write

πζχ′ [̟′] for this simple supercuspidal representation. We remark that when p 6= 2

(so that the construction of πζχ[̟
′] makes sense), we have πζχ′ [̟′] ∼= πζχ[4̟

′].
Now let us going back to comparing the two parametrizations of simple super-

cuspidal representations. By putting a := ̟̟′−1 ∈ k×, we have

π
SO2n+1

(−1)n+1a,ζ
∼= πζχ′ [̟

′]

under the identification between SO2n+1 and SO(JBT
2n+1) via the conjugation by X

(see Section A.1).

A.2.3. The case of SO2n. We finally consider the case of SO2n. In [AK21, Section
3], a simple supercuspidal representation πωα is associated to each tuple consisting
of a uniformizer ̟′ of F , α ∈ k×, a character ω of the center of SO2n(F ), and
a sign (say ζ ∈ {±1}). Similarly to the previous case, let us write πωα [̟

′, ζ] for
the associated simple supercuspidal representation of [AK21]. (Note that πωα [̟

′, ζ]
is denoted simply by “π” in Section 5). If we let α be ǫκ for κ ∈ {0, 1} and put
ξ := ω(−1) and a := ̟̟′−1 ∈ k×, then we have

πSO2n

ξ,κ,a,ζ
∼= πωα [̟

′, ζ].

A.3. Comparison of our approach with others. We remark that our main
results in the case where p is odd (Theorems 6.10 and 6.12) are not new:

• when N = 2n+1, the result of the same type has been obtained in [Adr16]
and [Oi19a];

• when N = 2n, the result of the same type has been obtained in [Oi18].

In this section, we verify the consistency of Theorems 6.10 and 6.12 with those
according to the dictionary given in Section A.2.

A.3.1. The case of SO2n+1. In [Adr16, Corollary 8.4] (with a modification ex-

plained in Remark 6.5), it is proved that the endoscopic lift of πζχ′ [̟′] from SO2n+1

to GL2n is given by σ((−1)n+1̟′, ζ,1) when p is sufficiently large (or, more gener-

ally, provided that the L-parameter of πζχ′ [̟′] is irreducible).
By Sections A.2.1 and A.2.2, this amounts to saying that the endoscopic lift of

π
SO2n+1

(−1)n+1a,ζ is given by πGL2n

1,(−1)n+1a,ζ by putting a := ̟̟′−1.

On the other hand, in [Oi19a, Theorem 5.15], it is proved that the endoscopic
lift of the simple supercuspidal representation of SO2n+1(F ) denoted by “π′

a,ζ” is

given by πGL2n

1,2a,ζ for any a ∈ k× when p is odd. Recall that π
SO2n+1

2a,ζ in this paper is

equal to π′
a,ζ in [Oi19a]; see Remark 2.1.

Thus the results of [Adr16] and [Oi19a] are consistent with Theorem 6.10.
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A.3.2. The case of split SO2n. In [Oi18, Theorem 8.8], it is proved that the endo-

scopic lift of πSO2n

ξ,κ,a,ζ to GL2n is given by
®
π
GL2n−2

ω0,b,η
⊠ ω

GL2n−2

ω0,b,η
⊠ 1 if ζ = 1,

π
GL2n−2

ω0,b,ζη
⊠ ω

GL2n−2

ω0,b,ζη
· µur ⊠ µur if ζ = −1

under the assumption that p 6= 2. Here, µur is the unique nontrivial quadratic

character of F×, ω
GL2n−2

ω0,b,±η
is the central character of π

GL2n−2

ω0,b,±η
and

η = q−
1
2G(ω0, ψ)ω0(−1)ξ and b = (−1)n4aǫκ,

where G(ω0, ψ) denotes the Gauss sum.
Let us check that this description is consistent with Theorem 6.12.
Firstly, by the condition φ1(a

