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Abstract

Background. Recent findings suggest advanced paternal age may be associated with impaired child

outcomes, in particular neurocognitive skills. Such patterns are worrisome given relatively universal

trends in advanced countries toward delayed nuptiality and fertility. But nature and nurture are both

important for child outcomes, and it is important to control for both when drawing inferences about

either pathway.

Methods and Findings. We examined cross-sectional patterns in six developmental outcome measures

among children in the US Collaborative Perinatal Project (n = 31,346). Many of these outcomes at 8 mo,

4 y, and 7 y of age (Bayley scales, Stanford Binet Intelligence Scale, Graham-Ernhart Block Sort Test,

Wechsler Intelligence Scale for Children, Wide Range Achievement Test) are negatively correlated with

paternal age when important family characteristics such as maternal education and number of siblings are

not included as covariates. But controlling for family characteristics in general and mother’s education in

particular renders the effect of paternal age statistically insignificant for most developmental measures.

Conclusions. Assortative mating produces interesting relationships between maternal and paternal

characteristics that can inject spurious correlation into observational studies via omitted variable bias.

Controlling for both nature and nurture reveals little residual evidence of a link between child neurocog-

nitive outcomes and paternal age in these data. Results suggest that benefits associated with the upward

trend in maternal education may offset any negative effects of advancing paternal age.
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Introduction

The demographic transition has brought declining fertility rates and population aging across the indus-

trialized world [1]. Simultaneously, increases in female education, labor force participation, and earnings

have coincided with reduced family sizes and delayed marriage and childbearing [2]. The average mater-

nal age at first birth in the US is now 25, up from 21.4 in 1970, although it is still the lowest among 14

other industrialized countries [3]. Relative to the annual gains in period life expectancy at birth, which

have averaged 0.21 year in industrialized countries [4], an annual increase in age at maternity of 0.10 may

seem relatively modest. But studies of trends in the age at menopause have revealed mixed results [5],

and advanced maternal age may be associated with some adverse health consequences [6].

Assortative mating typically produces fairly tight correlations between maternal and paternal ages [7],

and as a result, there is interest in whether advancing paternal age is important for child outcomes. An

array of studies have shown advanced paternal age to be associated with neurological disorders, especially

schizophrenia [8, 9], and a recent study [10] reveals a negative association between paternal age and

children’s neurocognitive outcomes in US data from the 1960s and 1970s. The study finds that advancing

maternal age is relatively benign, while paternal age is associated with deleterious child outcomes, which

the authors suggest may be related to the heightened mutation rate in sperm. A companion piece [11]

discusses the implications and the robustness of the findings, focusing in particular on how the negative

effect of father’s age becomes somewhat attenuated once family socioeconomic status is controlled. This

result is somewhat puzzling given that one would expect paternal age to be positively associated with

family income and wealth, and for the latter to be positively associated with child outcomes. A negative

impact of father’s age on child development is also at odds with a recent paper highlighting the role of

long male reproductive lives in the evolution of human senescence past the age of female menopause [12].

In this paper, we aim to inject a more rigorous discussion of family economics into the current

inquiry of male biology and children’s outcomes. Assortative mating suggests that delayed childbearing

typically also coincides with higher paternal age, but we know that mates sort on education and other

characteristics [7], and these patterns are not necessarily stable over time [13]. Given that childbearing

is restricted to premenopausal years for females while it is unrestricted for males, any subsample of

new children with older fathers is also likely to have mothers who are much younger than their mates.

In US data, we find that mother’s education can be negatively correlated with father’s age. Education
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measures the quality of the mother’s human capital [7], and studies have repeatedly shown that it improves

child outcomes, presumably by raising the value of maternal inputs [14–17]. The omission of maternal

education in an observational study is likely to produce biased results because it is correlated with factors

like paternal age.

Research suggests that siblings compete for parental or household resources, and that parents face

a fundamental tradeoff between the quantity of children they have and the quality of each child they

can produce through investments of time and other resources [7]. Because of the inverse connection

between quantity and quality, the number of siblings, like mother’s education, is an important variable in

understanding child outcomes, and it is also correlated with paternal age. When it is an omitted variable,

number of siblings is likely to bias the relationship between father’s age and child outcomes in a negative

direction.

