Definable Incompleteness and Friedberg Splittings

Russell Miller*

September 1, 2004

Abstract

We define a property \(R(A_0, A_1) \) in the partial order \(\mathcal{E} \) of computably enumerable sets under inclusion, and prove that \(R \) implies that \(A_0 \) is noncomputable and incomplete. Moreover, the property is nonvacuous, and the \(A_0 \) and \(A_1 \) which we build satisfying \(R \) form a Friedberg splitting of their union \(A \), with \(A_1 \) prompt and \(A \) promptly simple. We conclude that \(A_0 \) and \(A_1 \) lie in distinct orbits under automorphisms of \(\mathcal{E} \), yielding a strong answer to a question previously explored by Downey, Stob, and Soare about whether halves of Friedberg splittings must lie in the same orbit.

1 Introduction

The computably enumerable sets form an upper semi-lattice under Turing reducibility. Under set inclusion, they form a lattice \(\mathcal{E} \), as first noted by Myhill in [14], and the properties of a c.e. set as an element of \(\mathcal{E} \) often help determine its properties under Turing reducibility. Even before Myhill, Post had suggested that there should be a nonvacuous property of c.e. sets, definable without reference to the Turing degrees, which would imply that the Turing degree of such a set must lie strictly between the computable degree \(0 \) and the complete c.e. degree \(0' \).

Post's own attempts to find such a property failed. The properties he defined turned out to be extremely useful in computability theory, but each of them — simplicity, hypersimplicity, and hyperhypersimplicity — actually does hold of some complete set. The existence of a Turing degree between

*This article appeared in *The Journal of Symbolic Logic* 67 (2002), pp. 679-696. It is the second chapter of a Ph.D. thesis at the University of Chicago under the supervision of Robert I. Soare, to whom the author is grateful for extensive conversations and suggestions.
0 and 0′ was first proven by completely different means, namely the finite injury constructions of Friedberg and Muchnik ([6], [13]).

The term “Post’s Program” eventually came to denote the search for an \(\mathcal{E} \)-definable property implying incompleteness. Of the properties proposed by Post, all except hypersimplicity turned out to be definable in \(\mathcal{E} \), and other \(\mathcal{E} \)-definable properties, such as maximality, were developed and studied in their own right. Nevertheless, Post’s Program remained unfinished until 1991, when Harrington and Soare ([7]) found a property \(Q(A) \) definable in \(\mathcal{E} \) such that every \(A \) satisfying \(Q \) must be both noncomputable and Turing-incomplete. We give their definition of \(Q(A) \):

\[
Q(A) : (\exists C)_{A \subseteq C} (\forall B \subseteq C) (\exists D \subseteq C) (\forall S \subseteq C) S \subseteq C \implies \left(\exists T \right) \left(C \subseteq T \land A \setminus (S \cap T) = B \setminus (S \setminus T) \right).
\]

Here \(S \sqsubseteq C \) abbreviates \((\exists \hat{S}) \left[S \cup \hat{S} = C \land S \cap \hat{S} = \emptyset \right] \). (All variables represent elements of \(\mathcal{E} \), namely c.e. sets.) \(A \sqcup B \) denotes the union of two disjoint sets \(A \) and \(B \). Also, \(A \sqsubseteq m \) \(C \) abbreviates “\(A \) is a major subset of \(C \),” meaning that \(A \sqsubseteq C \) with \(C \setminus A \) infinite such that for every \(W \), if \(C \sqsubseteq W \), then \(\overline{W} \) is finite. Since the property of being finite is \(\mathcal{E} \)-definable, the statement \(A \sqsubseteq m \) \(C \) is \(\mathcal{E} \)-definable as well.

In this paper we generalize the property \(Q(A) \) to an \(\mathcal{E} \)-definable property \(R(A_0, A_1) \) of two c.e. sets. The statement of \(R \) is as follows:

\[
R(A_0, A_1) : A_0 \cap A_1 = \emptyset \land
(\exists C) (\forall B \subseteq C) (\exists D \subseteq C) (\forall S \subseteq C) S \subseteq C \implies
\left[\left(B \setminus (S - A_0) \right) \cup A_1 = \left(D \setminus (S - A_0) \right) \cup A_1 \right] \land
\left[C \setminus T \land \left(A_0 \cap S \cap T \right) \cup A_1 = \left(B \cap S \cap T \right) \cup A_1 \right].
\]

This property can be read to say that \(A_0 \) satisfies the \(Q \)-property on \(\overline{A_1} \). Indeed, the statement \(R(A_0, \emptyset) \) is equivalent to \(Q(A_0) \). In Section 2 we prove that just as with the \(Q \)-property, \(R(A_0, A_1) \) implies that \(A_0 \) is not of prompt degree, and hence not Turing complete in \(\Sigma^0_3 \). (A set which is not of prompt degree is said to be \textit{tardy}, and since \(A_0 \) satisfies an \(\mathcal{E} \)-definable property implying tardiness, we say that \(A_0 \) is “definably tardy.” Since all tardy sets are incomplete, we also say that \(A_0 \) is “definably incomplete.”)

Alternatively, we can interpret \(R(A_0, A_1) \) in the lattice \(\mathcal{E} / A \), where \(A \) is the principal ideal in \(\mathcal{E} \) generated by \(A_1 \). (See [15], p. 225.) In this lattice, \(C \sqsubseteq A D \) is defined to mean \(C \subseteq D \cup A_1 \), and \(C \approx A D \) if \(C \sqsubseteq A D \).
and \(D \subseteq A C \). Essentially, \(R(A_0, A_1) \) says that \(Q(A_0) \) holds in \(\mathcal{E}/A \), with containment and equality replaced by \(\subseteq A \) and \(\approx A \). The only differences are that we cannot state the properties \(A_0 \cap A_1 = \emptyset \) or \(A_1 \subseteq C \) in \(\mathcal{E}/A \), and that we have left the quantifier \((\forall S \subseteq C) \) in \(R(A_0, A_1) \) just as in the original \(Q \)-property, rather than restating it to hold on \(A_1 \). Choosing not to restate it makes the \(R \)-property slightly stronger, but the stronger version can still be satisfied.

In Section 3 we construct c.e. sets \(A_0 \) and \(A_1 \) satisfying \(R \), to show that the \(R \)-property is non-vacuous. \(A_0 \) and \(A_1 \) will also be noncomputable. Thus, the following \(\mathcal{E} \)-definable formula is non-vacuous:

\[
(\exists A_1)[A_0 \supset T \emptyset \& R(A_0, A_1)]
\]

This formula guarantees that \(A_0 \) is noncomputable and incomplete, just as the property \(Q(A) \) does for \(A \). (Recall that computability is equivalent to the property of having a complement in \(\mathcal{E} \).)

We then consider Friedberg splittings. Two disjoint c.e. sets \(B_0 \) and \(B_1 \) form a Friedberg splitting of \(B = B_0 \cup B_1 \) if for every c.e. \(W \):

\[
W - B \text{ is not c.e.} \implies \text{ neither } W - B_0 \text{ nor } W - B_1 \text{ is c.e.}
\]

The sets \(B_0 \) and \(B_1 \) are each said to be \textit{half} of this Friedberg splitting. The sets \(A_0 \) and \(A_1 \) which we construct will have the additional property of forming a Friedberg splitting of their union.