−1̟) = ζ, the character φ1 equals 1 or µur ac-

cording to ζ = 1 or ζ = −1. Secondly, we check that φ2 is equal to ω
GL2n−2

ω0,b,ζη
or

ω
GL2n−2

ω0,b,ζη
· µur according to ζ = 1 or ζ = −1. For this, by the characterization of φ2,

it is enough to check that ω
GL2n−2

ω0,b,ζη
(a−1̟) = ω

GL2n−2

ω0,b,ζη
(−4ǫκ) (note that ω

GL2n−2

ω0,b,ζη
is

a ramified quadratic character). Since we have

ω
GL2n−2

ω0,b,ζη
(b−1̟) = (ζη)2n−2 = (q−

1
2G(ω0, ψ))

2n−2,

we get

ω
GL2n−2

ω0,b,ζη
(a−1̟) = ω0(a

−1b) · ω
GL2n−2

ω0,b,ζη
(b−1̟)

= ω0((−1)n4ǫκ) · (q−
1
2G(ω0, ψ))

2n−2.

By noting that q−1 ·G(ω0, ψ)
2 = ω0(−1) (see [Oi18, Lemma A.5 (1)]), we get

ω
GL2n−2

ω0,b,ζη
(a−1̟) = ω0(−4ǫκ).

On the other hand, as the restriction of ω
GL2n−2

ω0,b,ζη
to O× is the unique nontrivial

quadratic character, we have ω
GL2n−2

ω0,b,ζη
(−4ǫκ) = ω0(−4ǫκ). Finally, let us consider

φ0; our task is to show that ζη is equal to ζ′ as in Theorem 6.12 (i.e., ζ′ = ξ · ζ ·
q1/2G(φ2, ψ)

−1). This follows from the identity G(φ2, ψ)
2 = φ2(−1)q (see [BH06,

(23.6.3)]) by noting that φ2(−1) = ω0(−1).

Appendix B. On lifting from classical groups to GLN

B.1. Let p be a prime number and F a finite extension of the field of p-adic
numbers. (Thus, in particular, the characteristic of F is 0.) Choose an algebraic
closure of F and letWF be the corresponding Weil group. Let G be a split classical
group, say over Z, either Sp2n, SO2n+1 or SO2n for a positive integer n. Let Ĝ be
the (complex) dual group of G and N the dimension of its standard representation,

so that Ĝ is SO2n+1(C), Sp2n(C), SO2n(C) and N = 2n + 1, 2n, 2n accordingly.
Let π be a smooth irreducible supercuspidal representation of G(F ), and φ its

L-parameter, a conjugacy class of morphisms of WF × SL2(C) to Ĝ as given by
Arthur ([Art13, Theorem 1.5.2]). Composing with the standard representation of

Ĝ, we get a parameter for GLN (F ), and a corresponding isomorphism class Π of
smooth irreducible representations of GLN (F ), sometimes called an endoscopic lift
of π. Now we fix Whittaker data of GLN and G and assume that π is generic with
respect to the fixed Whittaker datum of GLN . Then Cogdell et al. [CKPSS04]
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also associate to π an isomorphism class Π′ of smooth irreducible representations
of GLN (F ). The goal of the present appendix is to prove that Π = Π′. As a
consequence, we deduce that for each positive integer r and each smooth irreducible
generic representation τ of GLr(F ), the Rankin–Selberg γ-factor γ(s, π × τ, ψ) is
equal to the Rankin–Selberg γ-factor γ(s,Π × τ, ψ), for any choice of nontrivial
additive character ψ of F . That is used in the main text when π is a simple
supercuspidal representation, to be able to apply the computation of the γ-factors
γ(s, π × τ, ψ) when τ is a tame character of F×.

