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Abstract

This paper examines optimal portfolio choice when health can change the shape

of the utility function. If adverse health shocks threaten to increase the marginal

utility of consumption, that is, if they are Edgeworth-Pareto substitutes, risky health

prompts individuals to lower their risky portfolio shares. Health naturally becomes

more uncertain with age, so this theory may help explain why aging investors gradually

decrease their risk exposure even when asset returns display no mean reversion and

relative risk aversion is constant.
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1 Introduction

Portfolio decisions play an important role in wealth accumulation, accounting for perhaps 90

percent of total returns (Ibbotson and Kaplan, 2000). Because saving to finance consumption

in retirement is an essential component of life-cycle behavior, so too is portfolio behavior.

When viewed in the context of aging, a natural focal point is the role of time horizons.

All things equal, advancing age leaves less time remaining before death, or a shortening

investment horizon. Empirically speaking, both traditional investment advice (Malkiel, 1999)

and observed portfolio shares (Ameriks and Zeldes, 2004; Guiso et al., 2002) suggest that

risk taking declines with age. But whether this dynamic is sufficient to motivate declining

exposure to risky assets through age is an open question theoretically.

In this paper, I examine the portfolio implications of health dynamics, which are also

intrinsically linked to aging. I set up a theoretical model of portfolio choice with health

status that can change the shape of the utility function, and I solve it analytically using

log-linearization techniques pioneered by Viceira (2001) and Campbell and Viceira (2002).

My results show that if health shocks affect the marginal utility of consumption, they have

implications for portfolio choice. If investors expect they need more funds in poor health, to

replace necessary home production that is lost, for example, they should hold safer financial

portfolios. Since the chance of falling into poor health may increase with age, this mechanism

may partially explain patterns of declining financial risk taking in age among retirees.

In the stylized model I consider, with independently and identically distributed (IID)

returns and medical price inflation, and with preferences that display constant relative risk

aversion (CRRA), the volatility of health prices and thus of health spending affects only the

level of savings but not its composition. It seems likely that in a more realistic setting, port-

folio choice might also respond to future cost uncertainty. In a companion paper, Edwards

(2008) examines the empirical implications of uncertain health for portfolio choice.

To motivate my theoretical approach, which provides a convenient and intuitive closed-

form solution, I first discuss previous efforts in portfolio choice and the role of time horizons in
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particular. Section 2 also includes a discussion of relevant literature in health economics and

precautionary saving. Then in Section 3, I set up and solve a multi-period model of portfolio

choice with risky health in the utility function, and I discuss the model’s implications for

saving and portfolio choice. Section 4 addresses how these results may change under less

stylized conditions and discusses issues of broader context.

2 Background

2.1 Portfolio choice and time horizons

Two key ingredients in modeling portfolio choice are the structure of preferences and the

behavior of asset returns. Time-separable power utility is common in macroeconomics and

finance because it encapsulates constant relative risk aversion. Individuals with CRRA

preferences will not alter their relative demands for risky assets based on how much income

or wealth they have, which is consistent with stationary average asset returns over time

(Campbell and Viceira, 2002).

The nature of asset returns is a more opaque topic. The baseline assumption that returns

are IID grew out of the theory of no financial arbitrage and a long track record of poor

predictions. But researchers have sometimes identified empirical departures from IID returns

(Siegel, 1994; Campbell et al., 1997; Campbell and Viceira, 2002), although their precise

causes remain unclear. Traditional wisdom certainly places considerable weight on the ability

to ride out a bad market. Still, most models of portfolio choice are based on the assumption

that returns are IID because of its theoretical appeal (Merton, 1969, 1971; Samuelson, 1969,

1989; Jagannathan and Kocherlakota, 1996; Elmendorf and Kimball, 2000; Viceira, 2001;

Campbell and Viceira, 2002; Cocco et al., 2005). Power utility and IID stock returns together

imply the classic result that long-term investors ought to behave “myopically,” so that the

optimal risky share should remain constant through time. Portfolio choice over many periods

or an infinite horizon is actually the same as portfolio choice over only one period.

4



This baseline result can change in the presence of “background risk” (Heaton and Lucas,

2000), such as may derive from risky labor income, business wealth, or other elements. Kim-

ball (1992) coins the term “temperance” to describe reduced financial risk taking in response

to other uncorrelated risks, while Gollier and Pratt (1996) term it “risk vulnerability” and

reveal that most standard utility functions display it. Much theoretical work has considered

the impact of labor income on portfolio choice, typically finding that young workers should

invest their assets more riskily than old retirees because their future labor income acts as a

hedge against financial market fluctuations (Jagannathan and Kocherlakota, 1996; Viceira,

2001). But this insight cannot explain the continuous declines in risky portfolio shares with

age after retirement that are in the data.

2.2 Financial implications of health

Retirees face risks associated with their health status, a fact that previous theoretical models

have not emphasized. Out-of-pocket medical spending is clearly one such risk, given the gaps

in Medicare coverage and the means-testing of Medicaid. Smith (1999) shows that health

spending is not large on average among U.S. retirees, but French and Jones (2004) reveal

that it is serially correlated and with low probability can be catastrophically large. Several

papers in the precautionary saving literature reveal a link between the risk of future health

expenditures and increased saving (Hubbard et al., 1994; Palumbo, 1999; Dynan et al., 2004).

