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Motivation

• G compact Lie group.

Irred. rep of G are “determined” by their characters.

Roughly: Understanding the characters of irred. rep. means that the
Representation Theory of G is understood.

Weaker Invariant: dimension of the rep.

• G simple Lie group.

Global character of irred. rep. (infinite dimensional) has been define by
Harish-Chandra (difficult to compute).

A number of other invariants contain relevant info about irred. rep.

Examples: Associated variety, Associated cycle, Annihilator, Characteristic cycles
(can we compute some of them?)



Some Notation

G is a complex simple algebraic group with involution θ.

K = G θ. The real form defined by θ has a maximal compact subgroup with
complexification K . Write GR,KR for the real points.

N denotes the nilpotent cone.

We denote by X = {b ⊂ g Borel subalgebra} the flag variety. (All borel
subalg. are G -conjugate. Hence if B = NG (b) then X ' G/B). (b = h⊕ n)

The cotangent bundle is T ∗X = {(b, ξ) : ξ ∈ (g/b)∗}.

The moment map for the Hamiltonian action of G on T ∗(X ) is

µ : T ∗X = {(b, ξ) : ξ ∈ (g/b)∗} → N
(b, ξ)→ ξ.



Mρ(g,B)

• Let Mρ(g,B) be the abelian category of f. generated B-finite (g,B)-modules
with inf. char. ρ. [The Grothendieck group K(Mρ(g,B)) = ⊕ZLw .]

Study of invariants of irreds. in Mρ(g,B) gave rise to deep theories involving
Primitive ideals, Nilpotent orbits, Flag variety, Rep. of W .

• Crucial to this is the equivalence of categories

Mρ(g,B) 'Mcoh(DX ,B).

• {B-orbits on X} = {X (w)}w∈W (Shubert cells)

The characteristic variety is a union of several conormal bundles to B-orbits in X :

CV (M) = ∪T ∗X (y)X = supp(gr(MM)).

The characteristic cycle keeps track of multiplicities along the components:

CC (M) = CC (MM) =
∑

ny [T ∗X (y)X ].
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Recall the moment map µ : T ∗(X )→ N . There is a special nilpotent G -orbit in
N so that

µ(CV (Lw )) = Υ1 ∪ . . . ∪Υr = AV (Lw )

where {Υi} are irred. components of O ∩ n. (Orbital Varieties)

Joseph attaches to each Υi a polynomial pΥi ∈ P(h∗):

•{pΥ : Υ irred. component of O ∩ n}.

[pΥ measure the growth rate of the H-weights on S(n)/I (Υ) where I (Υ) is ideal
of definition of Υ.]

• span{pΥ : Υ irred. component of O ∩ n} = Sp(O) Irred.
W -module.



A second basis of Sp(O)

Define:

Primρ(O) = {I :primitive 2-sided ideals in U(g)

infinitesimal character ρ ∈ h∗

the variety of zeros of gr(I ) = O}.

Joseph attached to each I ∈ Primρ(O) a polynomial qI ∈ P(h∗), the so called
Goldie rank polynomial. [λ→ rank(U(g)/Ann(L(λ))]

• spanC{qI : I ∈ Primρ(O)} ' Sp(O), as W modules.

We are interested in: (a) the change of bases matrix
(b) the info about CC of (g,B) and (g,K ) modules encoded

in the matrix.



First triangularity result

Monty McGovern defined a bijection:

Primρ(O)↔ {Υirred components of O ∩ n}

[combinatorial in nature: both Primρ(O) and {Υ} are parametrized by SDT of
special shape. Roughly : Υ corresponds to I iff their SDT agree.]

The notion of τ r -invariant and τ r∞ is well defined at the level of tabeaux.

Monty introduces an order on {Υ}

Υi < Υj ↔ τ r∞(SDTi ) ⊂ τ r∞(SDTj).

• He shows that the matrix relating {qI} to {pΥ}, in this order, is upper triangular.



First triangularity result and CC

• McGovern’s triangularity result says: If

CC (Lw ) = T ∗X (w) +
∑

my ,w T ∗X (y)(X )

and my ,w 6= 0, then τ r∞(w) ⊂ τ r∞(y)

Key Theorem (Joseph)

Write qAnn(Lw−1 ) =
∑

mi pΥi . Then

mi 6= 0⇔ Υi is open in AV (Lw ).

McGovern’s result

imposes strong restriction on the “shape” of AV (Lw ),

generalizes a triangularity result in type An by Joseph,

proves a conjecture by Tanisaki.



Second triangularity result

• Let Mρ(g,K ) the category of Harish-Chandra modules with inf. ch. ρ.

Peter Trapa says:

1 There is a bijection between Primρ(O) and {Υirred components of O ∩ n}
“geometric” in nature. Moreover, geometric orders can be defined on {Υ} so
that the matrix relating Goldie rank polynomials and Joseph’s characteristic
polynomials is upper triangular.