We intend our goal in this paper to be constructive in nature, highlighting the contributions of both

nature and nurture, via the economics of the family, to child outcomes. We view previous contributions

to this literature [10] as useful and thought-provoking. Our aim is to clarify the functional relationships

between child outcomes and biological, socioeconomic, and behavioral factors by drawing on accumulated

interdisciplinary knowledge.

Methods

Theory

Our perspective on early child development is that outcomes derive from natural and nurturing inputs

alike. The former primarily comprise genetic endowments passed from parents to children. As previous

research has suggested [8–11], parental age may be a good proxy for the quality of genetic material. Birth

weight measures a child’s initial health endowment and reflects both heredity and also prenatal nurturing.

Postnatal nurturing inputs include the quality and quantity of time spent by parents on the children, as

well as food, clothing, and other elements provided by the family [7]. Other things equal, increased family

size reduces time and money available for inputs on a per-child basis [7]. A large body of research [14–17]

has examined child outcomes relative to parental inputs using household time diaries and other data.

This literature shows that the quantity and quality of time spent with children increases with parental

education, especially maternal, and child outcomes improve accordingly. When data on actual time inputs



4

are not available, parental education is likely to be a good proxy of total nurturing inputs, and family

size determines the amount of inputs available per child.

It is of course possible that maternal education is correlated with unobservable characteristics of the

mother, such as scholastic ability, that affect child cognitive outcomes as well. In this paper, we do not

attempt to draw causal inferences regarding the effect of maternal education on child outcomes. Rather,

we examine the complex interrelationship between paternal age, maternal education, which may proxy

for other characteristics, and child outcomes.

With measures of natural or hereditary factors Xi and nurturing inputs Zi in hand, we seek to inves-

tigate the determinants of child development by modeling child i’s outcome Yi according to a standard

reduced form:

Yi = α + βXi + θZi + ǫi, (1)

where ǫi is a white-noise disturbance. In observational data, least-squares estimates of β and θ are at best

only suggestive of causal relationships, and estimates may also suffer from bias. In particular, omitted

variable bias will arise if Xi and Zi are correlated with Yi and with each other, and if either is omitted

from the model.

Sample

We examine the same data on child outcomes that were previously analyzed [10], which consist of de-

velopmental measures from three cross sections of the Collaborative Perinatal Project (CPP), a panel

spanning 7 years of children’s lives beginning with pregnant women recruited at university hospitals be-

tween 1959 and 1965. Our outcome variables are the same six CPP measures of children’s neurocognitive

development that the earlier study examined [10], two measures at each follow-up age: 8 mo, 4 y, and 7 y.

In order, these include the Bayley Mental and Motor Scales for Infant Development; the Stanford Binet

Intelligence Scale Form L-M and the Graham-Ernhart Block Sort Test; and the Wechsler Intelligence

Scale for Children (WISC) Full Scale IQ and the Wide Range Achievement Test (WRAT) of Reading. In

our CPP data, drawn from the enhanced electronic datasets distributed by the Johns Hopkins School of

Public Health, the WRAT scores are raw rather than normed, with a mean around 35 rather than 100.

We found no qualitative differences between our results using the raw scores and those of the previous

study [10], which used normed scores, when keeping the list of covariates fixed.
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Data on physical health and neurocognitive characteristics were collected throughout the CPP panel,

but detailed socioeconomic and other family characteristics were only collected at registration and again

at 7 years. To our knowledge, no data were collected on time use among mothers or fathers in the CPP.

Our covariates primarily consist of characteristics of the child and family measured at or before the child’s

birth. These include the sex, gestation weeks, and birth weight of the child; the child’s total number of

older siblings; the age, race/ethnicity, years of education, marital status, and mental health history of the

mother at the time of birth; the age, years of education, and mental health history of the father at the

time of birth; and the household’s socioeconomic index at the time of registration. The last is the average

of three percentile ranks: of the education of the household head, of the average income and education

associated with the occupation of the head, and of family income. While socioeconomic characteristics

were measured again at 7 years, we use characteristics measured at birth in our models for four reasons.