B.2. The result has to be well-known to the experts, in fact almost obvious
to them; indeed it is behind the scene in [Art13, page 482–485]. It is only for
completeness of our own results, because we have not found published our exact
statement, that we write the proof below. Note that the result has been used in
the result [Hen23] by the second author. Both Π and Π′ are obtained via a local-
global method, using trace formulas for Π and converse theorems for Π′. Thus
the proof starts with a global part, and the local result is a consequence of the
strong multiplicity one theorem for GLN . See below B.3 to B.5 for the global
results, and B.6 for the local consequence. Our reference for Arthur’s results is of
course Arthur’s book [Art13], but the reader might benefit from the more expository
papers on Arthur’s webpage. We note however that as far as we know the full
twisted weighted fundamental lemma announced in [CL10] has not been proved in
print, and similarly the references [A24] to [A26] in [Art13] have not appeared yet
(reference [A27] refers to non-quasi-split groups, which do not concern us here).
Our reference for the lifting via converse theorems is [CKPSS04]. The γ-factors
there are obtained via the Langlands–Shahidi method, whereas we use the Rankin–
Selberg version. For GLN ×GLr, Shahidi proved that the two versions coincide
([Sha85, Sha84]); for G ×GLr that was done by Kaplan ([Kap15, Theorem 1 and
Corollary 1]).

B.3. Let k be a number field and Ak its adele ring. Let π be a globally generic
cuspidal automorphic representation of G(Ak). There are two ways to associate to
π an automorphic representation of GLN (Ak). The first one [CKPSS04, Theorem
1.1] uses converse theorems and produces “a functorial lift” of π. A functorial lift is
an automorphic representation Π′ of GLN (Ak) such that for all Archimedean places
v of k and almost all finite places v where πv is unramified, the local component
Π′
v is obtained via the local Langlands correspondences:

• for Archimedean v, πv corresponds to a morphism of the local Weil group

Wkv to Ĝ and Π′
v to the morphism into GLN (C) obtained by composing

with the standard representation of Ĝ.
• similarly for a finite place v where πv is unramified, πv corresponds to an

unramified morphism of the local Weil groupWkv to Ĝ and Π′
v is the unram-

ified representation corresponding to the morphism into GLN (C) obtained

by composing with the standard representation of Ĝ.

[CKPSS04] describe the image of the global lift in their Theorems 7.1 and 7.2,
in particular showing that it is a full induced from a self-dual unitary cuspidal au-
tomorphic representation of a Levi subgroup of GLN . Consequently Π′ is isobaric
and all components Π′

v are generic. Moreover (loc. cit. Proposition 7.2), for any
finite place v of k, Π′

v is the unique irreducible smooth generic representation of
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GLN (kv) such that, for any positive integer r and any smooth irreducible super-
cuspidal representation τ of GLr(kv), one has, for any nontrivial additive character
ψv of kv, γ(s, πv × τ, ψv) = γ(s,Π′

v × τ, ψv). In fact Π′
v is a “local functorial lift”

of πv (loc. cit. Definition 7.1): we also have L(s, πv × τ) = L(s,Π′
v × τ), where the

L-factors are obtained by the Langlands–Shahidi method ([Sha90]); for the right-
hand side they can equally be defined via the Rankin–Selberg method (compare
loc. cit. Section 10 and [JPSS83, Introduction]).

B.4. Let us now turn to the lift Π of π obtained by Arthur. Note first that G

belongs to the set Ẽsim(N) ([Art13, Chapter 1, page 12]), so that Theorems 1.5.1
and 1.5.2 of [Art13] apply to G. Theorem 1.5.2 implies that π, or more generally
any automorphic representation of G(Ak) occurring in the discrete spectrum, is

obtained in the following manner: there is a parameter ψ in the global set ‹Ψ2(G)
([Art13, page 33]) giving rise to a local parameter ψv for any place v of k, such
πv belongs to the local packet Πψv associated to ψv by Theorem 1.5.1. Now the

parameter ψ is in the set ‹Ψell(G) (loc. cit. page 33) and in particular in the set
Ψ(N) (loc. cit. page 28), so is a multiset of pairs (πi,mi), where πi is a cuspidal
automorphic representation of GLNi(Ak) andmi is a positive integer (or the class of
irreducible representations of SU(2) of dimension mi), with N =

