Exercise 5. Let a and b be nonzero integers.
(1) Prove that the least common multiple of a and b exists.
(2) Prove that if $k \in \mathbb{Z}$ is a common multiple of a and b, then $\operatorname{lcm}(a, b)$ divides k. (Hint: divide k by $\operatorname{lcm}(a, b)$ using the division algorithm.)

Solution. (1) Both $a b$ and $-a b$ are common multiples of a and b, and as at least one of them is positive, a and b have a positive common multiple. Therefore, the set of positive common multiples of a and b is a nonempty subset of the natural numbers. The wellordering principle implies that this set has a least element, and hence the least common multiple of a and b exist.
(2) Let $k \in \mathbb{Z}$ be a common multiple of a and b, and let $m=\operatorname{lcm}(a, b)$. By the division algorithm, there exists $q, r \in \mathbb{Z}$ such that $k=m q+r$ and $0 \leq r<m$. Observe that as both k and m are common multiples of a and b, we have that $k-m q=r$ is a common multiple of a and b as well. Therefore, as m is the least positive common multiple of a and b and $r<m$, we have that r cannot be positive, i.e., $r \leq 0$. As we know that $r \geq 0$, we must have that $r=0$, and hence m divides k.
**Exercise 6. Let $a, b \in \mathbb{N}$.
(1) Prove that the product of $\operatorname{lcm}(a, b)$ and $\operatorname{gcd}(a, b)$ is equal to $a b$. (Hint: the product $a b$ is divisible by $d=\operatorname{gcd}(\mathrm{a}, \mathrm{b})$. Let $m=a b / d$. Now, let ℓ be the least common multiple of a and b. Write d as a linear combination in a and b, and use this to express the fraction ℓ / m as an integer.)
(2) Prove that $\operatorname{lcm}(a, b)=a b$ if and only if $\operatorname{gcd}(a, b)=1$.

Solution. (1) Let $\ell=\operatorname{lcm}(a, b)$, and let $d=\operatorname{gcd}(a, b)$. As $a b$ is divisible by d, there exists $m \in \mathbb{N}$ such that $a b=m d$. We need to show that $m=\ell$.

We first establish that $\ell \leq m$. As $d \mid b$, there exists $q \in \mathbb{Z}$ such that $b=d q$. By substitution, we have $a b=a q d=m d$, and hence $m=a q$; in particular, $a \mid m$. Similarly, $b \mid m$. Therefore, m is a common multiple of a and b, and hence $\ell \leq m$, as claimed.

Next, we establish that $m \leq \ell$ by showing that $m \mid \ell$. Let $s, t \in \mathbb{Z}$ such that $d=a s+b t$. It is notationally convenient to work in the rational numbers, and so we will do so despite
not discussing the rationals in class yet. We compute:

$$
\begin{aligned}
\frac{\ell}{m} & =\frac{\ell}{a b / d} \\
& =\frac{\ell d}{a b} \\
& =\frac{\ell(a s+b t)}{a b} \\
& =s\left(\frac{\ell}{b}\right)+t\left(\frac{\ell}{a}\right) .
\end{aligned}
$$

Now, as $b \mid \ell$ and $a \mid \ell$, we have that $s\left(\frac{\ell}{b}\right)+t\left(\frac{\ell}{a}\right)$ is an integer, and hence $m \mid \ell$, as claimed. We have shown that $m \leq \ell$ and $\ell \leq m$, and hence $m=\ell$ and $\ell d=a b$, as desired.
(2) Let ℓ and d denote the least common multiple and the greatest common divisor, respectively, of a and b. We have shown that $\ell d=a b$. Therefore, if $d=1$, then $\ell=a b$. And, conversely, if $\ell=a b=\ell d$, then $d=1$.