We use the \(R \)-property to show that \(A_0 \) and \(A_1 \) cannot lie in the same orbit under automorphisms of \(\mathcal{E} \). (In the argot of this topic, we say that \(A_0 \) and \(A_1 \) are not \textit{automorphic}. Two sets are automorphic if they lie in the same orbit.) This will follow because the \(A_1 \) we construct will be of prompt degree, hence automorphic to a complete set, by another result of Harrington and Soare in [7].

The orbits of halves of Friedberg splittings have been a subject of interest for some time, at least since the discovery of the hemimaximal sets. A set is hemimaximal if it is half of a nontrivial splitting of a maximal set. This is \(\mathcal{E} \)-definable, and Downey and Stob proved that the hemimaximal sets form an orbit (see [3]).

Since the maximal sets themselves form an orbit, and since few orbits are known in \(\mathcal{E} \), this led to the conjecture that if \(\mathcal{O} \) is any orbit in \(\mathcal{E} \), then the collection of “hemi-\(\mathcal{O} \)” sets, i.e. halves of nontrivial splittings of sets in \(\mathcal{O} \), might also be an orbit. Alternatively, it was conjectured that halves of Friedberg splittings of sets in \(\mathcal{O} \) might form an orbit. (For the orbit
of maximal sets, these classes coincide, since any nontrivial splitting of a maximal set is automatically a Friedberg splitting.)

Downey and Stob refuted both conjectures in [5], by producing two Friedberg splittings $B_0 \cup B_1 = C_0 \cup C_1$ of the same set B, which were definably different in \mathcal{E}. Hence B_0 and C_0 satisfy different 1-types in the language of inclusion and cannot be automorphic.

The present result goes a step further. Since A_0 is definably tardy, every set in its orbit must also be tardy, and hence A_1 must lie in a different orbit. This is thus the first example of a single Friedberg splitting with the two halves known to lie in different orbits in \mathcal{E}. It is also the first application of Harrington and Soare’s Q-property to derive results about Friedman splittings.

Our notation mostly follows that of [16]. The finite sets form an ideal $\mathcal{F} \subset \mathcal{E}$, and we write \mathcal{E}^* for the lattice \mathcal{E}/\mathcal{F}. (Computability is definable in \mathcal{E} as the property of possessing a complement, and then finiteness is definable, since a set is finite if and only if all its subsets are computable.) We write $A \subseteq^* B$ if $B - A$ is finite, and $A =^* B$ if $A \subseteq^* B$ and $B \subseteq^* A$.

We use the standard enumeration $\{W_e\}_{e \in \omega}$ of the computably enumerable sets, with finite approximations $\{W_{e,n}\}_{n \in \omega}$ to each. For the c.e. sets which we construct ourselves, we will also give finite approximations, usually writing $A = \bigcup_{e \in \omega} A^e$. If A and B are both enumerated this way, we write $A \setminus B = \{x : (\exists s)[x \in A^e - B^e]\}$, and $A \setminus B = \{x \in A \cap B : (\exists s)[x \in A^e - B^e]\}$. Thus when an element not yet in B enters A, we put it into $A \setminus B$, and if it later enters B, then we put it into $A \setminus B$ as well.
2 The R-Property

In order to guarantee that the set A_0 is not automorphic to a complete set, we will force it to satisfy the lattice-definable property R defined in Section 1, and prove that this implies tardiness of A_0. Tardiness itself does not guarantee that a set cannot be automorphic to a complete set, of course, but satisfaction of R does, since every other set automorphic to A_0 must also satisfy R and therefore must also be tardy, hence incomplete. (A tardy set must be half of a minimal pair under \leq_T, as shown in [16], and therefore must be incomplete.) We restate the R-property here:

$$R(A_0, A_1) : A_0 \cap A_1 = \emptyset \&$$

$$(\exists C)(\forall B \subseteq C)(\exists D \subseteq C)(\forall S \subseteq C)(\exists T) [A_0 \cup A_1 \subseteq C \&$$

$$[(B \cap (S - A_0)) \cup A_1 = (D \cap (S - A_0)) \cup A_1$$

$$\Rightarrow$$

$$[\overline{C} \subseteq T \& (A_0 \cap S \cap T) \cup A_1 = (B \cap S \cap T) \cup A_1]]$$

Theorem 2.1 If A_0 and A_1 are two c.e. sets such that $R(A_0, A_1)$ holds, then A_0 is not of prompt degree.

Proof. The proof is similar to the corresponding result for the Q-property in [7]. Given A_0 and A_1, we pick a set C as specified in $R(A_0, A_1)$ and fix enumerations $\{A_0^s\}_{s \in \omega}$ of A_0 and $\{C^s\}_{s \in \omega}$ of C such that $A_0 \subseteq C \setminus A_0$.

To prove that a given φ_e is not a promptness function for A_0, we need to find an infinite c.e. set W_i with standard enumeration $\{W_i^s\}_{s \in \omega}$ satisfying the tardiness requirement T_e:

$$[(\forall s)\varphi_e(s) \downarrow \geq s] \implies (\forall x)(\forall s)[x \in W_i, s - W_i, s - 1 \implies A_0^s \mid x = A_0^s \varphi_e(s) \mid x]$$

We will prove independently for each e that T_e holds. Having fixed e, we will assume for the rest of this section that $\varphi_e(s) \geq s$ for every s, since otherwise T_e is automatically fulfilled. We will build a strong array $\{V_{\langle a, k \rangle, n}\}_{k, m \in \omega; a \in \omega \times \omega}$ of c.e. sets with enumerations $\{V^a_{\langle a, k \rangle, n}\}_{s \in \omega}$. The Slowdown Lemma then gives a computable function f such that for each $\langle a, k \rangle$ and each $n, W_{f(\langle a, k \rangle, n)} = V_{\langle a, k \rangle, n}$ and $V_{\langle a, k \rangle, n} \setminus W_{f(\langle a, k \rangle, n)} = V_{\langle a, k \rangle, n},$ so that no element of $V_{\langle a, k \rangle, n}$ enters $W_{f(\langle a, k \rangle, n)}$ until it has already entered $V_{\langle a, k \rangle, n}$. Periodically the strategy for a given $\langle a, k \rangle$ may be injured by a higher-priority strategy. If this happens while we are enumerating $V_{\langle a, k \rangle, n},$ then we give up on $V_{\langle a, k \rangle, n}$ and start enumerating $V_{\langle a, k \rangle, n + 1}$. There will exist an $\langle a, k \rangle$ which is only injured n times (with $n < \omega$), yet receives attention.
at infinitely many stages, and the corresponding \(V_{(\alpha, k), n} \) will be infinite and will be the set which proves satisfaction of \(T_e \).

We define the function \(n((\alpha, k), s) \) to keep track of which \(V_{(\alpha, k), n} \) we are enumerating at stage \(s \). In particular, if the \((\alpha, k) \)-strategy receives attention at stage \(s + 1 \), then we may add an element to \(V_{(\alpha, k), n((\alpha, k), s + 1)}^{s + 1} \). To avoid notational chaos, however, we will write \(V_{(\alpha, k), n((\alpha, k), s + 1)}^{s + 1} \) in the construction and understand \(V_{(\alpha, k), n((\alpha, k), s + 1)}^{s + 1} \) for it.

To ensure that one of these \(W_{j((\alpha, k), n)} \) will satisfy \(T_e \), we build a c.e. set \(B \) to which to apply the property \(R \). When we want to preserve \(A_0 \upharpoonright x \) from stage \(s \) until stage \(\varphi_e(s) \) so as to satisfy \(T_e \), we do so by restraining all elements \(< x \) from entering \(B \) until stage \(\varphi_e(s) \). The \(R \)-property then prohibits such elements from entering \(A_0 \), since if they did, we would then hold them out of \(B \) forever after, thereby contradicting \(R(A_0, A_1) \).