∑
imiNi. A pair

(πi,mi) gives an essentially discrete automorphic representation of GLNimi(Ak),
with cuspidal support πi(mi) made out of πi’s shifted by powers of the norm, and
by parabolic induction from all the components of πi(mi) (for all i) we obtain
an isobaric automorphic representation Π of GLN (Ak). All that is explained in
([Art13, Sections 1.2 and 1.4]). As stated above for any place v the component
πv belongs to the local packet attached to ψv. What is not stated explicitly in
[Art13, Theorem 1.5.1] but appears behind (loc. cit. Foreword, page x) is that at
almost all finite places v, where πv and Πv are unramified, the local unramified
parameter of Πv is indeed obtained by composing the local parameter of πv by the

standard representation of Ĝ into GLN (C). We have not been able to locate a
precise statement, thus we give a justification in Section C.

B.5. Since Π and Π′ are both isobaric automorphic representations of GLN (Ak),
proving they are equal is equivalent to proving that their components at almost
all finite places are equal, by the strong multiplicity one theorem of Jacquet and
Shalika (cf. [Art13, Theorem 1.3.2]).

But at almost all finite places where both Πv and Π′
v are unramified, Π′

v, by
construction, is given by the unramified local Langlands correspondence, and it is
also the case for Πv, as we have seen in B.4. Thus Π = Π′, that is Πv = Π′

v for all
places v of k.

B.6. If F is a p-adic field as in B.1, one can see it as a completion kv of some
number field k, and a smooth irreducible generic supercuspidal representation ρ
of G(F ) can be seen as the component πv at v of a globally generic cuspidal
automorphic representation π of G(Ak) ([Sha90, Proposition 5.1]). Thus ρ has
a local functorial lift R to GLN (F ), viz. (the class of) Π′

v, where Π′ is the global
lift of π to GLN obtained by the converse theorems. But we have seen in B.5 that
Π′ is also the global lift Π given by Arthur. By the compatibility of Arthur’s local
and global lifts, indeed by the fact that the global lift in ([Art13, Theorem 1.5.2])
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is expressed in terms of the local one (loc. cit. Theorem 1.5.1), we get the desired
result that R is also the local lift to GLN (F ) given by Arthur.

B.7. For ease of reference, let us restate our results in this appendix.

Theorem B.1. Let k be a number field. Let G be a symplectic group Sp2n or a
split special orthogonal group SOn over k; write N for the dimension of the natural
representation of Ĝ. Let π be a globally generic cuspidal automorphic representation
of G over k. Write Π for the automorphic representation of GLN over k associated
to the Arthur parameter of π, and Π′ for the automorphic representation of GLN
over k associated to π by the lifting of Cogdell et al. Then Π = Π′, and for each
place v of k, Πv is the local lifting Π′

v associated to πv by Cogdell et al.

Theorem B.2. Let F be a p-adic field. Let G be a symplectic group Sp2n or
a split special orthogonal group SOn over F ; write N for the dimension of the
natural representation of Ĝ. Let π be a generic supercuspidal representation of
G(F ). Write Π for the irreducible smooth representation of GLN (F ) associated
to the Arthur parameter of π, and Π′ for the smooth irreducible representation
of GLN (F ) associated to π by the (local) lifting of Cogdell et al. Then Π = Π′.
For any positive integer r and any generic irreducible smooth representation τ of
GLr(F ) the Rankin–Selberg (or Langlands–Shahidi) γ-factor γ(s, π × τ, ψ) is equal
to the Rankin–Selberg γ-factor γ(s,Π×τ, ψ), for any choice of a nontrivial additive
character ψ of F . The same is true for the L and ε-factors.

Remark B.3. We have restrained here to the framework that is useful to us in the
main part of the paper, but the approach obviously works much more generally.

Appendix C. Unramified case of Arthur’s classification theorem

The aim of this section is to justify the compatibility of Arthur’s local classifi-
cation theorem (construction of local A-packets) in the unramified case with the
classical Satake parametrization. The idea of the arguments we present here is due
to Jean-Loup Waldspurger.

