Exercise 5. Let a and b be nonzero integers.

- (1) Prove that the least common multiple of a and b exists.
- (2) Prove that if $k \in \mathbb{Z}$ is a common multiple of a and b, then lcm(a, b) divides k. (Hint: divide k by lcm(a, b) using the division algorithm.)

Solution. (1) Both ab and -ab are common multiples of a and b, and as at least one of them is positive, a and b have a positive common multiple. Therefore, the set of positive common multiples of a and b is a nonempty subset of the natural numbers. The well-ordering principle implies that this set has a least element, and hence the least common multiple of a and b exist.

(2) Let $k \in \mathbb{Z}$ be a common multiple of a and b, and let $m = \operatorname{lcm}(a, b)$. By the division algorithm, there exists $q, r \in \mathbb{Z}$ such that k = mq + r and $0 \le r < m$. Observe that as both k and m are common multiples of a and b, we have that k - mq = r is a common multiple of a and b as well. Therefore, as m is the least positive common multiple of a and b and r < m, we have that r cannot be positive, i.e., $r \le 0$. As we know that $r \ge 0$, we must have that r = 0, and hence m divides k.

****Exercise 6.** Let $a, b \in \mathbb{N}$.

- (1) Prove that the product of lcm(a, b) and gcd(a, b) is equal to ab. (Hint: the product ab is divisible by d = gcd(a, b). Let m = ab/d. Now, let ℓ be the least common multiple of a and b. Write d as a linear combination in a and b, and use this to express the fraction ℓ/m as an integer.)
- (2) Prove that lcm(a, b) = ab if and only if gcd(a, b) = 1.

Solution. (1) Let $\ell = \text{lcm}(a, b)$, and let d = gcd(a, b). As ab is divisible by d, there exists $m \in \mathbb{N}$ such that ab = md. We need to show that $m = \ell$.

We first establish that $\ell \leq m$. As $d \mid b$, there exists $q \in \mathbb{Z}$ such that b = dq. By substitution, we have ab = aqd = md, and hence m = aq; in particular, $a \mid m$. Similarly, $b \mid m$. Therefore, m is a common multiple of a and b, and hence $\ell \leq m$, as claimed.

Next, we establish that $m \leq \ell$ by showing that $m \mid \ell$. Let $s, t \in \mathbb{Z}$ such that d = as + bt. It is notationally convenient to work in the rational numbers, and so we will do so despite not discussing the rationals in class yet. We compute:

$$\frac{\ell}{m} = \frac{\ell}{ab/d}$$
$$= \frac{\ell d}{ab}$$
$$= \frac{\ell (as+bt)}{ab}$$
$$= s\left(\frac{\ell}{b}\right) + t\left(\frac{\ell}{a}\right).$$

Now, as $b \mid \ell$ and $a \mid \ell$, we have that $s\left(\frac{\ell}{b}\right) + t\left(\frac{\ell}{a}\right)$ is an integer, and hence $m \mid \ell$, as claimed. We have shown that $m \leq \ell$ and $\ell \leq m$, and hence $m = \ell$ and $\ell d = ab$, as desired.

(2) Let ℓ and d denote the least common multiple and the greatest common divisor, respectively, of a and b. We have shown that $\ell d = ab$. Therefore, if d = 1, then $\ell = ab$. And, conversely, if $\ell = ab = \ell d$, then d = 1.