2 Joseph’s theorem is closely related to CC of Harish-Chandra (g,K )-modules.

3 The leading term cycle (“ a piece of CC”) encodes all needed info to
compute Ann. and AV.

4 Question: Is it true that LTC of H-C module for GR = Sp(p, q) are
irreducible?
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• Beilinson-Berstein equivalence of categories

Mρ(g,K ) 'Mcoh(DX ,K )

M →MM = DX ⊗U(g) M

{Irred. H-C modules with inf. cha. ρ} ↔ {(Q, χ)K -orbits on X , local char.}

• Similar to what we have done in M(g,B)

The characteristic cycle is the support of gr(MM) keeping track of multiplicities

CC (M) = CC (MM) =
∑

nQ[T ∗QX ], CV (M) = ∪T ∗QX = supp(gr(MM))

• µ(T ∗Q(X )) = OK , nilpotent K -orbit.

The leading characteristic cycle is ∑
Q:µ(T∗

Q
(X )) of max dim

nQ T ∗Q(X )

.
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Geometric orders

To simplify exposition assume GR = Sp(p, q) or SO∗(2n).

1 Fix O a nilpotent G -orbit and a real form OK = K · f ⊂ O.

2 µ−1(f ) = ∪Ci . Let AG (f ) the group of components of ZG (f ).

3 (Spaltenstein) There is a bijection

{Υ : irred. comp. O ∩ n} ↔ {AG (f )-orbits in Irr(µ−1(f ))}

4 On the other hand, conormal bundles partition Springer fibers, i.e
T ∗Q(X ) ∩ µ−1(f ) is dense in a unique component CQ. Hence,

�Υi ≡ AG (f ) ·Ci ↔ {Qi,t ∈ K /X : µ(T ∗Qi,t
(X )) = OK has Ci,t ∈ AG (f ) ·Ci}

Orders on {Q ∈ K /X} compatible with orbit closure inclusion induce orders on
{Υ}.



Continue with GR = Sp(p, q) or SO∗(2n) and OK = K · f ⊂ O.
• Trapa defines a bijection between Primρ(O) and {Υirred components of O ∩ n}
(a little technical for me to explain here.) In any of the orders just described on
{Υ} the matrix relating Goldie rank polynomials and Joseph’s characteristic
polynomials is upper triangular.

• Trapa’s triangularity result says: If

LTC (M) = T ∗supp(M)(X ) +
∑

mQi T
∗
Qi

(X ),

and mi 6= 0, then AG (f ) · Ci < AG (f ) · Csupp(M)



Questions

Can we relate and or combine the results just described to gain a little deeper
understanding of invariants of H-C modules?

Can we work “simultaneously” on the Mρ(g,B) and Mρ(g,K ) categories to
transfer info and gain insight on the invariants?

[ The Jacquet-Casselman functor J :M(g,K )ρ →M(g,B)ρ should play a
central role here. For us, J is in the background, through McGovern’s work.]

A practical link, GR = Sp(p, q) or SO∗(2n)

Theorem (Trapa) A Geometric interpretation of Joseph’s Thm

Let M be an irred. H-C module with AV (M) = K · f and Ann(M) = Ann (Lw−1 ).
Write

?LTC (M) = T ∗supp(M)(X ) +
∑

mQi T
∗
Qi

(X ), ?AV (Lw ) = ∪Υk

Then, mQi 6= 0 “ iff” the orbital variety Υi bijective to AG (f ) · CQi is open in
AV (Lw ).:
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If we want to understand CC we can not forget of a powerful tool: (Tanisaki)

CC : K(M(g,K )ρ)→ Htop(T ∗K (X ),Q)

is W -equivariant.

M(g,K )ρ partitions into “equivalence classes”, the HC cells {CHC ,i}.
(designed to capture information on tensoring a HC modules with a finite
dim. rep.)
Key property:
(McGovern) Assume (g,Sp(p)× Sp(q)). Let OK be a nilpotent K -orbit.
Then,

CHC = {X ∈M(g,K )ρ : AV (X ) = OK}.

For each CHC , there is a W -cell representation VCHC
(minimal sub-quotient of

the coherent continuation rep K(M(g,K )ρ) that is spanned by CHC ).



Motivating example

When GR = U(p, q).

1 Each irreducible (g,K ) with inf. chr. ρ has irreducible associated variety,
AV (X ) = OK = K · f .

2 VCHC ' Htop(µ−1(f )) is an irreducible W -representation.

3 The component groups AG (f ) of the centralizer of f are trivial. For
X ,Y ∈ CHC , then Ann(X ) 6= Ann(Y ).

4 CHC contains an Aq for which the associated cycle can be computed.

5 As VCHC = Q[W ] · Aq, (indeed any M ∈ CHC has such property.) The point is
that we can compute multiplicity polynomials using coherent continuation
rep.

6 Many irreducible M ∈ CHC , have LTC (M) = 1 · T ∗Q(X ) (Q is the support of
M).

We would like to emphasize that none of the above facts hold in general.