Empirical studies of portfolio choice have revealed that current health status seems to

be correlated with the degree of financial risk taking. Guiso et al. (1996) find that Italian

households headed by individuals who spent more days sick tended to hold safer financial

portfolios, even after controlling for many other variables. Rosen and Wu (2004) show a ro-

bust association between low health status and safe portfolios among households approaching

retirement in the Health and Retirement Study. What is interesting about these studies is

that health insurance coverage and medical expenditures do not seem to explain much of

the connection between health status and risky portfolio shares.
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2.3 Health and the cross partial

A less obvious channel than medical expenditure is that of health status affecting utility

directly, making other consumption more or less dear. Formally, if health enters the utility

function, it may exhibit some degree of Edgeworth-Pareto complementarity (Samuelson,

1974), so that the cross partial derivative of utility, U , with respect to consumption, C, and

health, H, or ∂2U/∂C∂H, is nonzero. That is, declines in health could either increase or

decrease the demand for money.

How might this work, and in which direction? When sick, the enjoyment derived from

certain goods and services is likely to fall. A classic example would be delaying a ski vacation

after breaking a leg. Many types of health shocks may reduce enjoyment and thus marginal

utility in this manner. But debilitating conditions can push the demand for money in the

opposite direction if poor health inhibits home production of necessary goods and services. A

broken leg may require hiring taxis instead of walking, or ordering food delivered instead of

shopping for and preparing it. The latter channel is surely affected by household structure;

a healthy spouse or child can replace lost home production.

Evidence on the sign of the cross partial is mixed and suggests that it could be different

at different ages or for different age-specific health conditions. Viscusi and Evans (1990) find

that chemical workers expect their marginal utilities of income to decline in bad health as

a result of job risks. Evans and Viscusi (1991) report that temporary health conditions like

burns and poisonings resulting from unsafe consumer goods seem not to affect the marginal

utilities of surveyed adults. Lillard and Weiss (1997) find that among elderly households in

the Retirement History Survey, adverse health shocks raise the marginal utility of consump-

tion, inducing transfers from the healthy to the sick partner. In a recent paper, Finkelstein

et al. (2008) recover a positive cross partial among elderly and near-elderly individuals in

the Health and Retirement Study.

In this paper, I focus on the implications for life-cycle portfolio choice of a cross partial

that is nonzero. My results reveal that a negative cross partial is most consistent with
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empirical patterns of portfolio shares, which I examine separately in Edwards (2008). A

positive cross partial would operate as a hedge against future risks to health, and in my

model it implies that risk taking should increase with age, other things equal. This effect is

nonexistent in the data, so it must either be theoretically incorrect or overwhelmed by other

influences. Another problem with a positive cross partial, i.e. if consumption and health

were Edgeworth-Pareto complements, is identified by Bommier and Stecklov (2002). They

point out that when the cross partial is positive, social welfare would be maximized when

the poorest were also the sickest, a situation that directly conflicts with stated social goals

for health.

2.4 Health, wealth, and causality

As originally envisioned in the seminal work of Grossman (1972), health is an endoge-

nous variable, a function of past endowments, depreciation, and investments both past and

present. Thus far and in the stylized theoretical model I will present in Section 3, I have

treated health as though it were exogenously determined. Although this is fairly standard

in the literature on financial decision making, a perfectly relevant question is whether this

may bias my results.

Picone et al. (1998) use a modified Grossman model to examine precautionary saving

both in the traditional sense and in the form of health investments when the onset of illness

is uncertain. Based on their work, it appears that formally modeling health capital could

attenuate but is unlikely to nullify my findings. When health itself is the risky asset, it makes

more intuitive sense to engage in precautionary health investment than to save money. But

Picone et al. find that saving decisions typically also react to health uncertainty when utility

is Cobb-Douglas over consumption and health. The effect is amplified when individuals are

more “risk averse” in their terminology, which translates into having a large negative rather

than small positive cross partial.

Less clear is whether a richer model that allowed for the direct hedging of risky health
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through less risky healthy behaviors would still find portfolio responses. It is clear that

choices not to smoke, not to be obese, and so on are available and effective in reducing

health risks. But if one is willing to believe that enough risks to health are exogenous to

the individual, such as must be the case with many forms of cancer for example, complete

hedging is probably impossible.

3 A multi-period model of portfolio choice in the pres-

ence of health risk

This section develops and solves a theoretical model of portfolio choice based on the work

of Viceira (2001) and Campbell and Viceira (2002). The setup is as follows. There are

two types of infinitely-lived investors with Cobb-Douglas preferences over consumption and

health. Type h is healthy and endowed with health but perceives a periodic risk, πh ∈ (0, 1),

of permanently becoming type u, unhealthy and having to purchase health. It will turn out

that type h investors react to πh by decreasing their risky portfolio share, which is shown

by Proposition 2 and is the key insight of the model. Unhealthy type u investors are in the

absorbing state and thus technically face no uncertainty. But for them, πh is essentially 1;

they are fully exposed to health risk and therefore hold the safest financial portfolios.

In reality, individuals transit in and out of poor health over time, and the probability of

entering poor health increases with age while the probability of escaping surely decreases.