To apply the \(R \)-property, we need to know which c.e. set \(W_j \) is the \(D \) specified by the property. Of course, we do not have this information, but our strategy is to use \(S \) to cover all the possibilities. Specifically, in the construction we will split \(C \) into the disjoint union of c.e. sets:

$$ C = \bigsqcup_{i \in \omega} S_i; $$

and apply the \(R \)-property to each \(S_i \), with \(S_i \) in the role of \(S \). (Clearly each \(S_i \subseteq C \).) We use each \(S_i \) to handle the possibility that \(D = W_j \).

Of course, the \(R \)-property states that the restraints we place on elements from entering \(B \) only affect \(A_0 \) on \(S \cap T \cap A_1 \). Since \(R(A_0, A_1) \) also states that \(A_0 \cap A_1 \) is empty, we do not need to worry about elements of \(A_1 \), for they can never enter \(A_0 \). We are allowed to choose the \(S_i \), since the matrix of \(R \) applies for all \(S \), and indeed we have already done so above (namely \(S = S_i \), for each \(i \) in turn). However, we can only guess at the set \(T \).

To determine the index \(j \) such that \(T = W_j \) corresponds to the set \(S \) which we choose, we use a \(\Pi^0_2 \) guessing procedure, since the conclusion in the matrix of \(R \) is a \(\Pi^0_2 \) property. The \(j \) for which \(T = W_j \) will be the least \(j \) which receives infinitely many guesses under this procedure. (We ensure that the hypothesis of the matrix holds, by periodically putting all elements of \(D^g \cap (S^g - A_0^g) \) into \(B^g \).) Moreover, in the construction, we will subdivide each \(S_i \) into the disjoint union of c.e. sets \(S_{i,j} \):

$$ S_i = \bigsqcup_{j \in \omega} S_{i,j}. $$

\(S_{i,j} \) is used to handle the possibility that \(T = W_j \), so we pay attention to \(S_{i,j} \).
each time j is named by the guessing procedure. Thus the $S_{i,j}$ corresponding to the correct T will receive attention infinitely often.

To simplify the notation, we let the variable $\alpha = (i, j)$ range over $\omega \times \omega$, and define:

$$
D_\alpha = W_i \\
S_\alpha = S_{i,j} \\
T_\alpha = W_j.
$$

We order the elements α of $\omega \times \omega$ by pulling back the usual order $<$ on ω to $\omega \times \omega$ via a standard pairing function. Thus each α has only finitely many predecessors under $<$.

For each α, let $F(\alpha)$ be the conjunction of the hypothesis and conclusion in the matrix of the R-property:

$$
F(\alpha): \quad (B \cap (S_\alpha - A_0)) \cup A_1 = (D_\alpha \cap (S_\alpha - A_0)) \cup A_1 & \quad (1) \\
\neg C \subseteq T_\alpha \& (A_0 \cap S_\alpha \cap T_\alpha) \cup A_1 = (B \cap S_\alpha \cap T_\alpha) \cup A_1] \quad (2)
$$

Then $F(\alpha)$ is a Π^0_2 condition, uniformly in α, so there is a computable total function g such that $F(\alpha)$ holds just if $g^{-1}(\alpha)$ is infinite. We enumerate the c.e. set $Z_\alpha = g^3(\alpha)$ by setting $Z_\alpha^* = \{t : g(t) = \alpha\}$.

Now we narrow down each T_α to a c.e. subset U_α, enumerated by:

$$
U_\alpha^* = U_\alpha^{\alpha - 1} \cup \{x \in T_\alpha^* \setminus C^* : x < \lfloor Z_\alpha^* \rfloor\}
$$

Thus, if T_α actually is the T corresponding to S_i, then U_α will contain all of T_α except certain elements of C. Hence $F(\alpha)$ will hold with U_α in place of T_α. On the other hand, if $F(\alpha)$ fails, then Z_α and U_α are both finite.

If $F(\alpha)$ holds, then $C \subseteq U_\alpha$, so $T_\alpha \subseteq U_\alpha \cup A_1$, because $A_0 \cup A_1 \subseteq C$. For the least α such that $F(\alpha)$ holds, our construction of $S_\alpha^{\alpha+1}$ will yield $C \subseteq A_0 \subseteq S_\alpha \cup A_1$, with S_β finite for all $\beta < \alpha$. Hence there will exist a k such that

$$
C = A_0 \subseteq S_\alpha \cup A_1 \cup \{0, 1, \ldots, k - 1\}
$$

Line (3) is a Π^0_1 statement, uniformly in k and α, since our definition of S_α will be uniform in α. Therefore, there exists a total function h_α such that (3) holds if and only if $h_\alpha^{-1}(k)$ is infinite. We define:

$$
h(s) = h_{g(s)}(n), \text{ where } n = \{| t < s : g(t) = g(s) |\}.
$$

We will enumerate sets $V_{(\alpha, k), n}$ for each α, k and n. For the least α with Z_α infinite and the least k with $h_\alpha^{-1}(k)$ infinite, the set $V_{(\alpha, k), n}$ (for some
n) will be the W_i required by T_e. Elements of each $V_{(a,k),n}$ (the “witness elements” for the requirement T_e) will be denoted $v_{(a,k)}^s$. Each $v_{(a,k)}^s$ will enter $V_{(a,k),n}$ for at most one n.

The Slowdown Lemma (see [16], p. 284) then yields a computable function f such that, for every $\langle \alpha, k \rangle$ and every n, $V_{(a,k),n} = W_{f(\langle \alpha, k \rangle,n)}$, and at every stage s,

$$(V_{(\alpha,k),n}^s - V_{(\alpha,k),n}^{s-1}) \cap W_{f(\langle \alpha, k \rangle,n),s} = \emptyset.$$

When a witness element $v_{(\alpha,k)}^s$ enters $V_{(\alpha,k),n}$, we will find the stage $t_{(\alpha,k)}^s > s$ at which $v_{(\alpha,k)}^s$ enters $W_{f(\langle \alpha, k \rangle,n)}$ and restrain (with priority $\langle \alpha, k \rangle$) elements $\leq v_{(\alpha,k)}^s$ from entering A_0 until stage $\varphi_e(t_{(\alpha,k)}^s)$. (Recall that T_e assumes φ_e to be total.) Thus we will have $A_0^{t_{(\alpha,k)}^s} \uparrow v_{(\alpha,k)}^s = A_0^{\varphi_e(t_{(\alpha,k)}^s)} \uparrow v_{(\alpha,k)}^s$. If we can achieve this for all $v_{(\alpha,k)}^s$ in the (infinite) set $V_{(\alpha,k),n}$ for some n, then the set $W_{f(\langle \alpha, k \rangle,n)}$ will be the set required by T_e to prove that φ_e is not a promptness function for A_0.

At stage 0, for all $\langle \alpha, k \rangle$, we set $n(\langle \alpha, k \rangle, 0) = 0$ and $V_{(\alpha,k),0}^0 = \emptyset$, with $v_{(\alpha,k)}^0 \uparrow$ and $t_{(\alpha,k)}^0 \uparrow$. Also, let every $S_{\alpha}^0 = \emptyset$ and let $B^0 = \emptyset$.