First, results do not change appreciably when we include contemporaneous paternal education or family

socioeconomic index; second, data on fathers is more sparse at the 7 year follow-up, which reduces sample

size; third, the previous study that we revisit also uses characteristics at birth as covariates [10]; and

fourth, theory suggests that child development should depend on past as well as current inputs.

We also use other covariates that were measured more or less contemporaneously. These include the

exact age in months of the child at the time the neurocognitive test was administered, and the total

number of younger siblings born by the time the child reached 7 years old. The ages of younger siblings

were not recorded at 7 years, so we cannot extrapolate the number of living younger siblings at earlier

waves. Instead, we specify younger siblings at age 7 as a covariate of child outcomes at each age: 8 mo,

4 y, and 7 y.

Compared to the study we are replicating [10], our complete list of covariates includes 5 new variables

that we believe are likely to be important: the child’s birth weight, the mother’s and father’s education

levels at the time of birth, and counts of the child’s older and younger siblings. The addition of these

covariates reduces our sample size and thus our statistical power by only a small amount, as shown in

Table 1. As discussed elsewhere [18,19], the CPP included almost 60,000 live births, as shown in the top

row. A large number of these babies, almost 13,000, had fewer than 37 weeks’ gestation or no gestation

data. Fewer than 700 were non-singleton births. Nearly 11,000 of the remaining records included no data

on the father’s age, cutting the sample to 34,914. Requiring all the basic covariates used in the earlier

study [10] cuts the sample to 33,188, and requiring the additional 5 covariates we examine here further
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reduces it to 31,346. Not all of these children participated in data collection during the panel, lowering

sample sizes in the outcome regressions to between 22,500 and 26,500.

Statistical Methods

The earlier study whose results we seek to revisit [10] modeled nonlinear partial relationships between

maternal age or paternal age and child outcomes in equation (1) using a generalized additive model

(GAM). All other covariates were constrained to have standard linear effects. We first replicated the

earlier results [10] using the same software and methods, a GAM estimated using the mgcv library in R.

We also conducted secondary analyses in Stata using ordinary least squares.

Results

Sample characteristics and correlations

Table 2 displays summary statistics for the six endogenous measures of children’s neurocognitive outcomes

and eight covariates of interest. There is no clear pattern between mean neurocognitive scores and their

standard deviations; each measure has its own unique variance structure and coefficient of variation.

Correlations between these six measures (not shown) reveal positive associations between measures taken

at a particular age, and somewhat less correlation in measures across time for a particular child.

As shown in the bottom half of the table, a difference of 3.5 y separates the average mother’s age

from the average father’s age in the CPP. This gap has narrowed somewhat in the US over time; CDC

natality statistics from 2006 show an average parental age gap of 2.7 y for first births [20]. This gap is not

reflected in the average education levels in the CPP, which are only 0.2 year apart and not significantly

different when observed independently.

There is substantial variation within the sample in the socioeconomic index, which by definition has

an average around 50. Reflecting considerably higher total fertility rates around the time of the study,

children in the CPP had an average of 2.7 siblings, 1.9 older plus 0.8 younger by the age of 7. This is

consistent with the much higher Total Fertility Rate prevailing at the time of the CPP, 3.65 in 1960,

versus about 2.0 to 2.1 today [21]. Children in the CPP were born at an average weight of 3,266.8 grams,

which is roughly the same as the average birth weight today. In our sample, which conditions on 37
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or more weeks’ gestation in this sample, we found that 5% of babies were born under 2,500 grams (not

shown), a common threshold definition of low birth weight.

Table 3 shows a matrix of Pearson correlation coefficients between the eight covariates shown in Table

1. The Pearson correlation is primarily sensitive to linear relationships, but it is a widely used and

useful indicator of the covariance structure of the data. Mother’s age and father’s age are relatively

more tightly correlated (Pearson correlation = 0.7980) than are mother’s and father’s education (0.6304).

Differences within mother/father couples both in age and in years of education are statistically significant

(not shown), but for separate reasons. Table 2 shows the average difference in age is large, and Table 3

shows it varies relatively little across couples. By comparison, the average difference in education levels

is much smaller, but because there is less covariance between them, the variance in the difference is also

smaller, so the difference is still statistically significant.