Edwards (2008) addresses some of these issues directly when gauging the model’s fit to cross-

sectional data, where πh and portfolio shares vary widely across individuals. Modeling πh

more realistically would significantly if not fully impede finding an analytical solution, as

is typically the case in the precautionary saving literature. As I discuss in Section 4, the

main qualitative implications of my model are largely unaffected by the assumption that πh

is fixed, but a known trajectory of πh through age will alter results in a relatively standard

and intuitive way.
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3.1 Preferences

I model preferences in a standard fashion, as time-separable over an infinite horizon with a

constant discount factor, δ:

U =
∞
∑

s=0

δs · Us(Cs, Hs). (1)

Following Picone et al. (1998), suppose investors have nonseparable Cobb-Douglas tastes

over health, Ht, and consumption, Ct:

Ut(Ct, Ht) =
(Ct

ψHt
1−ψ)1−γ

1 − γ
, (2)

where ψ ∈ (0, 1) and γ > 0. Restricting the exponents on Ct and Ht to sum to unity fixes

a unique γ, which could otherwise simply be rescaled. To ensure that marginal utilities of

both goods are positive and decreasing in their arguments, γ > 0 and ψ ∈ (0, 1).

3.2 The budget constraint and technology

For ease of exposition, I assume that health cannot be saved between periods; it is either

endowed or must be purchased, and it is immediately consumed. This assumption probably

amplifies the effect of health risk on portfolio choice, because individuals cannot build a

precautionary stock of health to lessen the potential impact of future health shocks. But as

I discussed in Section 2, risky health typically affects non-health consumption even in richer

models with health capital (Picone et al., 1998).

Healthy type h individuals are endowed with health Hh
t that grows at an exogenous rate

g: Hh
t+1 = Hh

t eg, and they are prohibited from buying or selling health. Each period,

unhealthy type u individuals must purchase their health. Those of type h face a probability

πh ∈ [0, 1) each period of permanently becoming type u.

Although preferences are uniform across states, the budget constraint is not. There is

no labor income, and all investors earn a total return on their financial portfolios equal to
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Rp,t+1 > 0. Healthy investors of type h are endowed with health and face

Wt+1 = (Wt − Ch
t )Rp,t+1, (3)

while unhealthy type u investors must purchase health at price Ph,t > 0:

Wt+1 = (Wt − Ct − Ph,t Ht)Rp,t+1. (4)

Individuals can distribute their wealth between two financial assets. One asset is risky, with

total return given by R1,t+1 ≡ er1,t+1 , where r1,s is IID. The other asset generates a certain

return Rf ≡ erf , where rf is a constant parameter. The return on the financial portfolio,

Rp,t+1, is therefore

Rp,t+1 = αtR1,t+1 + (1 − αt)Rf , (5)

where αt is the share of wealth held in the risky asset at time t. The expected excess

log return, Etr1,t+1 − rf , is constant, and the unexpected excess log return is conditionally

homoscedastic, serially uncorrelated, and normally distributed with mean zero and variance

σ2
r . It is analytically convenient to model Ph,t as lognormal:

Ph,t = Πt
s=τ Rh,s, (6)

where the Rh,s ≡ erh,s are lognormal IID health-inflation rates. It is realistic to assume

they are independent of asset returns: Covt[rh,t+1, r1,t+1] = 0. Under these conditions, it

turns out that the price of health, Ph,t affects saving but not portfolio choice in this model.

Mathematically, this is because terms involving the health price cancel out of the first-order

conditions when Ph,t is uncorrelated with asset returns. Intuitively, investors with CRRA

preferences only care about relative risk, so portfolio choice is only affected by risk aversion

and the characteristics of the optional risky asset.
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3.3 Solving the model

The individual’s problem is to

max
Ct, Ht, αt

U , ∀t, (7)

subject to the expected budget constraint, (3) or (4). I follow Viceira (2001), and Campbell

and Viceira (2002) in searching for the model’s approximate log-linear solution. I linearize

the budget constraints, (3) and (4), by taking first-order Taylor approximations around the

mean log ratios of consumption and wealth, and of health spending and wealth. As shown

in Appendix A, if these means are stable, then the budget constraints are

wt+1 − wt = kh − ρhc (c
h
t − wt) + rp,t+1, (8)

for healthy investors, and

wt+1 − wt = k − ρc(ct − wt) − ρh

(

ht +
t
∑

s=0

rh,s − wt

)

+ rp,t+1, (9)

for unhealthy investors, where lowercase variables represent logs. The k’s and ρ’s are con-

stants, all the ρ’s are positive, and rp,t+1 is the approximate log return on the financial

portfolio, derived by Campbell and Viceira (1999):

rp,t+1 ≈ αtr1,t+1 + (1 − αt)rf +
1

2
αt(1 − αt)σ

2
r . (10)

To proceed, I assume joint lognormality in consumption and asset returns (Hansen and

Singleton, 1983), determine log-linearized Euler equations, and then combine them with the

budget constraints and guesses about optimal consumption rules. I am interested in the

portfolio choices of healthy investors, but this requires that I first solve for the behavior of

unhealthy investors.
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3.3.1 Optimal choices of unhealthy investors

When unhealthy, individuals must purchase their health each period, solving (7) subject to

(4). With two goods in the utility function, there are two Euler conditions that must be

satisfied:

1 = Et

[

δ

(

Ct+1

Ct

)ψ(1−γ)−1(
Ht+1

Ht

)(1−ψ)(1−γ)

Ri,t+1

]

, (11)

and

1 = Et

[

δ
1

Rh,t+1

(

Ht+1

Ht

)(1−ψ)(1−γ)−1(
Ct+1

Ct

)ψ(1−γ)

Ri,t+1

]

, (12)

for i = 1, f, p and where the price of health follows the process described by (6). Both

Euler equations must hold for each asset i = 1, f that is held by the investor, and for the

portfolio, p. When all of the variables inside the expectations operators are lognormal, the

Euler equations can be log-linearized exactly, as described in Appendix B:

log δ + Et[ri,t+1] + β1Et[ct+1 − ct] + β2Et[ht+1 − ht]

+
1

2
V art[ri,t+1 + β1(ct+1 − ct) + β2(ht+1 − ht)] = 0, (13)

and

log δ + Et[ri,t+1] − Et[rh,t+1] + β3Et[ht+1 − ht] + β4Et[ct+1 − ct]

+
1

2
V art[ri,t+1 − rh,t+1 + β3(ht+1 − ht) + β4(ct+1 − ct)] = 0, (14)

where β1 = ψ(1 − γ) − 1, β2 = (1 − ψ)(1 − γ), β3 = (1 − ψ)(1 − γ) − 1, and β4 = ψ(1 − γ).