C.1. Classical groups as twisted endoscopy of GLN . Let G′ be an unramified
quasi-split classical (i.e., symplectic, orthogonal, or unitary) group over a p-adic
field F . Then we may regard G′ as a twisted endoscopic group of a suitable general
linear group G = GLN (or the Weil restriction G = ResE/F GLN for an unramified
quadratic extension E/F ) with respect to an outer automorphism θ of G. In
particular, we have a natural L-embedding ι : LG′ →֒ LG. (See [Art13, Section 1.2]

for the standard realization of θ, ι, and so on.) We put G̃ := G ⋊ θ, which is a
bi-G-torsor whose right and left actions of G = G(F ) are given by g1 · (g⋊ θ) · g2 =
g1gθ(g2)⋊ θ.

We fix a θ-stable F -splitting of G. Note that a θ-stable Whittaker datum w of
G is determined by this choice. Similarly, we also fix an F -splitting of G′.

We let H denote the Hecke algebra of G, i.e., the set of compactly supported
locally constant C-valued functions on G equipped with the convolution product
denoted by “∗”. We let H̃ denote the set of compactly supported locally constant
C-valued functions on G̃. Similarly, we let H′ denote the Hecke algebra of G′. Then
we can define the notion of a (Langlands–Kottwitz–Shelstad) transfer between H̃

and H′; we say that f ′ ∈ H′ is a transfer of f̃ ∈ H̃ if they satisfy a certain identity
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between the twisted orbital integrals of f̃ and the stable orbital integrals of f ′. See
[Art13, Section 2.1] for the details.

C.2. Fundamental lemma of Lemaire–Mœglin–Waldspurger. We next re-
view a deep result of Lemaire–Mœglin–Waldspurger ([LW17, LMW18]) on the
transfer for spherical Hecke algebras.

The fixed θ-stable F -splitting of G gives rise to a θ-stable hyperspecial open
compact subgroup of G (see [LMW18, Section 2.5]); we write K for it. We let

HK (resp. H̃K) be the subalgebra of H (resp. subspace of H̃) consisting of bi-K-

invariant functions. Note that then H̃K has right and left actions of HK and we
have H̃K = HK ∗1K̃ , where 1K̃ denotes the characteristic function of K̃ := K ⋊ θ.
Similarly, we writeK ′ for the hyperspecial open compact subgroup ofG′ determined
by the fixed F -splitting of G′ and let H′

K′ be the subalgebra of H′ consisting of bi-
K ′-invariant functions. (When G′ = SO2n, we suppose that K ′ is invariant under
the conjugation given by an element of O2n(F )r SO2n(F ).)

Let Ĥ denote the algebra of polynomial functions on Ĝ ⋊ Frob ⊂ LG invariant
under the Ĝ-conjugation, where Frob is a fixed lift of the Frobenius. Then HK

can be identified with Ĥ via the Satake isomorphism for G (say S). Similarly, H′
K′

can be identified with the algebra Ĥ′ of polynomial functions on Ĝ′ ⋊ Frob ⊂ LG′

invariant under the Ĝ′-conjugation via the Satake isomorphism for G′ (say S′). We

let b̂ : Ĥ → Ĥ′ be the C-algebra homomorphism given by the restriction along the
L-embedding ι : LG′ →֒ LG. We define b : HK → H′

K′ to be the unique C-algebra
homomorphism which makes the following diagram commutative:

HK

b

��

S
∼=

// Ĥ

b̂

��

H′
K′

S′

∼=
// Ĥ′

Theorem C.1 ([LMW18, Théorème 1, 2]). For any f̃ ∈ H̃K , if we write f̃ = f ∗1K̃
with f ∈ HK , then b(f) ∈ H′

K′ is a transfer of f̃ . In particular, 1K′ ∈ H′
K′ is a

transfer of 1K̃ ∈ H̃K .