At stage $s + 1$, we first define each S_{α}^{s+1}. For each $x \in C^{s+1} - C^s$, find the least α such that $x \in U_{\alpha}^s$ and put x into S_{α}^{s+1}. If there is no such α, put x into S_{α}^{s+1}. (The c.e. set S_α simply collects elements which enter C without entering any S_{α}. Thus $C = \bigsqcup_{\alpha \leq \omega} S_{\alpha}$.)

Set $\alpha = g(s)$, and define:

$$B_{s+1} = B_s \cup \{x : \begin{array}{l} x \in C^s - A_0^s \& (\exists \beta \leq \alpha) [x \in D_{\beta}^{s+1} \& S_{\beta}^{s+1} \& (\forall \delta \leq \beta)(\forall k < s)[S_{\delta}^{s+1}\downarrow \Rightarrow x \geq v_{(\delta,k)}^s]] \end{array} \}$$

For each strategy which is injured at stage $s + 1$, we begin enumerating a new witness set. To this end, set $n(\langle \gamma, k \rangle, s + 1) = n(\langle \gamma, k \rangle, s) + 1$ and $v_{(\gamma,k)}^{s+1} \uparrow$ and $t_{(\gamma,k)}^{s+1} \uparrow$ for each $\langle \gamma, k \rangle$ satisfying any of the following conditions:

- $\gamma > \alpha$.
- $\gamma = \alpha$ and $k > h(s)$.
- There exists $x < k$ with $x \in A_0^{s+1} - A_0^s$.
- There exists $\beta < \gamma$ with $S_{\beta}^{s+1} \neq S_{\beta}^s$.
- There exists $\beta < \gamma$ such that U_{β}^{s+1} contains an element $\geq m$, where $m = \min(B_{s+1}^{s+1} - B^s)$.
For all other $\langle \gamma, k \rangle$, set $r((\gamma, k), s + 1) = r((\gamma, k), s)$.

We now define the witness sets at stage $s + 1$. For each $\langle \beta, k \rangle \leq \langle \alpha, h(s) \rangle$ (in the lexicographic order) which was not injured at stage $s + 1$:

1. If $v^s_{\langle \beta, k \rangle} \uparrow$ and $\langle \beta, k \rangle \neq \langle \alpha, h(s) \rangle$, let $v^{s+1}_{\langle \beta, k \rangle}$ and $t^{s+1}_{\langle \beta, k \rangle}$ diverge also, with $V_{\langle \beta, k \rangle, n} = V^s_{\langle \beta, k \rangle, n}$.

2. If $v^s_{\langle \alpha, h(s) \rangle} \uparrow$, let $v^{s+1}_{\langle \alpha, h(s) \rangle} = s + 1$, with $V_{\langle \alpha, h(s) \rangle, n} = V^s_{\langle \alpha, h(s) \rangle, n}$ and $t^{s+1}_{\langle \alpha, h(s) \rangle} \uparrow$.

3. If $v^s_{\langle \beta, k \rangle} \downarrow$ but $t^s_{\langle \beta, k \rangle} \uparrow$, let $v^{s+1}_{\langle \beta, k \rangle} = v^s_{\langle \beta, k \rangle}$, and ask whether the following holds:

$$\forall y \mid y \leq v^{s+1}_{\langle \beta, k \rangle} \left[y \in A^{s+1}_0 \lor y \in A^{s+1}_1 \lor y \in (U^{s+1}_{\beta} - C^{s+1}) \lor y \in (C^{s+1} - B^{s+1}) \cap S^{s+1}_{\beta} \cap U^{s+1}_{\beta} \right]$$

(4)

If (4) holds, let $V^{s+1}_{\langle \beta, k \rangle, n} = V_{\langle \beta, k \rangle, n} \cup \{v^{s+1}_{\langle \beta, k \rangle}\}$ and $t^{s+1}_{\langle \beta, k \rangle} = \mu t \mid v^{s+1}_{\langle \beta, k \rangle} \in W_f(\langle \beta, k, n \rangle, t)$.

(Such a t must exist, since $W_f(\langle \beta, k, n \rangle) = V_{\langle \beta, k, n \rangle}$. If (4) fails, then let $V_{\langle \beta, k \rangle, n} = V^s_{\langle \beta, k \rangle, n}$ and $t^{s+1}_{\langle \beta, k \rangle} \uparrow$.

4. If $v^s_{\langle \beta, k \rangle} \downarrow$ and $t^s_{\langle \beta, k \rangle} \downarrow$ and $\varphi_{r,s}(t^s_{\langle \beta, k \rangle}) < s$, then let $v^{s+1}_{\langle \beta, k \rangle} \uparrow$ and $t^{s+1}_{\langle \beta, k \rangle} \uparrow$, with $V_{\langle \beta, k \rangle, n} = V^s_{\langle \beta, k \rangle, n}$.

5. If $v^s_{\langle \beta, k \rangle} \downarrow$ and $t^s_{\langle \beta, k \rangle} \downarrow$ but either $\varphi_{r,s}(t^s_{\langle \beta, k \rangle}) \geq s$ or $\varphi_{r,s}(t^s_{\langle \beta, k \rangle})$ diverges, then let $V^{s+1}_{\langle \beta, k \rangle, n} = V_{\langle \beta, k \rangle, n}$, $v^{s+1}_{\langle \beta, k \rangle} = v^s_{\langle \beta, k \rangle}$, and $t^{s+1}_{\langle \beta, k \rangle} = t^s_{\langle \beta, k \rangle}$.

This completes the construction.

We now use the sets B and S_α to prove that requirement T_{α} is satisfied.

Lemma 2.2 If Z_β is finite, then there exists a stage s_1 such that $t^s_{\langle \beta, k \rangle} \uparrow$ for all $s \geq s_1$ and all k.

Proof. Pick a stage s_0 such that no $s \geq s_0$ satisfies $g(s) = \beta$, and let $k' = \max \{ h(s) : g(s) = \beta \}$. Then for all $k > k'$, $v^s_{\langle \beta, k \rangle} \uparrow$ for all s, and hence $t^s_{\langle \beta, k \rangle} \uparrow$ for all s. (The construction makes it clear that for any k and s, $t^s_{\langle \beta, k \rangle}$ can converge only if $v^s_{\langle \beta, k \rangle}$ converges.)

9
Now suppose \(k \leq k' \) and \(v^s_{(\beta,k)} \downarrow \) for all \(s \geq s_0 \). This means that we never execute Step (4) in the construction after stage \(s_0 \), and that the \((\beta,k) \) strategy is never injured after stage \(s_0 \). But if \(t^s_{(\beta,k)} \) ever converges after stage \(s_0 \), then eventually we must reach Step (4), since we assumed \(\varphi_e \) to be total. Hence \(t^s_{(\beta,k)} \) must diverge for all \(s \geq s_0 \).

Finally, suppose \(k \leq k' \) and \(v^s_{(\beta,k)} \uparrow \) for some \(s_1,k \geq s_0 \). Then \(v^s_{(\beta,k)} \) will diverge for all subsequent \(s \), since it can only be newly defined at a stage \(s \) with \(g(s) = \beta \). Thus \(t^s_{(\beta,k)} \) will diverge for all subsequent \(s \) as well. Letting \(s_1 = \max_{k \leq k'} s_1,k \) completes the proof.

\[\square \]

Lemma 2.3 \(F(\alpha) \) holds for some \(\alpha \), and for the least such \(\alpha \), there exists a \(k \) such that \(h_0^{-1}(k) \) is infinite.