Mother’s and father’s age are both negatively correlated with mother’s and father’s education (Pearson

correlations of −0.0272 to −0.1607), while they both are positively correlated with the number of older

siblings (0.5747 and 0.5255), and negatively with younger siblings (−0.2400 and −0.2001). Parental edu-

cation is negatively correlated with older siblings (−0.3078 and −0.2870) but uncorrelated with younger

siblings. The family socioeconomic index is indeed correlated with parental education (0.7918 and 0.5678),

but the latter two variables appear to be measuring distinct characteristics. Birth weight, an indicator

of the child’s health endowment, is positively but only marginally correlated with the other six variables,

most tightly with the socioeconomic index (0.1027). Because of this covariance structure, estimates of

the marginal effects in equation (1) will be subject to omitted variable bias unless all the relevant X’s

and Z’s are included.

Model results

We next modeled the six outcomes variables using several GAMs with sequentially longer lists of covari-

ates. We begin with the same Model 1 as specified in the earlier paper [10], in which the outcome variable

is a nonlinear function of mother’s and father’s age, and a linear function of the child’s age, gestation

weeks, the child’s sex, and the mother’s race or ethnicity. Model 2 adds in indicator variables for the

mother’s marital status, the family’s socioeconomic index, and two indicator variables for the mother’s

and father’s past mental illness. Our unique contribution is Model 3, to which we have added mother’s

and father’s education in years, numbers of older and younger siblings, and birth weight, all of which



8

have linear effects.

We proceed to examine the nonlinear model results in the same way as the earlier study [10], but

we caution that nonlinear results can be challenging to interpret. In Table 4 we report approximate

p-values from tests of the statistical significance of the nonlinear effects of mother’s and father’s age, all

generated by mgcv. Parental ages are most significant in Model 1, which includes the fewest covariates

and also produces the lowest adjusted R-squared. As more covariates are added, parental age and

specifically paternal age tends to lose significance while the adjusted R-squared, an index of the model’s

fit, improves monotonically. Separate results using the Akaike Information Criterion, another statistic

that is commonly used to guide model selection, also reveal that model fit improves when the covariate list

is expanded to include parental education. In Model 3, paternal age becomes insignificant for the Graham

Ernhart and the WRAT Reading scores (p-values of 0.052 and 0.131). Paternal age remains statistically

significant for the remaining four outcomes in these nonlinear models, but as Figure 1 reveals, this result

is largely misleading.

Figure 1 plots partial predictions and their 95% confidence intervals for the six outcome variables

based on Model 3 when varying just maternal age (solid lines) or just paternal age (dashed lines). Slopes

in these graphs are the closest equivalent to a regression coefficient or marginal effect from standard linear

analysis. Compared to previously published results [10], these partial predictions are less supportive of

a negative relationship between paternal age and child outcomes. In four of the panels, the nonlinear

association of the neurocognitive outcome with paternal age flattens out for a wide range around the

sample mean of 28 y, revealing essentially no relationship. In the remaining two plots, of the Bayley

Mental Scale at upper left and the Graham Ernhart Block Sort Test score at middle right, outcomes

appear to decline linearly with father’s age, but Table 4 reveals that only the former is statistically

significant. The Bayley Motor Scale at upper right falls with father’s age but only until age 30, after

which it has an imprecise but non-negative effect. About 30% of the sample has fathers over 30.

In Table 5, we report selected regression coefficients and their standard errors from linear versions of

Models 1, 2, and 3, estimated with ordinary least squares. Although Models 1 and 2 may be misspecified

for certain outcomes when associations are restricted to be linear, Figure 1 suggests that the expanded

covariate set in Model 3 tends to eliminate nonlinearities except at the extremes of parental ages. Imposing

linearity across all models facilitates easier comparisons and helps reveal omitted variable bias.

Table 5 shows that sequentially adding covariates across models attenuates the marginal effect of
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father’s age, to the point of insignificance in the four outcomes past 8 mo. The coefficient on father’s age

in Model 3 remains negative and significant at the 5% level for the Bayley Mental and Motor Scales, but

it has fallen in size by one third to one half (−0.03 to −0.02 or −0.015). At 4 y, the coefficient on father’s

age turns positive and insignificant for the Stanford Binet, while for the Graham Ernhart model it falls

by more than half and is significant only at the 10% level. At 7 y, neither the WISC IQ nor the WRAT

Reading score vary significantly with father’s age in Model 3, and both point estimates of the marginal

effect are positive.

