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MOTIVATION

e G compact Lie group.

Irred. rep of G are “determined” by their characters.

Roughly: Understanding the characters of irred. rep. means that the
Representation Theory of G is understood.

Weaker Invariant: dimension of the rep.

e G simple Lie group.

Global character of irred. rep. (infinite dimensional) has been define by
Harish-Chandra (difficult to compute).

A number of other invariants contain relevant info about irred. rep.

Examples: Associated variety, Associated cycle, Annihilator, Characteristic cycles
(can we compute some of them?)



SOME NOTATION

G is a complex simple algebraic group with involution 6.

K = G?. The real form defined by 6 has a maximal compact subgroup with
complexification K. Write Gg, Kg for the real points.

N denotes the nilpotent cone.

o We denote by X = {b C g Borel subalgebra} the flag variety. (All borel
subalg. are G-conjugate. Hence if B = Ng(b) then X ~ G/B). (b =h @ n)

The cotangent bundle is T*X = {(b,¢) : £ € (g/b)*}.

The moment map for the Hamiltonian action of G on T*(X) is

p: T X ={(b,8): €€ (g/b)"} = N
(b,€) = &.



M,(g,B)

e Let M, (g, B) be the abelian category of f. generated B-finite (g, B)-modules
with inf. char. p. [The Grothendieck group K(M (g, B)) = ®ZL,,.]

Study of invariants of irreds. in M,(g, B) gave rise to deep theories involving
Primitive ideals, Nilpotent orbits, Flag variety, Rep. of W.
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MP(gv B)
e Let M, (g, B) be the abelian category of f. generated B-finite (g, B)-modules
with inf. char. p. [The Grothendieck group K(M (g, B)) = ®ZL,,.]

Study of invariants of irreds. in M,(g, B) gave rise to deep theories involving
Primitive ideals, Nilpotent orbits, Flag variety, Rep. of W.

e Crucial to this is the equivalence of categories

Mp(ga B) =~ Mcoh(DX; B)

e {B-orbits on X} = {X(w)}wew (Shubert cells)
The characteristic variety is a union of several conormal bundles to B-orbits in X:

CV(M) = UTx, X = supp(gr(Mum)):

The characteristic cycle keeps track of multiplicities along the components:

CC(M) = CC(Mpy) = Zny[T* X].



Recall the moment map p: T*(X) — N. There is a special nilpotent G-orbit in
N so that
w(CV(L,)=T1U...UT, =AV(L,)

where {T;} are irred. components of O Nn. (Orbital Varieties)

Joseph attaches to each T; a polynomial py, € P(b*):

o{py : T irred. component of O Nn}.

[pr measure the growth rate of the H-weights on S(71)//(T) where [(T) is ideal
of definition of T.]

e span{pr : T irred. component of O Nn} = Sp(O) Irred.
W-modaule.



A SECOND BASIS OF Sp(O)

Define:

Prim,(O) = {/ :primitive 2-sided ideals in U(g)
infinitesimal character p € h*

the variety of zeros of gr(/) = O}.

Joseph attached to each I € Prim,(O) a polynomial g, € P(h*), the so called
Goldie rank polynomial. [A — rank(U(g)/Ann(L()\))]

e spanc{q, : | € Prim,(O)} ~ Sp(O), as W modules.

We are interested in: (a) the change of bases matrix

(b) the info about CC of (g, B) and (g, K) modules encoded
in the matrix.



FIRST TRIANGULARITY RESULT

Monty McGovern defined a bijection:
Prim,(O) + {Tirred components of O Nn}

[combinatorial in nature: both Prim,(O) and {T} are parametrized by SDT of
special shape. Roughly : T corresponds to / iff their SDT agree.]

The notion of 7"-invariant and 77 is well defined at the level of tabeaux.

Monty introduces an order on {T}

Ti <Tj 75(SDT;) C 75, (SDT;).

e He shows that the matrix relating {g;} to {pr}, in this order, is upper triangular.



FIRST TRIANGULARITY RESULT AND CC

e McGovern's triangularity result says: If

CC(Lw) = Txgwy + Y Myw T)(X)

and my ,, # 0, then 72 (w) C 75, (y)

Key Theorem (Joseph)
Write gann(L,_,) = > m; py,. Then

m; #0 < T, is open in AV(L,).

McGovern's result
@ imposes strong restriction on the “shape” of AV(L,),
@ generalizes a triangularity result in type A, by Joseph,

@ proves a conjecture by Tanisaki.
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SECOND TRIANGULARITY RESULT

o Let M, (g, K) the category of Harish-Chandra modules with inf. ch. p.

Peter Trapa says:

@ There is a bijection between Prim,(©) and {Tirred components of O Nn}
“geometric” in nature. Moreover, geometric orders can be defined on {T} so
that the matrix relating Goldie rank polynomials and Joseph’s characteristic
polynomials is upper triangular.

@ Joseph's theorem is closely related to CC of Harish-Chandra (g, K)-modules.

