Solutions to Graded Problems

Exercise 2. Let G be a finite abelian group of order n. Suppose $m \in \mathbb{N}$ is relatively prime to n. Prove that $\varphi \colon G \to G$ given by $\varphi(g) = g^m$ is an automorphism of G. (This says that every element of G has an m^{th} -root.)

Solution. We need to show that φ is bijective and that $\varphi(ab) = \varphi(a)\varphi(b)$ for all $a, b \in G$. Let us consider the latter condition first. If $a, b \in G$, then

$$\varphi(ab) = (ab)^m$$

$$= (a^m)(b^m)$$

$$= \varphi(a)\varphi(b).$$

where the second equality is using the fact that G is abelian.

Now, since G is finite and both the domain and codomain of φ are G, we know that if φ is injective or surjective, then it is bijective. So, it is enough to show either injectivity or surjectivity; however, I will give an argument for each of three as reference.

First, let us consider injectivity. Let $a,b \in G$. If $\varphi(a) = \varphi(b)$, then $a^m = b^m$, implying that $a^mb^{-m} = e$. Using the standard exponent laws and the fact that G is abelian, we can rewrite this equation as $(ab^{-1})^m = e$. This equality, together with Lagrange's Theorem, tells us that $|ab^{-1}|$ divides m. Lagrange's Theorem also tells us that $|ab^{-1}|$ divides n. Now, as n and m are relatively prime, we can conclude that $|ab^{-1}| = e$, and hence $ab^{-1} = e$. Therefore, a = b, and φ is injective.

Next, let us consider surjectivity. Let $g \in G$. We must show that g is in the range of φ . As m and n are relatively prime, there exists $s, t \in \mathbb{Z}$ such that 1 = ms + nt. Observe:

$$g = g^{1}$$

$$= g^{ms+nt}$$

$$= (g^{s})^{m} (g^{n})^{t}$$

$$= (g^{s})^{m}$$

$$= \varphi(g^{s}),$$

where the fourth equality uses the fact that $g^n = e$, as n = |G|. Hence, φ is surjective.

**Exercise 6. Let \mathbb{Q} denote the group $(\mathbb{Q}, +)$, and let \mathbb{Q}^{\times} denote the group $(\mathbb{Q} \setminus \{0\}, \cdot)$.

- (a) Let $\varphi \colon \mathbb{Q} \to \mathbb{Q}$ be an isomorphism. Prove that $\varphi(x) = x \cdot \varphi(1)$ for all $x \in \mathbb{Q}$. (This is saying that every automorphism of \mathbb{Q} is \mathbb{Q} -linear.)
- (b) Use part (a) to prove that if $\varphi \colon \mathbb{Q} \to \mathbb{Q}$ is an isomorphism, then there exists $q \in \mathbb{Q} \setminus \{0\}$ such that $\varphi(x) = qx$ for all $x \in \mathbb{Q}$.
- (c) Use part (b) to prove that $Aut(\mathbb{Q}) \cong \mathbb{Q}^{\times}$.

Solution.

(a) Let $\frac{a}{b} \in \mathbb{Q}$. Recall that \mathbb{Q} is a group under addition. This means that $\varphi(nq) = n\varphi(q)$ for any $n \in \mathbb{Z}$. We can therefore write $\varphi(a/b) = a\varphi(1/b)$. And also,

$$b\varphi(1/b) = b\varphi(1/b) = \varphi(b \cdot 1/b) = \varphi(1),$$

and hence $\varphi(1/b) = \frac{1}{b}\varphi(1)$. Substituting back into the equation above yields $\varphi(a/b) = \frac{a}{b}\varphi(1)$, as desired.

- (b) Let $q = \varphi(1)$. Part (1) immediately implies that $\varphi(x) = qx$. Moreover, as φ is an automorphism, we must have that $q \neq 0$.
- (c) Given $q \in \mathbb{Q}^{\times}$, let $\varphi_q \in \operatorname{Aut}(\mathbb{Q})$ be defined by $\varphi_q(x) = qx$. Define $\Phi \colon \mathbb{Q}^{\times} \to \operatorname{Aut}(\mathbb{Q})$ by $\Phi(q) = \varphi_q$. We claim that Φ is an isomorphism. First, we see it is injective: if $\Phi(q) = \Phi(q')$, then $q = \varphi_q(1) = \varphi_{q'}(1) = q'$. Now, surjectivity follows from part (b): if $\varphi \in \operatorname{Aut}(\mathbb{Q})$, then there exists $q \in \mathbb{Q}^{\times}$ such that $\varphi = \varphi_q$, and hence $\varphi = \Phi(q)$. Finally, we need to check that $\Phi(qq') = \Phi(q) \circ \Phi(q')$ for all $q, q' \in \mathbb{Q}^{\times}$. Let $q, q \in \mathbb{Q}^{\times}$, and let $x \in \mathbb{Q}$. We compute:

$$\Phi(qq')(x) = \varphi_{qq'}(x)$$

$$= (qq')x = q(q'x)$$

$$= q\varphi_{q'}(x)$$

$$= \varphi_{q}(\varphi_{q'}(x))$$

$$= (\varphi_{q} \circ \varphi_{q'})(x)$$

$$= (\Phi(q) \circ \Phi(q'))(x),$$

and hence $\Phi(qq') = \Phi(q) \circ \Phi(q')$.