Proposition

Assume GR = Sp(p, q) or SO∗(2n).
Let M1,M2 irreducible (g,K )-modules with AV (Mi ) = K · f .
Write QMi the support of Mi , and let CQMi

be the irred. component of (µ−1(f ))
corresponding to QMi . Then,

Ann(M1) = Ann(M2)⇐⇒ CQM1
∈ AG (f ) · CQM2

.

Remark

1 In view of the prop. T : Primρ(O)↔ {Υirred components of O ∩ n} can be
described as follows.: given I ∈ Primρ(O) take any M(Q) with
AV (M(Q)) = K · f and Ann(M(Q)) = I , then T (I ) = Υ↔ AG (f ) · CQ.

2 The prop. will allow us to compare Trapa’s bijection and McGovern bijection
leading to restrictions on shape of LTC .

3 The prop. (combined with other tools) give some info on the structure of
VCHC .
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Theorem

GR = Sp(p, q) or SO∗(2n).

1 Q[W ]M ' VCHC
if and only if card{M ′ ∈ CHC : Ann(M ′) = Ann(M)} is

maximal for CHC .

2 If M ′ ∈ CHC , then

Q[W ]M ′ ' Htop(µ−1(f ))AG (f ,CQM′
)

where, AG (f ,CQM′ ) = {z ∈ AG (f ) : z · CQM′ = CQM′}.

Remark: The proof of Theorem relies in the Proposition and an result of
McGovern, i.e for sp(p, q) VCHC

' Htop(µ−1(f ),Q) as W -modules.

Application: Theorem (4) (B.-Zierau) Assume g = sp(p, q). There is an effective
algorithm to compute multiplicity polynomials for each irreducible HC module
X ∈ CHC provided CHC contains a rep. in the discrete series.
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An example

GR = Sp(1, 1)

CHC is the H-C cell with AV (Ann) = [2, 2] and AV = K · f a real form of
[2, 2].

CHC = {π1 = ds1, π2 = ds2, π3 = Aq(λ)}. where
Ann(ds1) = Ann(ds2) 6= Ann(Aq(λ).

VCHC ≡ Q[W ] · dsi but Q[W ] · Aq(λ) ( VCHC
.

CC (πi ) = T ∗Qi
(X ) with Qi = supp(πi ). Write Ci for the component of the

Springer fiber corresponding to T ∗Qi
(X ) ∩ µ−1(f ).

A basis for Htop(µ−1(f ))AG (f ,C2) is {[C0 + C1], [C2]} and

sα1C2 = −C2 sα1 [C0 + C1] = [C0 + C1] + 2C2

sα2C2 = C2 + [C0 + C1] sα2 [C0 + C1] = −[C0 + C1].



Theorem

Assume GR = Sp(p, q) or SO∗(2n).
Fix CHC with AV (CHC ) = K · f . Write M(Q) for M ∈ CHC with supp(M(Q)) = Q

and write
LTC (M(Q)) = T ∗Q(X ) +

∑
mQj T

∗
Qj

(X ), then

τ r∞(M(Q)) ⊂ τ r∞(M(Qj))

.

Remark:

We show that T : Primρ(O)↔ {Υirred components of O ∩ n} sends
I → Υ(AG (f )CQ) = ΥSDT (I ).

There are other restrictions that come from Trapa’s order and also Qj ⊂ Q.

Restrictions + ATLAS (to compute coherent continuation, for example) yield
many examples of HC modules with irred. LTC.
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If GR = Sp(p, q), are LTC irred?

Key to the answer is:

Theorem (Trapa) A Geometric interpretation of Joseph’s Thm

Assume M is irred., AV (M) = K · f and Ann(M) = Ann (Lw−1 ). Write
?LTC (M) = T ∗supp(M)(X ) +

∑
mQi T

∗
Qi

(X ), ?AV (Lw ) = ∪Υk

Then, mQi 6= 0 “ iff” the orbital variety Υi bijective to AG (f ) · CQi is open in
AV (Lw ).:

Answer to the question: NO.
The strategy is to find a Highest Weight module Lw so that

1 AV (Ann(Lw )) = O is the associated variety of the annihilator of a
(sp(2n),Sp(p)× Sp(q))-module and

2 AV (Lw ) is reducible.

Once this is achieved, the theorem guarantees the existence of a Harish-Chandra
module with reducible leading term cycle.
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How do we find such Lw?

We change real form.

We find a Sp(2n,R) Highest Weight module M so that

1 AV(Ann(M)) = O and O is also the associated variety of the annihilator of
some Sp(p, q)-module.

2 LTC (M) is reducible.

The Highest Weight Lw we are looking for, has Ann(Lw−1 ) = Ann(M).
A concrete example:

We consider O ' [2, 2, 2, 2].

There is a (sp(8,C),GL(4))-module Rq(Y ) with
(Y a sp(4)-module with red. CC and irr. LTC)

LTC (Rq(Y )) = CC (Rq(Y )) = T ∗Q′1
(X ) + T ∗Q′2

(X ).

AV(Ann(Rq(Y )) = O. Lw : Ann(Rq(Y )) = Ann(Lw−1 )
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