@ The leading term cycle (* a piece of CC") encodes all needed info to
compute Ann. and AV.

@ Question: Is it true that LTC of H-C module for Gg = Sp(p, q) are
irreducible?



e Beilinson-Berstein equivalence of categories

Mf’(g? K) ~ Meon(Dx, K)
M — Mpy = Dx Ou(g) M



e Beilinson-Berstein equivalence of categories

Mf’(g? K) ~ Meon(Dx, K)
M — Mpy = Dx Ou(g) M

{Irred. H-C modules with inf. cha. p} < {(Q, x)K-orbits on X, local char.}
e Similar to what we have done in M(g, B)

The characteristic cycle is the support of gr(M) keeping track of multiplicities

CC(M) = CC(Mum) = > _ na[T§X], CV(M) = UTEX = supp(gr(Mm))

o (T3 (X)) = Ok, nilpotent K-orbit.
The leading characteristic cycle is

> ng T5(X)

Q:pu(TE (X)) of max dim



(GEOMETRIC ORDERS

To simplify exposition assume Gg = Sp(p, g) or SO*(2n).

@ Fix O a nilpotent G-orbit and a real form Ox = K - f C O.
Q@ 1 I(f) = UG Let Ag(f) the group of components of Zg(f).
@ (Spaltenstein) There is a bijection
{7 : irred. comp. O Nn} <> {Ag(f)-orbits in Irr(u~1(f))}

@ On the other hand, conormal bundles partition Springer fibers, i.e
T45(X) N p~Y(f) is dense in a unique component Co. Hence,

WY, = Ac(f)- G ¢ {Qie € K /X : (T3, (X)) = O has Gi.c € A(f)- G}

Orders on {Q € K /X} compatible with orbit closure inclusion induce orders on

{T}.



Continue with Gg = Sp(p, q) or SO*(2n) and O = K - f C O.

e Trapa defines a bijection between Prim,(©O) and {Tirred components of O Nn}
(a little technical for me to explain here.) In any of the orders just described on
{T} the matrix relating Goldie rank polynomials and Joseph's characteristic
polynomials is upper triangular.

e Trapa's triangularity result says: If

LTC(M) = sT]pp(M)(X) + Z mo, TS,(X)V

and m; # 0,then Ag(f) - G; < Ag(f) - Coupp(m)
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QUESTIONS

@ Can we relate and or combine the results just described to gain a little deeper
understanding of invariants of H-C modules?

e Can we work “simultaneously” on the M (g, B) and M, (g, K) categories to
transfer info and gain insight on the invariants?

[ The Jacquet-Casselman functor J : M(g, K), — M(g, B),, should play a
central role here. For us, J is in the background, through McGovern's work.]

@ A practical link, Gg = Sp(p, g) or SO*(2n)

Theorem (Trapa) A Geometric interpretation of Joseph's Thm

Let M be an irred. H-C module with AV(M) = K - f and Ann(M) = Ann (L,,-1).
Write

ALTC(M) = T2 X) + D mo, T5.(X), *AV(Ly) = UTy

Then, mg, # 0 “iff" the orbital variety T; bijective to Ag(f) - Co, is open in
AV(Ly).:




o If we want to understand CC we can not forget of a powerful tool: (Tanisaki)
CC: K(M(g, K),) = Hrop(Tk(X), Q)

is W-equivariant.

e M(g, K), partitions into “equivalence classes”, the HC cells {Cyc,i}-
(designed to capture information on tensoring a HC modules with a finite
dim. rep.)

Key property:
(McGovern) Assume (g, Sp(p) x Sp(q)). Let Ok be a nilpotent K-orbit.
Then,

Crc = {X S ./\/l(g, K)p : AV(X) = OK}.

@ For each Cyc, there is a W-cell representation V¢, (minimal sub-quotient of
the coherent continuation rep K(M(g, K),) that is spanned by Ckc).



MOTIVATING EXAMPLE

When Gg = U(p, q).

o

(2]
o

©

o

Each irreducible (g, K) with inf. chr. p has irreducible associated variety,
AV(X) =0k =K -f.

Veye = Hiop(171(f)) is an irreducible W-representation.
The component groups Ag(f) of the centralizer of f are trivial. For
X,Y € Cc, then Ann(X) # Ann(Y).

CHc contains an A, for which the associated cycle can be computed.

As Ve, = Q[W]- Aq, (indeed any M € Cpc has such property.) The point is
that we can compute multiplicity polynomials using coherent continuation
rep.

Many irreducible M € Cpc, have LTC(M) = 1. T3(X) (Q is the support of
M).

We would like to emphasize that none of the above facts hold in general.



Proposition

Assume Gg = Sp(p, q) or SO*(2n).

Let My, My irreducible (g, K)-modules with AV(M;) = K - f.

Write Qp. the support of M;, and let Cq,, be the irred. component of (u~1(f))
corresponding to Qpg,. Then, /

Ann(My) = Ann(M,) <= Co,, € Ac(f) - Ca,,-
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Proposition

Assume Gg = Sp(p, q) or SO*(2n).

