Exercise 1 (Section 6.5 #18). If [G:H] = 2, prove that gH = Hg.

Proof. As the index of H in G is two, we know that H has two left cosets; moreover, we know that these two left cosets are disjoint and that their union is all of G (as they partition G). Therefore, the two left cosets of H in G are H and $G \setminus H$. The same holds for right cosets, so the two right cosets of H in G are also H and $G \setminus H$.

Now, let $g \in G$. If $g \in H$, then gH = H and Hg = H, so gH = Hg. Otherwise, $g \in G \setminus H$, implying $gH = G \setminus H$ and $Hg = G \setminus H$, so gH = Hg. Thus, gH = Hg.

****Exercise 6.** Let G be a group acting on a set X. Let $x \in X$.

(a) Let $g, h \in G$. Prove that gx = hx if and only if $h^{-1}g \in \text{Stab}_G(x)$.

Solution. If gx = hx, then $h^{-1}(gx) = h^{-1}(hx) = (h^{-1}h)x$, and so $(h^{-1}g)x = x$, implying $h^{-1}g \in \operatorname{Stab}_G(x)$. For the converse, if $h^{-1}g \in \operatorname{Stab}_G(x)$, then

$$x = (h^{-1}g)x = h^{-1}(gx)$$

implying hx = gx.

- (b) Let \mathcal{L} be the set of left cosets of $\operatorname{Stab}_G(x)$ in G. Let $\psi \colon \mathcal{L} \to \mathcal{O}_x$ be given by $\psi(g\operatorname{Stab}_G(x)) = gx$.
 - (i) Prove that ψ is a well-defined.

Solution. Suppose $gStab_G(x) = hStab_G(x)$. Then there exists $s \in Stab_G(x)$ such that gs = h, and hence

$$\psi(g\operatorname{Stab}_G(x)) = gx = g(sx) = (gs)x = hx = \psi(h\operatorname{Stab}_G(x)),$$

implying ψ is well-defined.

(ii) Prove that ψ is bijective.

Solution. The surjectivity of ψ follows immediately from the definition. Suppose that $\psi(g\operatorname{Stab}_G(x)) = \psi(h\operatorname{Stab}_G(x))$. Then gx = hx, which implies that $h^{-1}g \in \operatorname{Stab}_G(x)$. Therefore, $g\operatorname{Stab}_G(x) = h\operatorname{Stab}_G(x)$, and ψ is injective. \Box

(c) The previous part implies that $|\mathcal{O}_x| = [G : \operatorname{Stab}_G(x)]$. Apply Lagrange's theorem to obtain $|G| = |\mathcal{O}_x| \cdot |\operatorname{Stab}_G(x)|$.

Solution. By Lagrange's theorem, $|G| = |\operatorname{Stab}_G(x)| \cdot [G : \operatorname{Stab}_G(x)]$, and hence $|G| = |\operatorname{Stab}_G(x)| \cdot |\mathcal{O}_x|$ by part (b).

(d) Now suppose G is a finite group, and let G act on itself by conjugation, that is, the action is given by $g \cdot a = gag^{-1}$. Apply the orbit-stabilizer theorem to show that, for $a \in G$, the cardinality of the set $\{gag^{-1} : g \in G\}$ (that is, the conjugacy class of a) divides |G|.

Solution. The orbit of a under the conjugation action is exactly the conjugacy class of a. By the Orbit-Stabilizer theorem, |G| is a multiple of $|\mathcal{O}_a|$.