Remark C.2. When we define the notion of a transfer of test functions from H̃ to
H′, we need to fix a normalization of the transfer factor. In the above theorem,
we adopt a normalization determined by the fixed choice of a θ-stable hyperspecial
open compact subgroup K of G (see [LMW18, Section 2.6] and [MW16, I.6.3]).

C.3. Arthur’s local classification theorem. We put LF := WF × SL2(C). We
say a homomorphism ψ : LF × SL2(C) →

LG′ is an A-parameter of G′ if

• its restriction ψ|LF to LF is a tempered L-parameter and
• its restriction ψ|SL2(C) to SL2(C) is algebraic.

We let Ψ(G′) be the set of Ĝ′-conjugacy classes of A-parameters of G′. We define

Ψ̃(G′) to be the set of O2n(C)-conjugacy classes of A-parameters of G′ when G′ =

SO2n. When G′ is not SO2n, we simply put Ψ̃(G′) := Ψ(G′). We let Πunit(G
′) be

the set of irreducible unitary representations of G′. We define Π̃unit(G
′) to be the

set of O2n(F )-conjugacy classes of irreducible unitary representations of G′ when

G′ = SO2n. When G′ is not SO2n, we simply put Π̃unit(G
′) := Πunit(G

′).
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For an A-parameter ψ ∈ Ψ̃(G′), we define a finite group Sψ as follows:

Sψ := Cent
Ĝ′(Im(ψ)),

Sψ = Sψ/(S
◦
ψZ

WF

Ĝ′
).

Here, we implicitly fix a representative of the equivalence class ψ and again write
ψ for it by abuse of notation. We define an element sψ of Sψ by

sψ := ψ

Å
1,

Å
−1 0
0 −1

ãã
.

Any A-parameter ψ ∈ Ψ̃(G′) can be regarded as an A-parameter of G by com-
posing ψ with the L-embedding ι : LG′ →֒ LG. Let πψ denote the irreducible uni-
tary representation of G determined by ψ, i.e., πψ corresponds to the L-parameter
φψ of G under the local Langlands correspondence for G, where φψ : LF → LG is
defined by

φψ(u) := ψ

Å
u,

Ç
|u|

1
2 0

0 |u|−
1
2

åã
.

Note that, since the representation πψ is self-dual, we can take a canonical extension

π̃ψ of πψ to the bi-torsor G̃ by using the fixed θ-stable Whittaker datum w of G.
(See [Art13, Section 2.2] for the details of the discussion here.)

Now we state a part of Arthur’s local classification theorem (see [Art13, Theo-
rems 1.5.1 and 2.2.1] for symplectic and orthogonal groups and [Mok15, Theorems
2.5.1 and 3.2.1] for unitary groups):

Theorem C.3. For any ψ ∈ Ψ̃(G′), there is a finite multi-set Π̃ψ (called an “A-

packet”) over Π̃unit(G
′) equipped with a map

ιw : Π̃ψ → S
∨

ψ; π 7→ 〈−, π〉,

where S
∨

ψ denotes the set of irreducible characters of Sψ. The set Π̃ψ satisfies the

following identity (called the “twisted endoscopic character relation”) for any f̃ ∈ H̃
and its transfer f ′ ∈ H′:

∑

π∈Π̃ψ

〈sψ , π〉Tr(π(f
′)) = c · Tr(π̃ψ(f̃)),(20)

where c is a complex number of absolute value 1 which depends only on the fixed
θ-stable F -splitting of G. Furthermore, if π ∈ Π̃ψ is unramified (i.e., K ′-spherical),

then 〈−, π〉 ∈ S
∨

ψ is the trivial character 1 of Sψ.

Here, the precise meaning of “a finite multi-set Π̃ψ over Π̃unit(G
′)” is that Π̃ψ is a

finite set equipped with a surjective map (say µψ) to a finite subset Π̃ψ ⊂ Π̃unit(G
′):

µψ : Π̃ψ ։ Π̃ψ ; π 7→ π.

