Exercise 4. Let G be a cyclic group, let a be a generator of G, and let $\varphi, \psi: G \to H$ be homomorphisms. Prove that if $\varphi(a) = \psi(a)$, then $\varphi = \psi$. (This says that a homomorphism defined on a cyclic group is completely determined by its action on a generator of the group.)

Solution. In order to show that the functions φ and ψ are equal, we need to show that $\varphi(g) = \psi(g)$ for each $g \in G$. So, let $g \in G$. As a is a generator of G, there exists $n \in \mathbb{Z}$ such that $g = a^n$. We have previously shown that isomorphisms respect exponentiation, so we have:

$$\varphi(g) = \varphi(a^n)$$
$$= \varphi(a)^n$$
$$= \psi(a)^n$$
$$= \psi(a^n)$$
$$= \psi(g).$$

As g was an arbitrary element of G, we have established that $\varphi = \psi$.

**Exercise 6. The subgroup of a group G generated by the set $\{xyx^{-1}y^{-1} : x, y \in G\}$ is called the *commutator subgroup of* G and is denoted G' (or [G, G]).

- (a) Prove that G' is normal in G.
- (b) Prove that G/G' is abelian.
- (c) Let N be a normal subgroup of G. Prove that G/N is abelian if and only if $G' \subset N$.

(The group G/G' is called the *abelianization* of G.)

Solution.

- (a) The product $xyx^{-1}y^{-1}$ is called a *commutator* and is usually denoted by [x, y]. It is readily verified that $g[x, y]g^{-1} = [gxg^{-1}, gyg^{-1}]$. This says that the generating set of G' is invariant under conjugation, and hence G' is invariant under conjugation, i.e., $gG'g^{-1} = G$; in other words, G' is normal.
- (b) There is a bit of redundancy in parts (b) and (c), so let us prove the following: If N is a normal subgroup of G containing G', then G/N is abelian. To see this, let $a, b \in G$. We need to show that (ab)N = (ba)N. From one of our lemmas, we know that (ab)N = (ba)N if and only if $(ba)^{-1}(ab) \in N$. Here, $(ba)^{-1}(ab) = a^{-1}b^{-1}ab = [a^{-1}, b^{-1}] \in G'$, and as G' < N, we have that (ab)N = (ba)N. We have established that G/N is abelian.
- (c) We have already established the reverse direction, so assume that G/N is abelian. We want to show that G' < N. By definition, G' is the smallest subgroup that contains every commutator, so to show that G' < N, we need to show that N contains every commutator. Let $x, y \in G$. As G/N is abelian, we have that $(x^{-1}y^{-1})N = (y^{-1}x^{-1})N$.

This implies that $(y^{-1}x^{-1})^{-1}(x^{-1}y^{-1}) \in N$, or equivalently, $[x, y] \in N$. As x and y were arbitrary elements of G, we have shown that N contains every commutator of elements in G, and hence it must contain G'.