Solutions to Graded Problems

Exercise 1 (\#32 in Section 3.5). Show that if G is a finite group of even order, then there is an $a \in G$ such that a is not the identity and $a^{2}=e$.
Solution. Let $E=\left\{g \in G: g^{-1} \neq g\right\}$. Pairing each element of E with its inverse, we see that E has an even number of elements. As $|G|=|E|+|G \backslash E|$ and both $|G|$ and $|E|$ are even, $G \backslash E$ has an even number of elements. Note if $g \in G \backslash E$, then $g=g^{-1}$, and hence $g^{2}=e$. Therefore, to finish, we need to show that $G \backslash E$ contains a non-identity element. We know that $e \in G \backslash E$, so $G \backslash E$ has at least one element. But, $G \backslash E$ is even and hence has at least two elements. Therefore, there exists $a \in G \backslash E$ such that $a \neq e$. As noted above, this means that $a^{2}=e$, and a is our desired element of G.
${ }^{* *}$ Exercise 3. Let G be a finite group. Prove that there exists $N \in \mathbb{N}$ such that $g^{N}=e$ for each $g \in G$.

Solution. Fix $g \in G$. Consider the subset $\left\{g^{k}: k \in \mathbb{N}\right\} \subset G$. As G is finite, the above subset has only finitely many elements, and hence, there exists $i, j \in \mathbb{N}$ such that $g^{j}=g^{i}$ and $j>i$. It follows that $g^{j} g^{-i}=e$, and setting $N_{g}=j-i$, we have that $N_{g} \in \mathbb{N}$ and $g^{N_{g}}=e$.

Now, let $N=\prod_{g \in G} N_{g}$, and, for $g \in G$, let $N_{g}^{\prime}=N / N_{g}=\prod_{h \in G \backslash\{g\}} N_{h} \in \mathbb{N}$. We then have that, for any $g \in G$,

$$
g^{N}=g^{N_{g} N_{g}^{\prime}}=\left(g^{N_{g}}\right)^{N_{g}^{\prime}}=e^{N_{g}^{\prime}}=e,
$$

and hence N is as desired.