Proof. First we claim that some \(Z_\alpha \) must be infinite. Suppose not, so \(Z_\alpha \) is finite for all \(\alpha \), and \(F(\alpha) \) fails for all \(\alpha \). However, the \(R \)-property holds, so there must be some \(\alpha \) for which line (1) fails. Choose the least such \(\alpha \). Then

\[
(B \cap (S_\alpha - A_0)) \cup A_1 \neq (D_\alpha \cap (S_\alpha - A_0)) \cup A_1.
\]

Suppose \(x \in B \cap (S_\alpha - A_0) \). Pick \(s \) such that \(x \in B^{s+1} - B^s \). Now to go into \(B^{s+1} \), \(x \) must have been in \(A^{s+1}_\beta \cap S^{s+1}_\beta \) for some \(\beta \). Since \(x \in S_\alpha \), we know \(x \notin S_\beta \) for all \(\beta \neq \alpha \). Hence \(x \in D_\alpha \), and so

\[
(B \cap (S_\alpha - A_0)) \cup A_1 \subseteq (D_\alpha \cap (S_\alpha - A_0)) \cup A_1.
\]

Therefore, there must be some element \(x \in \overline{A_1} \cap \overline{B} \cap D_\alpha \cap (S_\alpha - A_0) \). Assume \(x \) is the least such element. Now for every \(\beta < \alpha \), line (1) must hold and line (2) must fail, since we chose \(\alpha \) to be minimal satisfying the \(R \)-property. Hence for all \(\beta < \alpha \),

\[
(B \cap (S_\beta - A_0)) \cup A_1 = (D_\beta \cap (S_\beta - A_0)) \cup A_1.
\]

Now since every \(Z_\beta \) with \(\beta < \alpha \) is finite, there is a stage \(s_0 \) such that for all \(s \geq s_0 \), \(g(s) > \alpha \), and we may also assume that \(s_0 \) is so large that \(x \in S_0^\alpha \cap D_0^\alpha \cap C^\alpha \). (Notice that \(x \in S_\alpha \) forces \(x \in C_\).)

Now use Lemma 2.2 to find a stage \(s_1 \geq s_0 \) such that:

\[
(\forall s \geq s_1)(\forall \beta \leq \alpha)(\forall k)(v^s_{(\beta,k)} \uparrow).
\]

Since \(\varphi_e \) is total, there must be a stage \(s \geq s_1 \) such that \(t^s_{(\alpha,k)} \uparrow \), and once we reach this stage \(s \), \(x \) must go into \(B^{s+1} \), contradicting our assumption that \(x \notin B \).
Thus, there must be some α such that Z_α is infinite. Let α be the least such. Then every U_β with $\beta < \alpha$ is finite. Since $F(\alpha)$ holds, we have $\overline{C} \subseteq T_\alpha$, so by our construction, $\overline{C} \subseteq U_\alpha$, and by the major subset property, $\mathcal{A}_0 \subseteq^* U_\alpha \cup A_1$.

For this α, we claim that $C - A_0 \subseteq^* S_\alpha \cup A_1$. Suppose $x \in C - A_0$. All but finitely many such x lie in $U_\alpha \cup A_1$, as noted above. If $x \in A_1$, we are done. For each sufficiently large $x \in C - A_0 - A_1$, there exists s such that $x \in U_\alpha - U_\alpha^{s-1}$. By definition of U_α, we must have $x \notin C^s$. But $x \in C$, so $x \in C^{t+1} - C^t$ for some $t \geq s$. Hence $x \in S_\alpha^{t+1}$ by definition of S_α^{t+1}, unless there exists $\beta < \alpha$ with $x \in U_\beta$. But all U_β with $\beta < \alpha$ are finite, by our choice of α, so all but finitely many of these x lie in S_α. Therefore, line (3) holds for some k, and $h_\alpha^{-1}(k)$ is infinite.

Use Lemma 2.3 to take the lexicographically least $\langle \alpha, k \rangle$ such that $F(\alpha)$ holds and $h_\alpha^{-1}(k)$ is infinite. Then there are infinitely many stages s for which $g(s) = \alpha$ and $h(s) = k$, but only finitely many for which $\langle g(s), h(s) \rangle$ precedes $\langle \alpha, k \rangle$ in the lexicographic ordering. Let s_0 be the least stage with $\langle g(s_0), h(s_0) \rangle = \langle \alpha, k \rangle$ such that:

- $A_0^{s_0} \upharpoonright k = A_0 \upharpoonright k$, and
- $B^{s_0} \upharpoonright m = B \upharpoonright m$, where $m = \max \cup_{\beta < \alpha} U_\beta$, and
- for all $s \geq s_0$, $\langle g(s), h(s) \rangle \geq \langle \alpha, k \rangle$ lexicographically, and
- $S_\beta^{s_0} = S_\beta$ for all $\beta < \alpha$.

The final condition is possible since each $S_\beta \subseteq U_\beta$, which is finite for every $\beta < \alpha$. We also let $s_0 < s_1 < s_2 < \cdots$ be all the stages $s \geq s_0$ with $\langle g(s), h(s) \rangle = \langle \alpha, k \rangle$.

Now the $\langle \alpha, k \rangle$-strategy is never injured after stage s_0, so for every $s \geq s_0$, $n(\langle \alpha, k, s_0 \rangle) = n(\langle \alpha, k, s \rangle)$, and we write $n = n(\langle \alpha, k, s_0 \rangle)$. (Thus n is the number of times the $\langle \alpha, k \rangle$-strategy was injured during the construction.) Moreover, minimality of s_0 implies that this strategy was injured at some stage $s \leq s_0$ such that there is no s_{-1} with $s \leq s_{-1} < s_0$ and $\langle g(s_{-1}), h(s_{-1}) \rangle = \langle \alpha, k \rangle$. Therefore, $V^s_{\langle \alpha, k \rangle, n} = V^{s_0}_{\langle \alpha, k \rangle, n}$ is empty.

We claim that the subset $V_{\langle \alpha, k \rangle, n}$ satisfies requirement T_ϵ. For this we need:

Lemma 2.4 For this $\langle \alpha, k \rangle$, and for each $y \geq k$, there exists an s such that the matrix of line (4) holds of y, $\langle \alpha, k \rangle$, and s.

11
Proof. Let $y \geq k$. If $y \in A_0 \cup A_1$, we are done. If $y \in \overline{C}$, then $y \in T_0$ since $F(\alpha)$ holds. But Z_0 is infinite, so $T_0 - C \subseteq U_0$, and y is in $U_0 - C$, hence in some $U^{s+1} - C^{s+1}$.

So suppose $y \in C - A_0 - A_1$. Now since $h^{-1}_\gamma(k)$ is infinite and $y \geq k$, we know by line (3) that $y \in S_\alpha$. But $S_\alpha \subseteq U_\alpha \subseteq T_\alpha$ by definition of S^{s+1}_α. Since $y \notin (B \cap S_\alpha \cap T_\alpha) \cup A_1$ by line (2), we know $y \notin B$. Thus there is an s with $y \in (C^{s+1} - B^{s+1}) \cap S^{s+1}_\alpha \cap U^{s+1}_\alpha$. This proves the Lemma.

Now $V_{(a,k),n} = W_{j((a,k),n)}$, and if s' is the stage at which $v^{s'}_{(a,k)}$ enters $V_{(a,k),n}$, then $t^{s'}_{(a,k)} > s'$ by our choice of f from the Slowdown Lemma. Let $s'' = \varphi_{s'}(t^{s'}_{(a,k)})$. Then $s' < s''$, since we assumed $\varphi_{s'}$ to be increasing.

