*Exercise 3. Let $n \in \mathbb{N}$. Prove that given any $m \in \mathbb{Z}$ there exists a unique element $a \in\{0,1,2, \ldots, n-1\}$ such that $m \equiv a(\bmod n)$.

Solution. Let $m \in \mathbb{Z}$. By the division algorithm, there exists unique $q, a \in \mathbb{Z}$ such that $m=q n+a$ and $a \in\{0,1, \ldots, n-1\}$. Rearranging the above equality, we have that $m-a=q n$, and hence $n \mid m-a$. This implies that $m \equiv a(\bmod n)$ and $a \in\{0,1, \ldots, n-1\}$, as desired. It is left to show that a is unique: let $a^{\prime} \in\{0,1, \ldots, n-1\}$ such that $m \equiv a^{\prime}$ $(\bmod n)$. Similar to the above (but in reverse), there exists $q^{\prime} \in \mathbb{Z}$ such that $m=q^{\prime} n+a^{\prime}$. As $0 \leq a^{\prime}<n$, the uniqueness component of the division algorithm implies that $a^{\prime}=a$. Therefore, there exists a unique $a \in\{0, \ldots, n-1\}$ such that $m \equiv a(\bmod n)$.
${ }^{* *}$ Exercise 6. Let $m, n \in \mathbb{N}$ be relatively prime, and let $a, b \in \mathbb{Z}$. Prove that there exists $x \in \mathbb{Z}$ such that

$$
\begin{array}{ll}
x \equiv a & (\bmod m) \\
x \equiv b & (\bmod n) .
\end{array}
$$

(Hint: Start by writing 1 as a linear combination of m and n.)
Solution. As m and n are relatively prime, there exists $s, t \in \mathbb{Z}$ such that $1=m s+n t$. From this, we see that $1-m s=n t$ and $1-n t=m s$, and hence, $m s \equiv 1(\bmod n)$ and $n t \equiv 1(\bmod m)$. Setting $x=b m s+a n t$, we have

$$
x \equiv 0+a n t \equiv a(1) \equiv a \quad(\bmod m)
$$

and

$$
x \equiv b m s+0 \equiv b(1) \equiv b \quad(\bmod n) .
$$

Therefore, x is as desired.