Solving the model requires guesses about the optimal consumption rules. Individuals with

Cobb-Douglas preferences over consumption and health will split resources evenly between

them. Instead of a single rule targeting a consumption-wealth ratio, which is standard when
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there is one good, there are now two rules:

ct = buc,0 + buc,1wt, (15)

and

ht +
t
∑

s=0

rh,s = buh,0 + buh,1wt. (16)

These rules allow consumption and health costs to have separate wealth elasticities, bus,1 for

s = c, h. Combining the log-linearized Euler conditions, the log-linearized budget constraint,

and the optimal rules allows us to solve for the behavior of unhealthy investors.

Proposition 1. Unhealthy individuals invest a share αut of their wealth in the risky asset

that is given by

αut =
Et[r1,t+1] − rf + 1

2
σ2
r

γσ2
r

. (17)

The optimal rules are

ct = buc,0 + wt, (18)

and

ht +
t
∑

s=0

rh,s = buh,0 + wt, (19)

where buc,0 and buh,0 are constants given by (59)–(60) that represent the target consumption-

wealth and health-wealth ratios.

Proof. See Appendix C.

The portfolio rule (17) looks the same as the Merton (1969) rule for investors who have

risk aversion over consumption equal to γ. Intuitively, this is because unhealthy investors

must purchase health as well as consumption, exposing the enjoyment of both to returns

uncertainty. Since preferences are Cobb-Douglas, expenditure shares will be stable and

Ct = a ·Ht for some a. Then relative risk aversion RC = −C · UCC/UC = γ. That is, total

risk aversion for the unhealthy investor is effectively γ here. Proposition 2 will show that as
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long as γ > 1, healthy investors who face health risk πh ∈ [0, 1) have effective risk aversion

lower than γ, so they set their risky portfolio share αht higher than do unhealthy investors.

3.3.2 Optimal choices of healthy investors facing health risk

Healthy individuals face a constant probability πh ∈ (0, 1) each period of becoming perma-

nently unhealthy. They can only choose consumption and portfolio shares, so they follow a

single Euler condition in consumption:

1 = Et

[

(1 − πh) δ

(

Ch
t+1

Ch
t

)ψ(1−γ)−1(
Hh
t+1

Hh
t

)(1−ψ)(1−γ)

Ri,t+1

]

+ Et

[

πh δ

(

Ct+1

Ch
t

)ψ(1−γ)−1(
Ht+1

Hh
t

)(1−ψ)(1−γ)

Ri,t+1

]

, (20)

for i = 1, f, p as before, and where the expectations operator has already been distributed

between the two additive parts of the Euler equation. Since (20) is a sum of expectations of

lognormal variables, simply taking logs of both sides will not work. Appendix B shows how

two Taylor expansions result in the following approximate log-linear Euler equation in the

healthy state, where the β’s are defined as in (13) and (14):

0 = log δ + Et[ri,t+1] + (1 − πh)β1Et[c
h
t+1 − cht ]

+ (1 − πh)β2Et[h
h
t+1 − hht ]

+
1 − πh

2
V art[ri,t+1 + β1(c

h
t+1 − cht ) + β2(h

h
t+1 − hht )]

+ πhβ1Et[ct+1 − cht ] + πhβ2Et[ht+1 − hht ]

+
πh
2
V art[ri,t+1 + β1(ct+1 − cht ) + β2(ht+1 − hht )]. (21)

Healthy investors have one state variable and one consumption rule:

cht = bhc,0 + bhc,1wt. (22)
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To solve for the behavior of healthy investors, I can combine this rule, the log-linear Euler

approximation, the budget constraints, and Proposition 1.

Proposition 2. Healthy individuals invest a share αht of their wealth in the risky asset that

is given by

αht =
Et[r1,t+1] − rf + 1

2
σ2
r

R(ψ, γ, πh) · σ2
r

, (23)

where

R(ψ, γ, πh) = 1 − (1 − γ)(ψ + (1 − ψ)πh) (24)

is the healthy investor’s effective risk aversion, a function of the preference parameters and

πh ∈ (0, 1), the probability that the individual will become permanently unhealthy next period.

The optimal consumption rule is

cht = bhc,0 + wt, (25)

where bhc,0 is the target consumption-wealth ratio.

Proof. See Appendix D.

Equation (23) is the main result of the model, and I discuss its implications in greater

detail below. In the special case of πh = 1, effective risk aversion R(·) = γ and (23) reduces

to (17). That is, when the healthy investor faces full exposure to purchasing health, risk

aversion and the portfolio share are the same as those of unhealthy investor.

3.4 Implications

3.4.1 Precautionary saving

Target ratios of consumption and health to wealth, the bs,0’s in (18), (19), and (25), de-

termine saving behavior in this model. Appendix C shows that unhealthy investors lower

buc,0 and buh,0 and thus increase precautionary saving if the volatility of asset returns or of

health price inflation increases. These findings are consistent with those of Lillard and Weiss
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(1997) and Palumbo (1999), who estimate large effects of medical expenditure uncertainty

on precautionary saving.

