Homework 1

Solutions to graded problems
*Exercise 6. Let $n \in \mathbb{N}$. Prove that the remainder obtained from dividing n^{2} by 4 is either 0 or 1 .

Proof. By the division algorithm, there exists $k \in \mathbb{Z}$ such that either $n=2 k$ or $n=2 k+1$, that is, either n is even or odd, respectively. Also, by the division algorithm, there exists unique $q, r \in \mathbb{Z}$ such that $n^{2}=4 q+r$ with $r \in\{0,1,2,3\}$. If $n=2 k$, then $n^{2}=(2 k)^{2}=4 k^{2}$, and hence, $q=k^{2}$ and $r=0$. Otherwise, $n=2 k+1$ and $n^{2}=(2 k+1)^{2}=4\left(k^{2}+k\right)+1$, and hence, $q=k^{2}+k$ and $r=1$. In either case, $r \in\{0,1\}$, as desired.
**Exercise 7. Define the ordering $<$ on $\mathbb{N} \times \mathbb{N}$ by $(a, b)<(c, d)$ if $a<c$ or $a=c$ and $b<d$ (this is called the lexicographical ordering). Prove that ($\mathbb{N} \times \mathbb{N},<$) is well ordered, that is, show that given a nonempty subset S of $\mathbb{N} \times \mathbb{N}$ there exists $s \in S$ such that $s<s^{\prime}$ for all $s^{\prime} \in S \backslash\{s\}$.

Proof. Let S be a nonempty subset of $\mathbb{N} \times \mathbb{N}$. Let

$$
T=\{a \in \mathbb{N}: \text { there exists } b \in \mathbb{N} \text { such that }(a, b) \in S\}
$$

As S is nonempty, so is T. Therefore, we can apply the well-ordering principle to T to obtain its least element, call it x. Now, let $U=\{b \in \mathbb{N}:(x, b) \in S\}$. By the construction of x, we know that U is nonempty, so we can apply the well-ordering principle to U to obtain its least element, call it y. By construction, $s=(x, y) \in S$, and we claim that s is the least element of S. Indeed, let $s^{\prime}=\left(x^{\prime}, y^{\prime}\right) \in S$. Then, $x^{\prime} \in T$, and hence $x \leq x^{\prime}$. If $x<x^{\prime}$, then $s<s^{\prime}$; otherwise, $x^{\prime}=x$, and $y^{\prime} \in U$. Therefore, $y^{\prime} \leq y$, and hence $s=(x, y) \leq\left(x, y^{\prime}\right)=s^{\prime}$. In either case, we have $s \leq s^{\prime}$, as desired.