When π ∈ Π̃ψ is mapped to π ∈ Π̃ψ, we put Tr(π(f ′)) := Tr(π(f ′)) and say that
π is unramified if so is π. (Note that the quantity Tr(π(f ′)) is well-defined even
when G′ = SO2n since a transfer f ′ can be taken to be O2n-invariant.)

We can reformulate the above statement by introducing a multiplicity function

as follows. For each χ ∈ S
∨

ψ, we put

Π̃ψ,χ := {π ∈ Π̃ψ | 〈−, π〉 = χ}
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and define Π̃ψ,χ := µψ(Π̃ψ,χ). We let µψ,χ : Π̃ψ,χ ։ Π̃ψ,χ be the restriction of the

map µψ : Π̃ψ ։ Π̃ψ to Π̃ψ,χ. We define the multiplicity functionmψ,χ : Π̃ψ,χ → Z>0

by

mψ,χ(π) := |µ−1
ψ,χ(π)|.

Then the identity (20) is rewritten as
∑

χ∈S
∨

ψ

∑

π∈Π̃ψ,χ

mψ,χ(π)χ(sψ)Tr(π(f
′)) = c · Tr(π̃ψ(f̃)).(21)

Remark C.4. A priori, it is possible that the multiplicity mψ,χ(π) is greater than

1 or that Π̃ψ,χ and Π̃ψ,χ′ for distinct χ, χ′ ∈ S
∨

ψ have a nonempty intersection.

However, in fact, Mœglin proved that Π̃ψ is multiplicity-free, i.e., µψ is bijective
([Mœg11], combined with the result of Bin Xu [Xu17a] on comparing Mœglin’s

A-packets to Arthur’s; see [Xu17a, Theorem 8.12]). Thus we may regard Π̃ψ as a

subset Π̃ψ of Π̃unit(G
′). (But we do not have to appeal to this fact in the following

argument.)

Remark C.5. As noted in Remark C.2, we adopt a normalization of the transfer
factor determined by the θ-stable hyperspecial open compact subgroupK according
to [MW16, I.6.3]. On the other hand, in [Art13], the transfer factor is normalized
by using the θ-stable Whittaker datum w of G (see [Art13, Section 2.1] and [KS99,
Section 5.3]). The point is that a priori it is not clear whether these two normaliza-
tions coincide; this is the source of the constant c in the identity (20). We remark
that, via both normalizations, the transfer factor takes values in unitary complex
numbers, hence also the constant c is unitary. (For the unitarity of the transfer
factor normalized via K, see [MW16, I.7.2]. For the unitarity of the transfer factor
normalized via w, see, for example, the explicit formula of Waldspurger [Wal10,
I.10].) We believe that it should be possible to show that c = 1 by examining
the definitions of the two normalizations since both K and w are produced from
the same θ-stable F -splitting of G. However, we do not pursue this issue further
because we only need the fact that |c| = 1 in the following argument.

C.4. Unramified representation in an A-packet. Recall that, by the Satake
isomorphism, any unramified representation π of G corresponds to a Ĝ-conjugacy
class tπ of semisimple elements in Ĝ⋊Frob. Similarly, any unramified representation
π′ of G corresponds to a Ĝ-conjugacy class tπ′ of semisimple elements in Ĝ′⋊Frob.
The image ι(tπ′) of tπ′ under the L-embedding ι : LG′ →֒ LG is contained in a

unique Ĝ-conjugacy class of semisimple elements in Ĝ⋊ Frob, for which we write
ι(tπ′).

Remark C.6. Suppose G′ = SO2n and the O2n(F )-orbit of π ∈ Πunit(G
′) consists

of two elements π1 and π2. Then, one of π1 and π2 is unramified if and only if the
other is also unramified by our choice of a hyperspecial open compact subgroup
K ′. In this case, although π1 and π2 correspond distinct Ĝ′-conjugacy classes tπ1

and tπ2
in Ĝ′ ⋊ Frob, we have ι(tπ1

) = ι(tπ2
). In other words, the symbol ι(tπ) is

well-defined for any unramified π ∈ Π̃unit(G
′).