Saving by healthy investors is different, since their behavior is contingent on optimal

choices when unhealthy. Appendix D shows that increased financial risk may increase or

decrease saving while healthy, depending on the magnitude of precautionary saving in the

unhealthy state. Health price volatility actually decreases saving when healthy because it

does not affect anything but saving when unhealthy, which rises. The effect of health risk,

πh, on saving while healthy is of indeterminate sign.

3.4.2 Portfolio choice

Risky portfolio shares αu and αh in (17) and (23) are different only insofar as the healthy

investor’s effective risk aversion, R(ψ, γ, πh), differs from γ, the effective risk aversion of the

unhealthy investor. Volatility in health prices has no effect on portfolio choice because it

is uncorrelated with market risk and thus has no effect on the relative attractiveness of the

risky asset.

The properties of R(ψ, γ, πh) depend critically on whether γ ≷ 1. If γ > 1, simple algebra

shows that since πh < 1,

ψ + (1 − ψ)πh < 1

(1 − γ)(ψ + (1 − ψ)πh) > 1 − γ

R(ψ, γ, πh) = 1 − (1 − γ)(ψ + (1 − ψ)πh) < γ, (26)

which states that effective risk aversion is lower for the healthy investor than for the unhealthy

investor. It follows that

αh > αu, (27)
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as long as the equity risk premium is positive. It also follows from (26) that

∂R(ψ, γ, πh)

∂πh
= (γ − 1)(1 − ψ) > 0, (28)

and

∂αh

∂πh
= −

Et[r1,t+1] − rf + 1
2
σ2
r

σ2
r

·
1

R2
·
∂R

∂πh
< 0. (29)

Thus if γ > 1 and the equity risk premium is positive, an increase in health risk increases the

effective risk aversion and decreases the optimal risky portfolio share of the healthy investor.

But if instead 0 < γ < 1, the inequalities in (26)–(29) are all reversed, as are the model’s

implications for portfolio behavior in the presence of health risk. When γ = 1 exactly,

R(ψ, 1, πh) = 1 = γ and health risk has no effect on portfolio choice at all. Thus the model’s

predictions for portfolio choice hinge crucially on the level of γ. This is no accident, because

γ determines the sign of the cross partial derivative of utility:

∂2U

∂H∂C
= ψ(1 − ψ)(1 − γ)Cψ(1−γ)−1H(1−ψ)(1−γ)−1, (30)

which is negative if γ > 1, zero if γ = 1, and positive if γ < 1. Intuitively, the sign of the

cross partial is critical for portfolio choice for the same reason it is important for optimal

health insurance, as discussed earlier. If γ > 1, the cross partial is negative, and a decline

in health raises the marginal utility of consumption as well as the marginal utility of health.

Risks to health compound risks to consumption, and the optimal amount of health insurance

is greater than the actuarially fair amount required to treat health shocks. If health risks

are uninsurable, the individual decreases his or her financial risks. When 0 < γ < 1, all this

logic reverses. Risks to health actually diminish risks to consumption, and investors increase

their financial risk in response to risky health. As discussed previously, the magnitude of

γ is theoretically ambiguous, and there is disagreement among empirical studies seeking to
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measure it. But the results of Lillard and Weiss (1997) imply that the cross partial should

be negative among the elderly investors.

4 Discussion

This paper explores the implications for portfolio choice of a special type of state-dependent

utility. If individuals care about health and consumption with a nonzero cross partial deriva-

tive of utility, then the specter of health shocks should influence life-cycle portfolio choice

through their direct impacts on the future demand for money. Empirical evidence on the

sign of the cross partial is mixed, but the variation in results across age groups is consistent

with a sign that changes depending on age-specific health conditions. For older investors

who face risks of debilitating illnesses that impede home production, a negative cross partial

is a plausible characteristic with some empirical support. This paper shows that when the

cross partial is negative, investors who feel their health is risky will hedge by holding less

risky financial portfolios.

In reality, the risk of poor health not only varies across individuals, as my stylized model

allows, it probably also varies systematically across age. Mortality risk increases exponen-

tially with age, poor health typically precedes death, and the years just prior to death are

the most expensive in terms of health costs (Miller, 2001). The implications of this dy-

namic, which is practically impossible to model formally while preserving the ability to find

a closed-form solution, can instead be inferred from the literature on precautionary saving.

As discussed by Hubbard et al. (1994), the optimal response to exponentially rising mortality

risk is to increase precautionary saving throughout the life cycle and to plan a diminishing

consumption trajectory that roughly tracks waning survivorship probabilities. The analo-

gous implication here is that investors who expect πh to rise over time should take on less

financial risk throughout life, with an especially steep reduction toward the end of life if πh

follows the age-trajectory of mortality. In a companion paper, Edwards (2008) assesses the
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empirical fit of the model using data on self-reported πh from the Health and Retirement

Study. Results suggest that health risk may explain 20 percent of the age-related decline in

financial risk taking after retirement.

To be sure, variability in the prices of medical care, or equivalently in spending on health,

probably also changes the composition of savings and not just its level. This runs contrary

to the implications of the stylized model I consider here. Because I have specified generalized

Cobb-Douglas preferences over health and consumption with constant relative risk aversion,

and because health care price inflation is IID, volatility in health spending only affects

precautionary saving and not portfolio choice. Given the theoretical and empirical findings

in the literature on portfolio choice in the presence of background risks, it seems likely that

health care cost risk should also trigger safer portfolios. Separating the effects of medical

expenditure risk and the direct effects of health on utility is a challenge for future research.