Lemma 2.5 $V_{(a,k),n}$ is infinite. Moreover, for any element $v^{s'}_{(a,k)}$ of $V_{(a,k),n}$, with s' and s'' as above, we have:

$$B^{s''} \upharpoonright v^{s'}_{(a,k)} = B^{s''} \upharpoonright (a,k)$$ and $$A^{s'}_{0} \upharpoonright v^{s'}_{(a,k)} = A^{s''}_{0} \upharpoonright v^{s'}_{(a,k)}.$$

Proof. For each $v^{s'}_{(a,k)}$ with $s \geq s_0$, Lemma 2.4 guarantees that there will be a stage at which Step (3) of the construction applies. The first such stage will be s', since at that stage $v^{s'}_{(a,k)} = v^{s'}_{(a,k)}$ will enter $V_{(a,k),n}$ and $t^{s'}_{(a,k)}$ will be defined. But since $\varphi_{s'}$ is total, we will eventually reach the stage $s'' > s'$ at which Step (4) applies, leaving $v^{s''+1}_{(a,k)}$ undefined. Then at the next $s_m > s''$, we will define $v^{s_{m}+1}_{(a,k)} = s_m + 1$, which is not yet in $V_{(a,k),n}$. Thus, $V_{(a,k),n}$ must be infinite.

Now pick $v^{s'}_{(a,k)} \in V_{(a,k),n}$, with s' and s'' as above. Since $V^{s_0}_{(a,k),n}$ is empty, we know that $s' > s_0$. If s is any stage with $s' \leq s < s''$, then we see from the definition of B^{s+1} that an element y can only enter B^{s+1} on behalf of some γ such that $y \in S^{s+1}_\gamma$. But then $y \in U^{s+1}_\gamma$. Since we chose s_0 to let $B^{s_0} \upharpoonright m = B \upharpoonright m$, we must have $\gamma \geq \alpha$. But $t^{s'}_{(a,k)} \downarrow$, so $y \geq v^{s'}_{(a,k)} = v^{s'}_{(a,k)}$ by definition of B^{s+1}.

Hence $B^{s''} \upharpoonright v^{s'}_{(a,k)} = B^{s''} \upharpoonright v^{s'}_{(a,k)}$.

Having seen that no $y < v^{s'}_{(a,k)}$ can enter B between stages s' and s'', we prove that no such y can enter A_0 at those stages either. First, we know that $A^{s'}_{\alpha} \upharpoonright k = A^{s'}_{\alpha} \upharpoonright k$ by choice of s_0. So suppose $k \leq y < v^{s'}_{(a,k)}$. Now since $v^{s'}_{(a,k)}$ entered $V_{(a,k),n}$ at stage s', we know by line (4) that

$$y \in A^{s'}_{0} \cup y \in A^{s'}_{1} \cup y \in (U^{s'}_{\alpha} - C^{s'}) \cup y \in (C^{s'} - B^{s''}) \cap S^{s'}_{\alpha} \cap U^{s'}_{\alpha}.$$

If $y \in A^{s'}_{0}$, then $A^{s'}_{0}(y) = A^{s''}_{0}(y)$, and if $y \in A_1$, then $y \notin A_0$ at all. Therefore, we will assume that $y \notin A^{s'}_{0} \cup A_1$ and prove that $y \notin A^{s''}_{0}$.
If the final clause holds, then \(y \in (C^{s'\prime} - B^{s'}) \cap S^{s'}_\alpha \cap U^{s'}_\alpha \). Hence \(y \not\in B^{s''} \), by the first half of the lemma. If \(y \in A^{s''}_0 \), then \(y \not\in B \), since no element that has entered \(A_0 \) can later enter \(B \). But then

\[
(A_0 \cap S_\alpha \cap T_\alpha) \cup A_1 \neq (B \cap S_\alpha \cap T_\alpha) \cup A_1
\]

since \(y \) is on the left side and not on the right side. (Notice that \(y \in U_\alpha \) implies \(y \in T_\alpha \).) This contradicts line (2), which we know holds because \(F(\alpha) \) holds. Therefore \(y \not\in A^{s''}_0 \).

So suppose the third clause holds, i.e., \(y \in (U^{s'\prime}_\alpha - C^{s'\prime}) \). Then \(y \not\in B^{s''} \) since \(B^{s'} \subseteq C^{s'} \), and so \(y \not\in B^{s''} \). If \(y \in A^{s''}_0 \), then we must have \(y \in C^{s''-1} \); since we chose enumerations such that \(A_0 \subseteq C \setminus A_0 \). Pick \(s \) such that \(y \in C^{s'} - C^{s'\prime} \); then \(s' < s < s'' \) and \(y \not\in A_0 \). Now \(y \in U^{s'\prime}_\alpha \subseteq T^{s'}_\alpha \), and by definition of \(S^{s'}_\alpha \) we will have \(y \in S^{s'}_\alpha \). (Recall that \(s_0 \) was chosen so large that \(S^{\beta}_{\beta} = S_\beta \) for all \(\beta < \alpha \).) But now \(y \not\in A^{s''}_0 \), since otherwise

\[
(A_0 \cap S_\alpha \cap T_\alpha) \cup A_1 \neq (B \cap S_\alpha \cap T_\alpha) \cup A_1
\]

just as in the preceding paragraph. \(\blacksquare \)

Hence \(V_{(\alpha,k),n} = W_{f_{(\alpha,k),n}} \) is an infinite c.e. set which satisfies the tardiness requirement \(T_\varepsilon \). This completes the proof of Theorem 2.1. \(\blacksquare \)
3 Satisfaction of R

We now prove that the R-property defined in Section 2 is nontrivial. The theorem establishes several other properties of the sets A_0 and A_1 as well, in order to yield the corollaries.

Theorem 3.1 There exists a c.e. set A with Friedberg splitting $A = A_0 \sqcup A_1$ such that all of the following hold:

1. A is promptly simple of high degree.
2. A_1 has prompt degree.
3. $R(A_0, A_1)$.

Corollary 3.2 The formula in one free variable A_0:

$$(\exists A_1)[A_0 > T \emptyset \& R(A_0, A_1)]$$

is definable in \mathcal{E} and non-vacuous, and implies that A_0 is a noncomputable incomplete set.

Proof of Corollary. The statement $A_0 > T \emptyset$ is equivalent to the statement that A_0 does not have a complement in \mathcal{E}, hence is \mathcal{E}-definable. The A_0 and A_1 constructed in Theorem 3.1 satisfy the matrix, since halves of a Friedberg splitting must be noncomputable. Finally, Theorem 2.1 shows that A_0 is tardy, hence incomplete.

Corollary 3.3 There exists a Friedberg splitting $A = A_0 \sqcup A_1$ such that A_0 and A_1 are not automorphic in the lattice of c.e. sets.

Proof of Corollary. Take the splitting given by Theorem 3.1. If an automorphism Φ of \mathcal{E} satisfied $\Phi(A_0) = A_1$, then $R(A_1, \Phi(A_1))$ would have to hold. By Theorem 2.1, then, A_1 would be tardy, contradicting the promptness of A_1.