Proposition C.7. Let ψ ∈ Ψ̃(G′). Then πψ ∈ Πunit(G) is unramified if and

only if Π̃ψ,1 contains an unramified representation. Furthermore, in this case, such
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an unramified representation is unique (say π0) and we have mψ,1(π0) = 1 and
tπψ = ι(tπ0

).

Proof. We apply the twisted endoscopic character relation (21)
∑

χ∈S
∨

ψ

∑

π∈Π̃ψ,χ

mψ,χ(π)χ(sψ)Tr(π(f
′)) = c · Tr(π̃ψ(f̃))

to a function f̃ ∈ H̃K given by f̃ = f ∗1K̃ with f ∈ HK and its transfer f ′ ∈ H′. Let
V Kπψ denote the subspace ofK-fixed vectors in the representation space Vπψ of πψ. If

πψ is not unramified (i.e., V Kπψ = 0), then we have Tr(π̃ψ(f̃)) = 0 by the definition of

the operator π̃ψ(f̃). If πψ is unramified, the operator π̃ψ(1K̃) necessarily preserves
the space V Kπψ . Furthermore, since the space V Kπψ is one-dimensional and the action

of π̃ψ(1K̃) on V Kπψ is involutive, π̃ψ(1K̃) acts on V Kπψ via a sign ǫψ ∈ {±1}. Thus

we have Tr(π̃ψ(f̃)) = c · ǫψ · Tr(πψ(f)). On the other hand, recall that we can

choose a transfer f ′ of f̃ to be an element of H′
K′ by Theorem C.1. In particular,

Tr(π(f ′)) (for χ ∈ S
∨

ψ and π ∈ Π̃ψ,χ) can be nonzero only when π is unramified,
which furthermore implies that χ = 1 by Theorem C.3. Thus we get

∑

π∈Π̃ψ,1

VK
′

π 6=0

mψ,1(π)Tr(π(f
′)) =

®
c · ǫψ · Tr(πψ(f)) if πψ is unramified,

0 otherwise.
(22)

Let us take f in the identity (22) to be 1K . Then we can choose f ′ to be 1K′ by

Theorem C.1. As we have Tr(π(1K′ )) = 1 whenever V K
′

π 6= 0 (resp. Tr(πψ(1K)) = 1
whenever V Kπψ 6= 0), we get

∑

π∈Π̃ψ,1
VKπ 6=0

mψ,1(π) =

®
c · ǫψ if πψ is unramified,

0 otherwise.

Since mψ,1(π) is positive and |c| = 1, this implies that

• if πψ is not unramified, then the index set of the sum on the left-hand side

is empty, i.e., Π̃ψ does not contain any unramified representation, and
• if πψ is unramified, then c · ǫψ = 1 and the index set of the sum on the
left-hand side consists of a unique element (say π0) and mψ,1(π0) = 1.

Let us finally check that tπψ = ι(tπ0
) by supposing that πψ is unramified. Now

we know that the identity (22) simplifies to

Tr(π0(f
′)) = Tr(πψ(f))

for any f̃ = f ∗ 1K̃ ∈ H̃K and its transfer f ′ ∈ H′
K′ . If we take f ′ ∈ H′

K′ as in
Theorem C.1 (i.e., f ′ = b(f)), then this equality is rewritten as

S′(b(f))(tπ0
) = S(f)(tπψ )

(recall that S and S′ denote the Satake isomorphisms for G and G′, respectively).
By the definition of the homomorphism b : HK → H′

K′ , we have S′(b(f))(tπ0
) =

S(f)(ι(tπ0
)). Hence we conclude that the identity

S(f)(ι(tπ0
)) = S(f)(tπψ)

holds for any f ∈ HK . This implies that ι(tπ0
) = tπψ . �
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géométriques, Compos. Math. 146 (2010), no. 6, 1416–1506.
[GGP12] W. T. Gan, B. H. Gross, and D. Prasad, Symplectic local root numbers, central critical

L values, and restriction problems in the representation theory of classical groups,
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