There are several broader implications of the theoretical results presented here and the

empirical findings in Edwards (2008). Given that risky health diminishes financial risk tak-

ing, a response that is clearly second-best, it raises the question of why individuals are

underinsured against risky health in the first place. To be sure, if full health insurance trig-

gered moral hazard or overutilization, two dynamics completely outside the stylized model I

consider, a system of partial insurance could actually be socially preferable. Adverse selec-

tion could yield an equilibrium of partial insurance in private markets with many insurers,

although it is hard to see how such an equilibrium could be Pareto optimal. In any event,

most broadly marketed forms of health insurance compensate individuals for particular med-

ical goods and services in kind rather than simply paying cash in the unhealthy state. If the

cross partial is negative for retirees, they would optimally prefer health insurance that paid

cash, in excess of the actuarially fair amount of medical insurance, to help them also replace

home production when sick. Long-term care insurance might partially fulfill this need, in-

suring against some catastrophic losses of home production by funding at-home care, but

these markets are underdeveloped.
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An aggregate implication of these findings is that what may otherwise appear to be

suboptimal financial risk taking may be a rational response to undiversifiable health risk.

Due to life-cycle saving, older investors hold a large share of national savings. To the extent

risky health is a necessary byproduct of aging, an aggregate portfolio that seems too weighted

toward safe assets given the size of the equity risk premium and the covariance of returns with

consumption (Mehra and Prescott, 1985) could be due in part to risky health. Injecting more

risk into Social Security through privatization in order to exploit the equity risk premium

could be very counterproductive if older investors are intentionally holding safer portfolios.

Such reform may only be desirable if it were coupled with Medicare expansion.

Appendix

A The log-linear budget constraints

When health must be purchased. Dividing both sides of (4) by Wt, substituting for

the price of health using (6), taking logs, and denoting logs in lowercase produces

wt+1 − wt = log
(

1 − ect−wt − eht+
Pt

s=0
rh,s−wt

)

+ rp,t+1. (31)

The next step is to take a first-order Taylor approximation of the first term on the right-hand

side around the mean values of ct−wt and ht +
∑t

s=0 rh,s −wt. Naming those two variables

Xt and Yt for shorthand, one can write the expansion as

log
(

1 − eXt − eYt
)

≈ log
(

1 − eE[Xt] − eE[Yt]
)

+
1

1 − eE[Xt] − eE[Yt]
×

(

−eE[Xt]
)

(Xt − E[Xt]) +
1

1 − eE[Xt] − eE[Yt]
×
(

−eE[Yt]
)

(Yt − E[Yt]) . (32)
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The log-linear budget constraint for older investors is therefore

wt+1 − wt = k − ρc(ct − wt) − ρh

(

ht +
t
∑

s=0

rh,s − wt

)

+ rp,t+1, (33)

where k is a constant that can be inferred by collecting terms in (32), and ρc and ρh are

given by

ρc =
eE[ct−wt]

1 − eE[ct−wt] − eE[ht+
Pt

s=0
rh,s−wt]

, (34)

ρh =
eE[ht+

Pt
s=0

rh,s−wt]

1 − eE[ct−wt] − eE[ht+
Pt

s=0
rh,s−wt]

. (35)

The numerators in each formula for the ρ’s are positive by construction. Since wealth can

never be less than consumption and health costs, the denominators are also positive, implying

that ρc > 0 and ρh > 0.

When health is an endowment. Following the same steps as in the previous section,

one can show that the log-linear budget constraint based on (3) is

wt+1 − wt = kh − ρhc (c
h
t − wt) + rp,t+1, (36)

where kh is a constant and ρh is given by

ρhc =
eE[cht −wt]

1 − eE[cht −wt]
. (37)

This is identical to the log-linear budget constraint found in Campbell (1993) and Campbell

and Viceira (1999).
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B Finding the log-linear Euler equations

When health must be purchased. Consider the health Euler equation, (12). If X ∼

LN(µ, σ2) is given by

X = δ
1

Rh,t+1

(

Ht+1

Ht

)(1−ψ)(1−γ)−1(
Ct+1

Ct

)ψ(1−γ)

Ri,t+1, (38)

then since log X ∼ N(µ, σ2) and Et[X] = eµ+σ2/2,

logEt[X] = log δ + Et[ri,t+1] − Et[rh,t+1] + β3Et[ht+1 − ht] + β4Et[ct+1 − ct]

+
1

2
V art[ri,t+1 − rh,t+1 + β3(ht+1 − ht) + β4(ct+1 − ct)]. (39)

Repeating these steps for (11), the consumption Euler equation, produces the log-linearized

Euler equations, (13) and (14).

When there is a risk of purchasing health. Following Viceira (2001) the log-linear Eu-

ler approximation is derived using several Taylor approximations. This technique is required

because the right-hand side is a sum rather than a product of expectations of lognormal

variables. Notational shorthand transforms (20) into

1 = (1 − πh)Et[e
xt+1 ] + πhEt[e

yt+1 ]. (40)

Taking second-order Taylor expansions around x̄t+1 and ȳt+1, moving the constant multiples

out from behind the expectations operator, distributing the expectation, and simplifying

yields

1 ≈ (1 − πh)e
x̄t+1

(

1 +
1

2
V art[xt+1]

)

+ πhe
ȳt+1

(

1 +
1

2
V art[yt+1]

)

. (41)
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A first-order expansion of ez̄ ≈ 1 + z̄ can now be used, implying

1 ≈ (1 − πh)

(

1 + x̄t+1 +
1

2
V art[xt+1] + x̄t+1

1

2
V art[xt+1]

)

+ πh

(

1 + ȳt+1 +
1

2
V art[yt+1] + ȳt+1

1

2
V art[yt+1]

)

. (42)

If x̄t+1, ȳt+1 and the variance terms are small, then their products are second-order small

and can be omitted, and 1 can be subtracted from both sides, yielding

0 ≈ (1 − πh)

(

x̄t+1 +
1

2
V art[xt+1]

)

+ πh

(

ȳt+1 +
1

2
V art[yt+1]

)

. (43)

Substituting for xt+1 and yt+1 and combining terms produces (21) in the text.

