*Exercise 3. Let $n \in \mathbb{N}$. Prove that given any $m \in \mathbb{Z}$ there exists a unique element $a \in \{0, 1, 2, \ldots, n-1\}$ such that $m \equiv a \pmod{n}$.

Solution. Let $m \in \mathbb{Z}$. By the division algorithm, there exists unique $q, a \in \mathbb{Z}$ such that m = qn + a and $a \in \{0, 1, \ldots, n - 1\}$. Rearranging the above equality, we have that m-a = qn, and hence $n \mid m-a$. This implies that $m \equiv a \pmod{n}$ and $a \in \{0, 1, \ldots, n-1\}$, as desired. It is left to show that a is unique: let $a' \in \{0, 1, \ldots, n-1\}$ such that $m \equiv a' \pmod{n}$. Similar to the above (but in reverse), there exists $q' \in \mathbb{Z}$ such that m = q'n + a'. As $0 \leq a' < n$, the uniqueness component of the division algorithm implies that a' = a. Therefore, there exists a unique $a \in \{0, \ldots, n-1\}$ such that $m \equiv a \pmod{n}$. \Box

****Exercise 6.** Let $m, n \in \mathbb{N}$ be relatively prime, and let $a, b \in \mathbb{Z}$. Prove that there exists $x \in \mathbb{Z}$ such that

$$x \equiv a \pmod{m}$$
$$x \equiv b \pmod{n}.$$

(Hint: Start by writing 1 as a linear combination of m and n.)

Solution. As m and n are relatively prime, there exists $s, t \in \mathbb{Z}$ such that 1 = ms + nt. From this, we see that 1 - ms = nt and 1 - nt = ms, and hence, $ms \equiv 1 \pmod{n}$ and $nt \equiv 1 \pmod{m}$. Setting x = bms + ant, we have

$$x \equiv 0 + ant \equiv a(1) \equiv a \pmod{m}$$

and

$$x \equiv bms + 0 \equiv b(1) \equiv b \pmod{n}.$$

Therefore, x is as desired.