Solutions to Graded Problems

Exercise 1 (Section $5.4 \# 25$). Prove that in A_{n} with $n \geq 3$, any permutation is a product of cycles of length 3 .

Proof. Let us first show that the product two transpositions is either trivial, a 3 -cycle, or a product of two 3 -cycles. Let τ_{1} and τ_{2} be transpositions. Then we can write $\tau_{1}=(a b)$ and $\tau_{2}=(c d)$ for some $a, b, c, d \in\{1, \ldots, n\}$. Up to relabelling, there are three cases: (1) $a=c$ and $b=d$, (2) $a \neq c$ and $b=d$, and (3) both a and b are distinct from c and d. In the first case, $\tau_{1} \tau_{2}$ is the identity. In the second case, $\tau_{1} \tau_{2}=(a b c)$. In the third case, we have

$$
\left.\begin{array}{rl}
\tau_{1} \tau_{2} & =(a b)(c d) \\
& =(a b)(b c)(b c)(c d) \\
& =\left(\begin{array}{llll}
a & b & c
\end{array}\right)(b c c
\end{array}\right)
$$

Now, if $\sigma \in A_{n}$, then σ is a product of a non-zero even number of transpositions (this is true for the identity as well). So, there exists transpositions $\tau_{1}, \tau_{2}, \ldots, \tau_{2 k}$ such that $\sigma=$ $\tau_{1} \tau_{2} \cdots \tau_{2 k}$. For $j \in\{1, \ldots, k\}$, let $\sigma_{j}=\tau_{2 j-1} \tau_{2 j}$. Then, our above argument implies that σ_{j} is either the identity, a 3 -cycle, or a product of two 3 -cycles. Therefore, $\sigma=\sigma_{1} \sigma_{2} \cdots \sigma_{k}$ expresses σ as a product of 3 -cycles.
${ }^{* *}$ Exercise 5. Let $\sigma=\left(\begin{array}{l}12345) \in A_{9} \text { and } \tau=\left(\begin{array}{ll}5 & 6 \\ \hline\end{array}\right) \in A_{9} \text {. Prove that the }\end{array}\right.$ permutation (123) can be written as a word in $\{\sigma, \tau\}$, i.e., there exists $r \in \mathbb{N}$ and $n_{1}, \ldots, n_{r}, m_{1}, \ldots m_{r} \in \mathbb{Z}$ such that (123) $=\sigma^{n_{1}} \tau^{m_{1}} \sigma^{n_{2}} \tau^{m_{2}} \cdots \sigma^{n_{r}} \tau^{m_{r}}$.

Solution. Talk to Eric. I forgot to write down his solution, so I can't share it. I didn't take the time to figure it out on my own, so I gave everyone full credit. The goal was to get you to think visually about a group, so I hope you spent some time doing that.