C Proof of Proposition 1

Euler differences. The standard approach is to examine the difference between Euler

conditions for the risky and for the risk-free asset. Subtracting the log-linear Euler equation

for health (14) with i = f from (14) with i = 1 yields, after cancellations and two expansions

of variance terms:

0 = Et[r1,t+1] − rf +
1

2
σ2
r + Covt [r1,t+1, β3∆ht+1 + β4∆ct+1] . (44)

By extension, differencing the consumption log Euler condition (13) between i = 1, f results

in a second Euler difference:

0 = Et[r1,t+1] − rf +
1

2
σ2
r + Covt [r1,t+1, β1∆ct+1 + β2∆ht+1] . (45)
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Solving for α. Comparing (44) to (45), it is clear that if both Euler conditions hold, then

there must be a relationship between the covariances:

Covt[r1,t+1, β3∆ht+1 + β4∆ct+1] = Covt[r1,t+1, β1∆ct+1 + β2∆ht+1]. (46)

Expanding terms and observing that (β1 − β4)/(β3 − β2) = 1 implies

Covt[r1,t+1,∆ct+1] = Covt[r1,t+1,∆ht+1]. (47)

Combining (47) with (45) after expanding the covariance term produces

Et[r1,t+1] − rf +
1

2
σ2
r = −(β1 + β2)Covt[r1,t+1,∆ct+1]. (48)

Combining (9) and (10) with first (15) and then (16) implies

Covt[r1,t+1,∆ct+1] = buc,1 α σ2
r , (49)

Covt[r1,t+1,∆ht+1] = buh,1 α σ2
r . (50)

But since (47) holds, it must be true that buc,1 = buh,1. Rearranging (48) then implies that the

optimal portfolio split is

αt =
Et[r1,t+1] − rf + 1

2
σ2
r

−(β1 + β2) buc,1 σ
2
r

. (51)

Solving for the rule parameters. To solve for buc,1 = buh,1, first note that the rules (15)

and (16) imply that

Et[ct+1 − ct] = buc,1Et[wt+1 − wt], (52)

Et[ht+1 − ht] + Et[rh,t+1] = buh,1Et[wt+1 − wt]. (53)
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Together, these two equations imply a relationship between expected consumption growth

and expected health growth:

Et[ht+1 − ht] + Et[rh,t+1] =
buh,1
buc,1

Et[ct+1 − ct]. (54)

In light of (54), the log Euler equation for health (14) with i = p implies

log δ + Et[rp,t+1] − Et[rh,t+1] +

(

β3

buh,1
buc,1

+ β4

)

Et[ct+1 − ct] − β3Et[rh,t+1]

+
1

2
V art[rp,t+1 − rh,t+1 + β3(ht+1 − ht) + β4(ct+1 − ct)] = 0, (55)

while the log Euler equation for consumption (13) with i = p becomes

log δ + Et[rp,t+1] +

(

β1 + β2

buh,1
buc,1

)

Et[ct+1 − ct] − β2Et[rh,t+1]

+
1

2
V art[rp,t+1 + β1(ct+1 − ct) + β2(ht+1 − ht)] = 0. (56)

Combining the log-linear budget constraint and the choice rules implies

Et[∆wt+1] = k − ρcb
u
c,0 − ρhb

u
h,0 + (ρc + ρh − ρcb

u
c,1 − ρhb

u
h,1)wt + Et[rp,t+1]. (57)

Substituting for Et[ct+1 − ct] in (55) using (52) and (57) and noting that β3 + 1 = β2 results

in a single equation in wt:

A (− log δ − Et[rp,t+1] + β2Et[rh,t+1])

−
1

2
A V art[rp,t+1 − rh,t+1 + β3(ht+1 − ht) + β4(ct+1 − ct)]

= k − ρcb
u
c,0 − ρhb

u
h,0 + (ρc + ρh − ρcb

u
c,1 − ρhb

u
h,1)wt + Et[rp,t+1], (58)

where A = (1/buc,1)/
(

β3(b
u
h,1/b

u
c,1) + β4

)

. Since wt cannot be constant, it follows that its

coefficient, ρc(1− buc,1) + ρh(1− buh,1) = 0, is zero. As shown previously, buc,1 = buh,1. Since the
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ρ’s are both positive, the only solution is that buc,1 = buh,1 = 1.