Proof of Theorem. Let C be any promptly simple set, with computable enumeration $C = \{C^s\}_{s \in \omega}$. Then C is also of prompt degree, so let v and w be the prompt-simplicity and promptness functions for this enumeration of C, satisfying for every i:

$$W_i \text{ infinite } \implies (\exists^\infty s)(\exists x \in W_i,s - W_i,s-1)[x \in C^{v(x)}]$$

$$W_i \text{ infinite } \implies (\exists^\infty s)(\exists x \in W_i,s - W_i,s-1)[C^{w(x)} [x \neq C^s | x]]$$
We construct disjoint sets A_0 and A_1 and auxiliary sets D_i and $T_{i,j}$, and set $A = A_0 \cup A_1$. The approximations to A, A_0, and A_1 at stage s will be written A^s, A^s_0, and A^s_1, and will be defined so that $A^s = A^s_0 \cup A^s_1 \subseteq C^s$ for all s. The construction will satisfy the following requirements for all i and j:

$$\mathcal{N}_{(i,j)} \quad (\text{matrix of R-property}) :$$

$$[W_i \subseteq C \& W_j \subseteq C \& C - W_j \text{ c.e. } \&$$

$$(W_i \cap (W_j - A_0)) \cup A_1 = (D_i \cap (W_j - A_0)) \cup A_1] \implies (\exists T) \overline{T} \subseteq T \& (A_0 \cap W_j \cap T) \cup A_1 =^* (W_i \cap W_j \cap T) \cup A_1]$$

$$\mathcal{M}_i \quad (\text{major subset requirement}) :$$

$$\overline{T} \subseteq W_i \implies \mathcal{A} \subseteq^* W_i$$

$$\mathcal{P}_i \quad (\text{prompt simplicity of } A_i) :$$

$$W_i \text{ infinite } \implies (\exists s) (\exists x \in W_{i,s} - W_{i,s-1}) [x \in A^s_i]$$

$$\mathcal{Q}_i \quad (\text{promptness of } A_i) :$$

$$W_i \text{ infinite } \implies (\exists s) (\exists x \in W_{i,s} - W_{i,s-1}) [A^s_i \neq A^s_1 \mid x]$$

$$\mathcal{F}_i \quad (\text{Friedberg requirement for } A_0) :$$

$$W_i \setminus A \text{ infinite } \implies W_i \cap A_0 \neq \emptyset$$

$$\mathcal{G}_i \quad (\text{Friedberg requirement for } A_1) :$$

$$W_i \setminus A \text{ infinite } \implies W_i \cap A_1 \neq \emptyset$$

In the requirement $\mathcal{N}_{(i,j)}$, of course, W_i plays the role of B and W_j the role of S in the matrix of the R-property. We will construct c.e. sets $T_{i,j}$ for each i and j, and then refine them to form the T demanded by each $\mathcal{N}_{(i,j)}$. Once again we order $\omega \times \omega$ in order type ω and write $\alpha = \langle i, j \rangle$, this time with:

$$B_\alpha = W_i$$

$$D_\alpha = D_i$$

$$S_\alpha = W_j$$

$$\hat{S}_\alpha = W_j^n$$

$$T_\alpha = T_{i,j}$$

$$\mathcal{N}_\alpha = \mathcal{N}_{(i,j)}$$

Thus \mathcal{N}_α says:

$$[B_\alpha \subseteq C \& S_\alpha \cup \hat{S}_\alpha = C \&$$

$$(B_\alpha \cap (S_\alpha - A_0)) \cup A_1 = (D_\alpha \cap (S_\alpha - A_0)) \cup A_1] \implies (\exists T) \overline{T} \subseteq T \& (A_0 \cap S_\alpha \cap T) \cup A_1 =^* (B_\alpha \cap S_\alpha \cap T) \cup A_1].$$

\mathcal{N}_α is a negative requirement, trying to keep elements from entering A_0 until they can do so without harming the R-property (if ever). All the other requirements are positive ones, trying to put elements into A_0 or A_1. There
are no negative restraints on elements of C entering A_1, except that they cannot already be in A_0.

Each element which we try to put into A_0 to satisfy some F_e or M_e must receive permission to enter A_0 from each N_e with $\alpha \leq e$. The
/restraint function $g(x,s)$ will give the greatest $\alpha \leq e$ which has not yet given this permission as of stage s. The
/priority function $p(x,s)$ keeps track of which requirement F_e or M_e, wanted x to enter A_0. This can change from stage
/to stage, for several reasons. If a higher-priority requirement decides at stage $s+1$ that it needs x to enter A_0, then $p(x,s+1) < p(x,s)$. Alternatively, an
F_e could find itself satisfied by another $x' \in A_0^{s+1}$ and no longer need to put
x into A_0, although in this case we leave $p(x,s+1) = p(x,s)$ so as not to
disrupt the flow of elements into A_0. Finally, a higher-priority requirement could make x enter A_0^{s+1}, in which case we define $p(x,s+1) \uparrow$, removing x from the flow of elements into A_0 since we need $A_0 \cap A_1 = \emptyset$.

We use the Recursion Theorem on our construction of A_0, C, and D_0 to
define the following Π^0_0 statement $F(\alpha)$ for each α:

$$(B_0 \cap (S_0 - A_0)) \cup A_1 = (D_0 \cap (S_0 - A_0)) \cup A_1 \cup B_0 \subseteq C \& S_0 \cup \hat{S}_0 = C.$$

Since $F(\alpha)$ is Π^0_0, there is a computable function $g : \omega \to \omega \times \omega$ such that $F(\alpha)$ holds if and only if the set $Z_0 = g^{-1}(\alpha)$ is infinite. We let
$Z_0^c = g^{-1}(\alpha) \cap \{0, 1, \ldots, s - 1\}$. Monitoring $|Z_0^c|$ will help us determine
for which α the hypothesis in the matrix of the R-property is satisfied.
For those α for which the hypothesis fails, $|Z_0^c|$ is finite, and N_0 will only
restrain finitely many elements from entering A_0, since we need not satisfy the
conclusion of the R-property for such an α.

At stage $s = 0$, we set $A_0^0 = A_0^0 = \emptyset$. Also, let all $p(x,0)$ and $q(x,0)$
diverge.

At stage $s + 1$, we first define T_0^{s+1} for each α:

$$T_0^{s+1} = T_0^s \cup \{x \in C_0^{s+1} : x < |Z_0^{s+1}|\}.$$

Next we determine which elements of C^{s+1} to add to A_0^s to create A_0^{s+1}. For
this, we need movable markers for elements currently in $C - A$. Write

$$C^{s+1} - A^s = \{d_0^{s+1}, d_1^{s+1}, \ldots, d_{m+1}^{s+1} \}$$

preserving the order of the markers from the preceding stage. (That is, if
$d_i = d_i^{s+1}$ and $d_j = d_j^{s+1}$, then $i < j$ iff $i' < j'$; and if $d_i^{s+1} \in C^s$ and
$d_j^{s+1} \notin C^s$, then $i < j$.)
For the sake of \mathcal{M}_c, we define

$$V_{c}^{s+1} = V_{c}^{s} \cup \{x \in W_{c,s+1} - C^{s+1} : (\forall y \leq x)(y \in W_{c,s+1} \cup C^{s+1})\}.$$

(For each c, the sets V_{c}^{s} enumerate a c.e. set V_{c}. If $C \not\subseteq W_{c}$, then V_{c} will be finite, but if $C \subseteq W_{c}$, then $V_{c} \subseteq V_{c} \subseteq W_{c}$.)

For each $c \leq s$, define the c-state of each d_{k}^{s+1} at stage $s + 1$ to be:

$$\sigma(c, d_{k}^{s+1}, s + 1) = \{i < c : d_{k}^{s+1} \in V_{i}^{s+1}\}.$$

We order the different possible c-states by viewing them as binary strings.

