Solutions to Graded Problems

Exercise 1 (Section $6.5 \# 18)$. If $[G: H]=2$, prove that $g H=H g$.
Proof. As the index of H in G is two, we know that H has two left cosets; moreover, we know that these two left cosets are disjoint and that their union is all of G (as they partition $G)$. Therefore, the two left costs of H in G are H and $G \backslash H$. The same holds for right cosets, so the two right cosets of H in G are also H and $G \backslash H$.

Now, let $g \in G$. If $g \in H$, then $g H=H$ and $H g=H$, so $g H=H g$. Otherwise, $g \in G \backslash H$, implying $g H=G \backslash H$ and $H g=G \backslash H$, so $g H=H g$. Thus, $g H=H g$.
${ }^{* *}$ Exercise 6. Let G be a group acting on a set X. Let $x \in X$.
(a) Let $g, h \in G$. Prove that $g x=h x$ if and only if $h^{-1} g \in \operatorname{Stab}_{G}(x)$.

Solution. If $g x=h x$, then $h^{-1}(g x)=h^{-1}(h x)=\left(h^{-1} h\right) x$, and so $\left(h^{-1} g\right) x=x$, implying $h^{-1} g \in \operatorname{Stab}_{G}(x)$. For the converse, if $h^{-1} g \in \operatorname{Stab}_{G}(x)$, then

$$
x=\left(h^{-1} g\right) x=h^{-1}(g x),
$$

implying $h x=g x$.
(b) Let \mathcal{L} be the set of left cosets of $\operatorname{Stab}_{G}(x)$ in G. Let $\psi: \mathcal{L} \rightarrow \mathcal{O}_{x}$ be given by $\psi\left(g \operatorname{Stab}_{G}(x)\right)=g x$.
(i) Prove that ψ is a well-defined.

Solution. Suppose $g \operatorname{Stab}_{G}(x)=h \operatorname{Stab}_{G}(x)$. Then there exists $s \in \operatorname{Stab}_{G}(x)$ such that $g s=h$, and hence

$$
\psi\left(g \operatorname{Stab}_{G}(x)\right)=g x=g(s x)=(g s) x=h x=\psi\left(h \operatorname{Stab}_{G}(x)\right),
$$

implying ψ is well-defined.
(ii) Prove that ψ is bijective.

Solution. The surjectivity of ψ follows immediately from the definition. Suppose that $\psi\left(g \operatorname{Stab}_{G}(x)\right)=\psi\left(h \operatorname{Stab}_{G}(x)\right)$. Then $g x=h x$, which implies that $h^{-1} g \in$ $\operatorname{Stab}_{G}(x)$. Therefore, $g \operatorname{Stab}_{G}(x)=h \operatorname{Stab}_{G}(x)$, and ψ is injective.
(c) The previous part implies that $\left|\mathcal{O}_{x}\right|=\left[G: \operatorname{Stab}_{G}(x)\right]$. Apply Lagrange's theorem to obtain $|G|=\left|\mathcal{O}_{x}\right| \cdot\left|\operatorname{Stab}_{G}(x)\right|$.
Solution. By Lagrange's theorem, $|G|=\left|\operatorname{Stab}_{G}(x)\right| \cdot\left[G: \operatorname{Stab}_{G}(x)\right]$, and hence $|G|=$ $\left|\operatorname{Stab}_{G}(x)\right| \cdot\left|\mathcal{O}_{x}\right|$ by part (b).
(d) Now suppose G is a finite group, and let G act on itself by conjugation, that is, the action is given by $g \cdot a=g a g^{-1}$. Apply the orbit-stabilizer theorem to show that, for $a \in G$, the cardinality of the set $\left\{g a g^{-1}: g \in G\right\}$ (that is, the conjugacy class of a) divides $|G|$.

Solution. The orbit of a under the conjugation action is exactly the conjugacy class of a. By the Orbit-Stabilizer theorem, $|G|$ is a multiple of $\left|\mathcal{O}_{a}\right|$.