There is currently only one equation, (58), in the two unknowns, buc,0 and buh,0. A second

relationship is buc,0 = buh,0[ψ/(1 − ψ)], which follows directly from the fact that preferences

are Cobb-Douglas over health and consumption. Combining this with (58), accounting for

buc,1 = buh,1 = 1, using the consumption rules and the log-linear budget constraint, and

simplifying yields an equation for the target ratio of health spending to wealth:

buh,0 =
A

B
(log δ − β2Et[rh,t+1]) +

A + 1

B
Et[rp,t+1] +

k

B

+
A

2B
(1 + β3 + β4)

2V art[rp,t+1] +
A

2B
β2

2 V art[rh,t+1], (59)

and an equation for the target consumption-wealth ratio:

buc,0 =
A

C
(log δ − β2Et[rh,t+1]) +

A + 1

C
Et[rp,t+1] +

k

C

+
A

2C
(1 + β3 + β4)

2V art[rp,t+1] +
A

2C
β2

2 V art[rh,t+1], (60)

where A = (β3 + β4)
−1 = −1/γ, B = ρc

ψ
(1−ψ)

+ ρh, and C = ρc + ρh
(1−ψ)
ψ

. Since γ > 0,

A < 0, and since ψ, ρc, ρh > 0, B > 0 and C > 0. By inspection, buc,0 and buh,0 both fall with

increased variability in rp,t+1 or rh,t+1, because A/2B and A/2C are both negative. These

are precautionary saving effects: increases in background variance cause the individual to

save more.

D Proof of Proposition 2

Euler differences. As with unhealthy investors, the strategy is to obtain a relationship

for the risk premium by differencing the log Euler equation, (21), through asset types 1

and f . Since there is no variability in health growth, hht+1 − hht drops out of the variance

terms, as does rf , and expanding the variance terms produces a separate σ2
r term and more
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cancellations:

0 = Et[r1,t+1] − rf +
1

2
σ2
r + (1 − πh) Covt[r1,t+1, β1(c

h
t+1 − cht )]

+ πh Covt[r1,t+1, β1(ct+1 − cht ) + β2(ht+1 − hht )]. (61)

The second covariance in (61) has already been solved in Appendix C. The first covariance

can be found by rewriting (22):

cht+1 − cht = bhc,1(wt+1 − wt). (62)

Combining (62) with (8) and (10) implies

Covt[r1,t+1, β1(c
h
t+1 − cht )] = β1 b

h
c,1 α σ2

r , (63)

and combining (63), buc,1 = 1, and (61) yields

αht =
Et[r1,t+1] − rf + 1

2
σ2
r

−
[

(1 − πh)β1bhc,1 + πh(β1 + β2)
]

σ2
r

. (64)

Finding the rule parameters. The log-linear Euler approximation (21) for i = p can be

combined with the three optimal rules (one for healthy investors, two for unhealthy investors)

to produce

0 = log δ + Et[rp,t+1] + (1 − πh)β1b
h
c,1Et[∆wt+1] + (1 − πh)β2g

+
1 − πh

2
V art[rp,t+1 + β1b

h
c,1∆wt+1 + β2g]

+ πhβ1Et[∆wt+1] + πhβ2Et[∆wt+1]

+
πh
2
V art[rp,t+1 + β1∆wt+1 + β2∆wt+1], (65)
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where buc,1 = buh,1 = 1 has been used. In the first two lines of (65), the single-good budget

constraint (8) holds, and in the second two lines, the two-good budget constraint is relevant.

Substituting for Et[∆wt+1], health spending, and consumption using the budget constraint

and the three consumption rules, distributing the expectations operator, and simplifying the

variance and wt terms yields

0 = log δ + Et[rp,t+1] + (1 − πh)β1

(

bhc,1k
h − ρhc (b

h
c,0 + (bhc,1 − 1)wt) + Et[rp,t+1]

)

+ (1 − πh)β2g +
1 − πh

2
(1 + β1b

h
c,1)

2 V art[rp,t+1]

+ πh(β1 + β2)
(

k − ρcb
u
c,0 − ρhb

u
h,0 + Et[rp,t+1]

)

+
πh
2

(1 + β1 + β2)
2 V art[rp,t+1]. (66)

By inspection, (66) is a single equation in wt and the fixed parameters. Since wt cannot be

constant, it follows that its coefficient, (1 − πh)β1ρ
h
c (b

h
c,1 − 1), must be zero. Since πh 6= 1,

ρhc > 0, and β1 = ψ(1−γ)−1 6= 0 as long as ψ 6= 1/(1−γ), the only solution is that bhc,1 = 1.

To find bhc,0, b
h
c,1 = 1 can be substituted into (66):

bhc,0 = D log δ + D(1 + β1 + (1 − πh)β2)Et[rp,t+1] + D(1 − πh)β1k
h

+ D(1 − πh)β2g + Dπh(β1 + β2)
(

k − ρcb
u
c,0 − ρhb

u
h,0

)

+ D

(

πh
2

(1 + β1 + β2)
2 +

1 − πh
2

(1 + β1)
2

)

V art[rp,t+1], (67)

where D = 1/[(1 − πh)β1ρ
h
c ] < 0 since β1 < 0.

Financial risk exerts two countervailing effects on bhc,0. A rise in σ2
r decreases bhc,0 and raises

precautionary saving while healthy. But rising variance also lowers buc,0 and buh,0, increasing

precautionary saving when unhealthy and lowering it when healthy. An increase in health

inflation variance also lowers buc,0 and buh,0 but has no countervailing direct impact on bhc,0.

An increase in health inflation variance thus increases bhc,0 and lowers precautionary saving

when healthy, presumably because unhealthy investors save more.
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The effect of health risk on saving, ∂bhc,0/∂πh, is of indeterminate sign because it depends

on the signs and relative sizes of k, kh, buc,0, and buh,0. The results of numerically solved models

of precautionary saving (Hubbard et al., 1994; Palumbo, 1999) suggest that it is likely to be

negative for reasonable parameter values.
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