Let My, My irreducible (g, K)-modules with AV(M;) = K - f.

Write Qp. the support of M;, and let Cq,, be the irred. component of (1 ~1(f))
corresponding to Qpg,. Then, /

Ann(My) = Ann(M,) <= Co,, € Ac(f) - Ca,,-

Remark
@ In view of the prop. T : Prim,(O) ¢ {Tirred components of O Nn} can be
described as follows.: given | € Prim,(O) take any M(Q) with
AV(M(Q)) = K- f and Ann(M(Q)) =1, then T(I) =T < Ag(f) - Co.
@ The prop. will allow us to compare Trapa's bijection and McGovern bijection
leading to restrictions on shape of LTC.

@ The prop. (combined with other tools) give some info on the structure of
Ve




Theorem
Gr = Sp(p, q) or SO*(2n).

Q@ Q[W]IM ~ Vg, if and only if card{M’ € Cyc : Ann(M’) = Ann(M)} is
maximal for Cyc.

Q If M’ € Cyc, then
QIWIM' = Hygp (2 (£)) (")

where, Ag(f, Co,,) ={z€ As(f):z- Cg,, = Co,, }

Remark: The proof of Theorem relies in the Proposition and an result of
McGovern, i.e for sp(p, q) Veue =~ Hiop(n71(f), Q) as W-modules.



Theorem
Gr = Sp(p, q) or SO*(2n).
Q@ Q[W]IM ~ Vg, if and only if card{M’ € Cyc : Ann(M’) = Ann(M)} is
maximal for Cyc.
Q If M’ € Cyc, then

QIW]M' = Hyop (2 (£)) et )
P

where, Ag(f, Co,,) ={z€ As(f):z- Cg,, = Co,, }

Remark: The proof of Theorem relies in the Proposition and an result of
McGovern, i.e for sp(p, q) Veue =~ Hiop(n71(f), Q) as W-modules.

Application: Theorem (4) (B.-Zierau) Assume g = sp(p, q). There is an effective
algorithm to compute multiplicity polynomials for each irreducible HC module

X € Cyc provided Cyc contains a rep. in the discrete series.



AN EXAMPLE

e Gg =5p(1,1)
@ Cyc is the H-C cell with AV(Ann) =[2,2] and AV = K - f a real form of
[2,2].

o Cyc = {m = dsi,m = dsy, m3 = Aq(A)}. where
Ann(ds;) = Ann(ds,) # Ann(Aq(N).

o Ve, . =Q[W]-ds; but Q[W]-Aq(A) € Ve,

o CC(mj) = T (X) with Q; = supp(m;). Write C; for the component of the
Springer fiber corresponding to T5 (X) N u~*(f).

o A basis for Hyop(p(£))Ac(F%) is {[Co + C1], [G]} and

Say G=-G Sal[Co + Cl] = [Co + Cl] +2G
Sas G=0G+ [Co + Cl] SQQ[CO + C1] = 7[C0 + Cl]



Theorem
Assume Gg = Sp(p, q) or SO*(2n).
Fix Cyc with AV(Cyc) = K - f. Write M(Q) for M € Cryc with supp(M(Q)) =
and write
LTC(M(Q)) = T5(X) + > ma; T5,(X), then

Too(M(Q)) € 75 (M(2)))

Q




Theorem

Assume Gg = Sp(p, q) or SO*(2n).
Fix Crc with AV(Cuc) = K - f. Write M(Q) for M € Cpc with supp(M(Q)) = Q
and write

LTC(M(Q)) = T5(X) + > ma; T5,(X), then

T5(M(Q)) € 75 (M(2)))

Remark:

@ We show that T : Prim,(O) <> {Tirred components of O N n} sends
I = T(Ac(f)Ca) = Tspr(1)-
@ There are other restrictions that come from Trapa’s order and also Q; C Q.

@ Restrictions + ATLAS (to compute coherent continuation, for example) yield
many examples of HC modules with irred. LTC.
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Ir Gr = Sp(p, q), ARE LTC IRRED?

Key to the answer is:

Theorem (Trapa) A Geometric interpretation of Joseph's Thm

Assume M is irred., AV(M) = K - f and Ann(M) = Ann (L,,-1). Write
ALTC(M) = T2, (X) + X ma, T3 (X), +AV(Ly) = UT
Then, mq, # 0 “iff" the orbital variety T; bijective to Ag(f) - Cq, is open in

AV(Ly).:

Answer to the question: NO.
The strategy is to find a Highest Weight module L,, so that

@ AV(Ann(L,)) = O is the associated variety of the annihilator of a
(sp(2n),Sp(p) x Sp(q))-module and

Q@ AV(L,) is reducible.

Once this is achieved, the theorem guarantees the existence of a Harish-Chandra
module with reducible leading term cycle.
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The Highest Weight L,, we are looking for, has Ann(L,,-1) = Ann(M).
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@ We consider O ~ [2,2,2,2].
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