By contrast, adding covariates can raise or lower the marginal effect of mother’s age, which remains

positively associated with four of the six outcome measures in Model 3. Meanwhile, coefficients on the new

covariates are almost always significant, especially for development at later ages. In Model 3, mother’s

education is positive and highly significant for all but the Bayley Mental Scale. The marginal effect of

years of father’s education is positive and significant for the four outcomes at 4 and 7 y, but it is also

significantly smaller than the marginal effect of mother’s education. The presence of older siblings has

a negative and highly significant effect on 5 of the 6 outcomes, while younger siblings are also harmful

for outcomes at 4 y and 7 y. Birth weight is always highly significant at the 1% level and positively

associated with all six neurocognitive outcomes.

Discussion

Broadly speaking, our results suggest an important role in the neurocognitive development of children

played by family characteristics, and by extension assortative mating. We find that mother’s education

and the number of siblings are key variables in child outcomes, and to a lesser extent so too is father’s

education. That mother’s education has a larger marginal effect than father’s education suggests that

the former reflects more than just heredity, because both parents contribute genetic endowments [14].

Because it is a good proxy of endowed health, birth weight is also a highly significant variable in explaining

development, but its effect is largely independent from those of other covariates because birth weight is

nearly orthogonal to most of them.

Without controlling for these variables, models of neurocognitive development will yield biased esti-

mates of the marginal impact of correlated variables. The omission of mother’s or father’s education,

both of which have a positive effect on child outcomes but are negatively correlated with father’s age in
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the CPP data, produces an artificially large negative coefficient on father’s age. The omission of number

of siblings, which proxies for lower investments per child and thus has a negative effect on child outcomes,

adds to the problem because it is positively associated with father’s age.

The omitted variable bias plaguing earlier results on child neurocognitive outcomes [10] can be traced

to a handful of demographic factors. In the CPP sample, older fathers seem to have paired with less

educated mothers, as shown in Table 3, and their children’s outcomes were lower as a result. In addition,

older fathers in the CPP are themselves less educated, which may explain why they married less educated

women. Educational disparities across parental birth cohorts could also be due to differences in the access

to and price of education over time as states’ educational policies evolved rapidly after the Second World

War [22]. Finally, children in the CPP with older fathers and mothers typically also had more older

siblings, leading to reductions in parental investments per child.

While our results significantly diminish the earlier findings regarding the marginal effect of father’s

age on children’s neurocognitive outcomes in the CPP [10], they fall short of universally refuting them.

There are traces of negative influences on two or three of our six outcomes, but we find these results not

very compelling. Figure 1 shows that nonlinear estimates of outcomes using Model 3 often have U-shaped

relationships with paternal age, which may be statistically significant per Table 4 but not indicative of a

clear negative relationship. In the case of the Bayley Motor Scale, a GAM recovers a negative marginal

effect of father’s age only before 30 and basically no relationship for the 30% of the sample with fathers

over age 30. From a biological perspective, it is unclear why advancing paternal age should be bad for

the children of younger but not older fathers, or what it means. We suspect that yet another omitted

variable may be generating this result for fathers under 30, because it does not fit the biological argument

well. For other outcome variables, nonlinear results are either even more convoluted, hovering around

a zero average effect, or they reveal an underlying relationship that is linear. In the linear version of

Model 3 in Table 5, paternal age is negatively associated at the 5% level with the two neurocognitive

measures at 8 mo, the Bayley Mental and Motor Scales (−0.019 and −0.015). But at older ages, only

the Graham-Ernhart Block Sort Test is negatively correlated with father’s age (−0.025), and only at the

10% level.

As shown in Table 4, the effects of father’s age are greatly attenuated by the inclusion of expanded

covariates, especially mother’s education. In the case of the Graham Ernhart, the coefficient falls from

−0.066 in Model 1 to −0.037 in Model 2 and finally to −0.025 in Model 3, a reduction of more than half.
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To place this result in context, it is useful to examine the relative impact of the father’s age coefficient.

