Exercise 1 (Section 5.4 #25). Prove that in A_n with $n \ge 3$, any permutation is a product of cycles of length 3.

Proof. Let us first show that the product two transpositions is either trivial, a 3-cycle, or a product of two 3-cycles. Let τ_1 and τ_2 be transpositions. Then we can write $\tau_1 = (a \ b)$ and $\tau_2 = (c \ d)$ for some $a, b, c, d \in \{1, \ldots, n\}$. Up to relabelling, there are three cases: (1) a = c and b = d, (2) $a \neq c$ and b = d, and (3) both a and b are distinct from c and d. In the first case, $\tau_1 \tau_2$ is the identity. In the second case, $\tau_1 \tau_2 = (a \ b \ c)$. In the third case, we have

$$\begin{aligned} \pi_1 \tau_2 &= (a \ b)(c \ d) \\ &= (a \ b)(b \ c)(b \ c)(c \ d) \\ &= (a \ b \ c)(b \ c \ d) \end{aligned}$$

Now, if $\sigma \in A_n$, then σ is a product of a non-zero even number of transpositions (this is true for the identity as well). So, there exists transpositions $\tau_1, \tau_2, \ldots, \tau_{2k}$ such that $\sigma = \tau_1 \tau_2 \cdots \tau_{2k}$. For $j \in \{1, \ldots, k\}$, let $\sigma_j = \tau_{2j-1}\tau_{2j}$. Then, our above argument implies that σ_j is either the identity, a 3-cycle, or a product of two 3-cycles. Therefore, $\sigma = \sigma_1 \sigma_2 \cdots \sigma_k$ expresses σ as a product of 3-cycles.

****Exercise 5.** Let $\sigma = (1\ 2\ 3\ 4\ 5) \in A_9$ and $\tau = (5\ 6\ 7\ 8\ 9) \in A_9$. Prove that the permutation $(1\ 2\ 3)$ can be written as a word in $\{\sigma, \tau\}$, i.e., there exists $r \in \mathbb{N}$ and $n_1, \ldots, n_r, m_1, \ldots, m_r \in \mathbb{Z}$ such that $(1\ 2\ 3) = \sigma^{n_1} \tau^{m_1} \sigma^{n_2} \tau^{m_2} \cdots \sigma^{n_r} \tau^{m_r}$.

Solution. Talk to Eric. I forgot to write down his solution, so I can't share it. I didn't take the time to figure it out on my own, so I gave everyone full credit. The goal was to get you to think visually about a group, so I hope you spent some time doing that. \Box