Solutions to Graded Problems

Exercise 1 (Section 4.5, \#34). Let G be an abelian group of order $p q$, where $\operatorname{gcd}(p, q)=1$. If G contains elements a and b of order p and q, respectively, then show that G is cyclic.

Solution. Let $g=a b$, and let $n=|g|$. We will show that $n=p q$, and hence that g generates G. Firstly, using that G is abelian, we have that

$$
g^{p q}=(a b)^{p q}=a^{p q} b^{p q}=\left(a^{p}\right)^{q}\left(b^{q}\right)^{p}=e,
$$

so $n \leq p q$. To show the other inequality, we will argue that $p q$ divides n. From a previous homework problem (Section $4.5 \# 30$), we know that $\langle a\rangle \cap\langle b\rangle=\{e\}$ (this follows from the fact that the order of any element in $\langle a\rangle \cap\langle b\rangle$ has to divide both p and q, which are relatively prime). Again, using that G is abelian, we that $e=g^{n}=(a b)^{n}=a^{n} b^{n}$, so that $b^{n}=a^{-n}$. In particular, $a^{n}, b^{n} \in\langle a\rangle \cap\langle b\rangle$, and hence $a^{n}=b^{n}=e$. Since $a^{n}=e$, the order of a must divide n; in particular, $p \mid n$. Similarly, $q \mid n$. Now, as both p and q divide n, so does their least common multiple, which is $p q$. Therefore, $p q \leq n$, and as we have shown that $n \leq p q$, we have established that $n=p q$, as desired.

Exercise 6. Prove that any two k-cycles in S_{n} are conjugate, that is, if $\sigma, \tau \in S_{n}$ are k-cycles, then there exists $\mu \in S_{n}$ such that $\mu \sigma \mu^{-1}=\tau$.
Solution. Let $\sigma, \tau \in S_{n}$ be k-cycles. There exist $a_{1}, a_{2}, \ldots, a_{k}, b_{1}, b_{2}, \ldots, b_{k} \in\{1,2, \ldots, k\}$ such that $\sigma\left(a_{i}\right)=a_{i+1}$ and $\tau\left(b_{i}\right)=b_{i+1}$, with indices read modulo k, and such that $\sigma(x)=x$ if $x \neq a_{i}$ for any i and $\tau(y)=y$ if $y \neq b_{i}$ for any i. Let μ be any permutation that satisfies $\mu\left(a_{i}\right)=b_{i}$ for all $i \in\{1, \ldots, k\}$. We claim that $\mu \sigma \mu^{-1}=\tau$. Indeed, we check this pointwise: for $i \in\{1, \ldots, k\}$,

$$
\begin{aligned}
\left(\mu \sigma \mu^{-1}\right)\left(b_{i}\right) & =\mu\left(\sigma\left(\mu^{-1}\left(b_{i}\right)\right)\right) \\
& =\mu\left(\sigma\left(\mu^{-1}\left(\mu\left(a_{i}\right)\right)\right)\right) \\
& =\mu\left(\sigma\left(a_{i}\right)\right) \\
& =\mu\left(a_{i+1}\right) \\
& =b_{i+1} \\
& =\tau\left(b_{i}\right),
\end{aligned}
$$

where we again read the indices modulo k. Now, if $y \neq b_{i}$ for any i, then there exists x such that $\mu(x)=y$ and $x \neq a_{i}$ for any i. Hence, $\mu\left(\sigma\left(\mu^{-1}(y)\right)\right)=\mu(\sigma(x))=\mu(x)=y=\tau(y)$, establishing $\mu \sigma \mu^{-1}=\tau$.