Table 5 shows that an additional year of father’s age lowers the Graham-Ernhart score by 0.025, while an

additional year of mother’s education raises it by 0.303, or by more than an order of magnitude. Although

these are technically cross-sectional estimates of marginal effects, we can translate them into longitudinal

trends to provide a rough guess of the possible implications of delayed childbearing, as the original

study [10] had also done. As stated earlier, the average maternal age at first birth has risen roughly 0.1 y

each year, while the age gap between mothers and fathers has actually narrowed slightly. Meanwhile, the

average years of education among mothers rose from 10.7 in the CPP around 1960, as shown in Table 1,

to about 13.1 in CDC data from 2006 [20], an average annual increase of about 0.05 y. Assuming father’s

age has also increased 0.1 y each year, the total net effect on the Graham-Ernhart score from annual

increases in father’s age and mother’s education would be an increase each year of about 0.01. Even the

largest point estimates of the marginal effect of advancing paternal age in Table 3, those from Model

1, would not even net out to zero against the protective effects of increasing maternal education. This

broader view suggests that the net effect of delayed childbearing on children’s neurocognitive outcomes is

likely to be beneficial on average, because it is paired with increasing female education, which is robustly

protective and appears to stem at least in part from nurturing influences.

It is worth reiterating that in the linear Model 3, shown in Table 5, evidence for a negative effect of

father’s age on development is strongest in the case of the two indicators measured at 8 mo. If mother’s

education is highly beneficial because it proxies for higher quality and quantity of time inputs, one might

expect its impact to rise with treatment intensity, for which the age of the child is a proxy. If advanced

paternal age has deleterious effects on child outcomes through a biological channel, one might find such

effects starting from birth. It is plausible that nurturing elements associated with mother’s education

may increasingly offset the negative effects associated with paternal age over the life of the child. We see

some suggestive evidence of this in Table 5.

Our findings also speak to the use and misuse of nonlinear modeling when there may be omitted

variables. The latter can generate spurious nonlinear effects of included variables that may not represent

anything causal or very meaningful. We expect deleterious biological influences such as sperm mutation to

increase along with paternal age and thus reduce child outcomes, but there are many other environmental

factors that are also related to paternal age and also affect child outcomes. In particular, parental

education is positively correlated with child outcomes because it typically proxies the quality of parental
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investments in the child. It is positively correlated with age within a given cohort of parents, but within

a cross section of parents at many ages, older parents are likely to have lower education because average

educational attainment has been increasing over time. Thus omitting parental education will induce a

spurious nonlinear relationship between child outcomes and father’s age, one that rises at first, reflecting

greater educational attainment among parents aged 25 y compared with those aged 16 y, and then falls

because parents aged 45 y have less education by simply having been born earlier.

Hypothesis testing can be difficult in a nonlinear environment, as revealed by the relatively misleading

statistical significance tests in Table 4. Nonlinear modeling may be more appealing in a forecasting

context, in which we are often more concerned about overall model fit and prediction than about inference

and hypothesis testing. A low p-value on a variable in a nonlinear framework is a more sufficient condition

when the the size and sign of its marginal effect are not so important to the bottom line. But our results

indicate that when we are concerned with specific pathways between child outcomes and natural and

nurturing influences, it is critical to examine size and sign and to control for a broad array of parental

and family characteristics when drawing inferences. In the case of children’s neurocognitive outcomes,

we find that mother’s education and family size seem to matter much more than paternal age per se.
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Figure 1. Partial Predictions of the Six Outcome Variables for Maternal or Paternal Age.
Predictions from Model 3, which adjusts for parental ages; age, sex, and gestation weeks of the child,
mother’s race or ethnicity and marital status, family socioeconomic index, parental history of mental
illness, parental education, numbers of older and younger siblings, and birth weight. Solid lines for
maternal age, dashed lines for paternal age, each showing mean and 95% confidence intervals. Nonlinear
models fit using GAMs via mgcv in R.
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Table 1. Children and Covariates in the CPP Sample

n
All children in the master dataset 59,392
Children with 37+ weeks gestation 59,392
All singleton births with 37+ weeks gestation 46,080
Singletons with 37+ and father’s age 34,914
Singletons with 37+ and all basic covariates 33,188
Singletons with 37+, basic covariates and:
Mother’s education 33,091
Father’s education 31,478
Birth weight 33,129
Older siblings 33,177
Younger siblings 33,188
All 5 of these 31,346

Source: Collaborative Perinatal Project (CPP).
Notes: ”Basic covariates” include sex, gestation weeks, mother’s race, parental ages at birth, marital
status, parental history of mental illness, and the family socioeconomic index. Observations missing
gestation and twin data are dropped successively in rows 2 and 3.
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Table 2. Summary Statistics of Outcomes and Key Covariates

Mean Standard Deviation n
Bayley Mental 80.0 (5.4) 26,527
Bayley Motor 33.7 (4.5) 26,529
Stanford Binet Intelligence Scale 100.1 (16.8) 22,822
Graham Ernhart 34.6 (8.2) 22,523
WISC Full Scale IQ 98.5 (14.9) 23,717
WRAT Reading 37.4 (12.5) 23,604

Father’s age, y 28.2 (6.8) 31,346
Mother’s age, y 24.7 (5.8) 31,346
Father’s education, y 11.2 (3.1) 31,346
Mother’s education, y 11.0 (2.6) 31,346
Family socioeconomic index 52.7 (21.2) 31,346
Older siblings 1.9 (2.1) 31,346
Younger siblings 0.8 (1.1) 31,346
Birth weight, g 3,266.8 (489.4) 31,346

Source: Collaborative Perinatal Project (CPP).
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Table 3. Correlations Between Key Covariates (n = 31,346)

Father’s Mother’s Father’s Mother’s Family socio- Older Younger Birth
age, y age, y education, y education, y economic index siblings siblings weight, g

Father’s age, y 1.0000
Mother’s age, y 0.7980 1.0000
Father’s education, y −0.1607 −0.0772 1.0000
Mother’s education, y −0.1123 −0.0272 0.6304 1.0000
Family socioeconomic index −0.0302 0.0548 0.7918 0.5678 1.0000
Older siblings 0.5255 0.5747 −0.3078 −0.2870 −0.2458 1.0000
Younger siblings −0.2001 −0.2400 0.0026 0.0093 −0.0344 −0.1456 1.0000
Birth weight, g 0.0574 0.0845 0.0682 0.0704 0.1027 0.0695 −0.0013 1.0000

Source: Collaborative Perinatal Project (CPP).
Notes: All correlations are significant at the 5% level except between (1) younger siblings and father’s education, (2) younger siblings and mother’s
education, and (3) birth weight and younger siblings.
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Table 4. Summary of Nonlinear Models 1, 2, and 3
Model 1 Model 2 Model 3

Influence of Influence of Influence of Influence of Influence of Influence of
Sample Maternal Paternal Adjusted Maternal Paternal Adjusted Maternal Paternal Adjusted

Size Age p-value Age p-value R
2 (%) Age p-value Age p-value R

2 (%) Age p-value Age p-value R
2 (%)

Bayley Mental 26,503 0.000 0.000 0.023 0.000 0.003 0.027 0.000 0.024 0.042
Bayley Motor 26,505 0.897 0.000 0.060 0.243 0.000 0.070 0.061 0.000 0.090
Stanford Binet IQ Scale 22,777 0.000 0.000 0.188 0.000 0.000 0.269 0.000 0.002 0.303
Graham Ernhart 22,490 0.000 0.000 0.085 0.000 0.003 0.106 0.006 0.052 0.116
WISC Full Scale IQ 22,811 0.000 0.000 0.185 0.000 0.000 0.285 0.000 0.003 0.329
WRAT Reading 22,743 0.000 0.000 0.125 0.000 0.000 0.217 0.000 0.131 0.262

Source: Collaborative Perinatal Project (CPP).
Notes: Model 1 includes the following covariates: mother’s age, father’s age, child’s age, getstation weeks, child’s sex, mother’s race/ethnicity. Model 2 includes
those covariates plus mother’s marital status, family’s socioeconomic index, and mother’s and father’s past mental illness (indicator variables). Model 3 includes
those covariates plus mother’s and father’s education, total number of siblings, and birth weight.
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Table 5. Comparison of Select Marginal Effects in Linear Versions of Models 1, 2, and 3
Dependent Variable: Dependent Variable:
Bayley Mental Model 1 Model 2 Model 3 Bayley Motor Model 1 Model 2 Model 3
Mother’s age, y 0.040*** 0.031*** 0.070*** Mother’s age, y −0.012 −0.023*** 0.005

(0.009) (0.009) (0.010) (0.008) (0.008) (0.009)
Father’s age, y −0.033*** −0.024*** −0.019** Father’s age, y −0.034*** −0.024*** −0.015**

(0.008) (0.008) (0.008) (0.007) 0.007 (0.007)
Socioeconomic index 0.016*** 0.020*** Socioeconomic index 0.021*** 0.015***

(0.002) (0.003) (0.001) (0.002)
Mother’s education, y 0.010 Mother’s education, y 0.035**

(0.018) (0.014)
Father’s education, y −0.098*** Father’s education, y −0.017

(0.019) (0.016)
Older siblings −0.274*** Older siblings −0.219***

(0.023) (0.019)
Younger siblings 0.050 Younger siblings 0.026

(0.031) (0.027)
Birth weight, g 0.001*** Birth weight, g 0.001***

(0.000) (0.000)
Dependent Variable: Dependent Variable:
Stanford Binet Model 1 Model 2 Model 3 Graham Ernhart Model 1 Model 2 Model 3
Mother’s age, y 0.352*** 0.207*** 0.236*** Mother’s age, y −0.083*** 0.046*** 0.016

(0.029) (0.028) (0.030) (0.016) (0.016) (0.017)
Father’s age, y −0.186*** −0.071*** 0.004 Father’s age, y −0.066*** −0.037*** −0.025*

(0.024) (0.023) (0.023) (0.013) 0.013 (0.013)
Socioeconomic index 0.261*** 0.143*** Socioeconomic index 0.066*** 0.040***

(0.005) (0.008) (0.003) (0.004)
Mother’s education, y 1.130*** Mother’s education, y 0.303***

(0.050) (0.028)
Father’s education, y 0.277*** Father’s education, y 0.054*

(0.055) (0.030)
Older siblings −0.583*** Older siblings 0.025

(0.062) (0.019)
Younger siblings −1.122*** Younger siblings −0.392***

(0.092) (0.052)
Birth weight, g 0.002*** Birth weight, g 0.001***

(0.000) (0.000)
Dependent Variable: Dependent Variable:
WISC Full Scale IQ Model 1 Model 2 Model 3 WRAT Reading Model 1 Model 2 Model 3
Mother’s age, y 0.272*** 0.117*** 0.150*** Mother’s age, y 0.170*** 0.048** 0.180***

(0.027) (0.025) (0.027) (0.023) (0.021) (0.023)
Father’s age, y −0.204*** −0.076*** 0.013 Father’s age, y −0.163*** −0.063*** 0.016

(0.023) (0.021) (0.021) (0.019) 0.018 (0.018)
Socioeconomic index 0.245*** 0.117*** Socioeconomic index 0.195*** 0.101***

(0.004) (0.007) (0.004) (0.006)
Mother’s education, y 1.086*** Mother’s education, y 0.794***

(0.044) (0.037)
Father’s education, y 0.377*** Father’s education, y 0.186***

(0.048) (0.041)
Older siblings −0.649*** Older siblings −0.968***

(0.055) (0.046)
Younger siblings −0.928*** Younger siblings −0.304***

(0.082) (0.079)
Birth weight, g 0.002*** Birth weight, g 0.002***

(0.000) (0.000)

Source: Collaborative Perinatal Project (CPP). Notes: All three models specify linear relationships between the
dependent and independent variables and are estimated by ordinary least squares. Robust standard errors are in
parentheses, and asterisks denote statistical significance at the 1% (***), 5% (**), and 10% (*) level. Model 1 includes the
following covariates: mother’s age, father’s age, child’s age, getstation weeks, child’s sex, mother’s race/ethnicity. Model 2
includes those covariates plus mother’s marital status, family’s socioeconomic index, and mother’s and father’s past
mental illness (indicator variables). Model 3 includes those covariates plus mother’s and father’s education, number of
older siblings, number of younger siblings (at 7 years) and birth weight.