Find the least $i \leq s$ such that there exist c and j with $c < i < j \leq s$ and $\sigma(c, d_{i}^{s+1}, s + 1) = \sigma(c, d_{j}^{s+1}, s + 1)$, and $d_{i}^{s+1} \not\in V_{c}^{s+1}$ and $d_{j}^{s+1} \in V_{c}^{s+1}$. For the least such c and the least corresponding j, we say that $\mathcal{M}_c \text{ wants to put into } A_0$ all the elements $d_{i}^{s+1}, d_{i+1}^{s+1}, \ldots d_{j-1}^{s+1}$, so as to give the marker d_{j} a higher $(c + 1)$-state at subsequent stages.

Now we consider the requirements \mathcal{F}_c. For each $c \leq s$ with $W_{c,s} \cap A_0^{s} = \emptyset$ and for each x such that

$$x \in (W_{c,s} \cap C^{s+1}) - A_0^{s} - \{d_{0}^{s+1}, d_{1}^{s+1}, \ldots d_{i}^{s+1}\},$$

we say that $\mathcal{F}_c \text{ wants to put } x \text{ into } A_0$.

We set $p(x, s + 1) \uparrow$ for all $x \not\in C - A_0^{s}$. Otherwise $x = d_{k}^{s+1}$ for some k, and $p(x, s + 1)$ is the least $\leq k$ (if any) such that either $p(x, s) \downarrow = c$ or \mathcal{M}_c or $\mathcal{F}_c \text{ wants to put } x \text{ into } A_0$. Thus, the function $p(x, s + 1)$ gives the priority currently assigned to putting x into A_0. If there is no such c, let $p(x, s + 1) \uparrow$.

We now follow the following steps for each $x \leq s$:

1. If $p(x, s + 1) \uparrow$, then $q(x, s + 1) \uparrow$ also.

2. If $p(x, s + 1) \downarrow$ but $q(x, s) \uparrow$, we ask if every $\alpha \leq p(x, s + 1)$ satisfies either $x \in S_{\alpha}^{s+1} \cup \hat{S}_{\alpha}^{s+1}$ or $x \not\in T_{\alpha}^{s+1}$. If so, set $q(x, s + 1) = p(x, s + 1) + 1$. If not, then $q(x, s + 1) \uparrow$.

3. If $p(x, s + 1) \downarrow$ and $q(x, s) \downarrow = p(x, s + 1)$, then set $q(x, s + 1)$ to be the greatest $\alpha \leq p(x, s + 1)$ satisfying all four of the following conditions:

 (a) $S_{\alpha}^{s+1} \cap \hat{S}_{\alpha}^{s+1} = \emptyset$.

 (b) $x \not\in \hat{S}_{\alpha}^{s+1}$.

 (c) $x \in T_{\alpha}^{s+1}$.

17
(d) \(\forall \beta < \alpha \), either \(\beta \) fails one of the three conditions (a)-(c), or
\(\beta = (i', j') \) and \(\alpha = (i, j) \) with \(i \neq i' \).

Also, enumerate \(x \) in \(D^{s+1}_{q(x, s + 1)} \). (For future reference, notice that if \(\alpha \) satisfies (a)-(c), then some \(\beta \leq \alpha \) with the same first coordinate as \(\alpha \) must satisfy (a)-(d).)

If there is no such \(\alpha \), set \(q(x, s + 1) = -1 \).

4. If \(p(x, s + 1) \downarrow \) and \(q(x, s) \downarrow \) with \(0 \leq q(x, s) \leq p(x, s + 1) \), we ask whether \(x \in B^{s+1}_q(x, s) \). If so, or if \(q(x, s) \) no longer satisfies the conditions (a)-(d), set \(q(x, s + 1) \) to be the greatest \(\alpha < q(x, s) \) satisfying the conditions (a)-(d) above, and let \(x \in D^{s+1}_q(x, s + 1) \). (If there is no such \(\alpha \), let \(q(x, s + 1) = -1 \).) Otherwise, let \(q(x, s + 1) = q(x, s) \).

5. If \(p(x, s + 1) \downarrow \) and \(q(x, s) \downarrow = -1 \), enumerate \(x \in A^{s+1}_0 \), and let \(q(x, s + 1) \uparrow \).

This completes our enumeration of \(A^{s+1}_0 \). Next we determine which elements to add to \(A^{s+1}_1 \):

1. Find the least \(\epsilon \leq s \) (if any) such that \(Q_\epsilon \) is not yet satisfied and there is an element \(x \in W_{\epsilon, t} - W_{\epsilon, t-1} \) for some \(t \leq s \) such that \(w(t) > s \), and there exists \(y < x \) such that \(y \in C^{s+1} - A^{s+1}_0 \) and \(y \not\in A^{s+1}_1 \cup \{a_0^{s+1}, \ldots, a_\epsilon^{s+1}\} \) and no \(F_i \) with \(i < \epsilon \) wants to put \(y \) into \(A_0 \). Put the greatest such \(y \) into \(A^{s+1}_1 \). This forces \(A^{s+1}_1 \mid x \neq A^{s+1}_1 \mid x \), satisfying \(Q_\epsilon \) permanently. (If there is no such \(\epsilon \), do nothing.)

2. Find the least \(\epsilon \leq s \) (if any) such that \(P_\epsilon \) is not yet satisfied and there is an element \(x \in C^{s+1} \cap (W_{\epsilon, t} - W_{\epsilon, t-1}) \) for some \(t \leq s \) with \(v(t) > s \), such that \(x \not\in \{d_0^{s+1}, \ldots, d_\epsilon^{s+1}\} \) and no \(F_i \) with \(i < \epsilon \) wants to put \(x \) into \(A_0 \). If no such \(x \) lies in \(A^s \cup A^{s+1}_0 \), then put the least such \(x \) into \(A^{s+1}_1 \). This forces \(x \in A^{s+1}_1 \), satisfying \(P_\epsilon \) permanently.

3. Find the least \(\epsilon \leq s \) (if any) such that \(G_\epsilon \) is not yet satisfied and there is an element \(x \in (W_{\epsilon, t+1} \cap C^{s+1}) - A^{s+1}_0 \) with \(x \not\in \{d_0^{s+1}, \ldots, d_\epsilon^{s+1}\} \), such that no \(F_i \) with \(i < \epsilon \) wants to put \(x \) into \(A_0 \). Put this \(x \) into \(A^{s+1}_1 \). This satisfies \(G_\epsilon \) forever.

Let \(A^{s+1} = A^{s+1}_0 \cup A^{s+1}_1 \). This completes the construction.

\textbf{Lemma 3.4} \(C - A \) \textit{is infinite}.
Proof. We prove by induction on ϵ that $d_\epsilon = \lim_s d_\epsilon^s$ exists. Assume that this holds for all markers d_i with $i < \epsilon$, and let $s_0 \geq \epsilon$ be a stage such that $d_i^{s_0} = d_i$ for all $i < \epsilon$. Now each F_j, G_j, P_j, and Q_j with $j > \epsilon$ cannot put any of the elements $d_i^{s_0}, \ldots d_s^s$ into A_1 at stage $s + 1$, so none of these requirements ever moves the marker d_ϵ^s. Also, each G_i, P_i, and Q_i with $i \leq \epsilon$ puts at most one element into A_0, hence moves the markers at most once. Let $s_1 \geq s_0$ be a stage so large that no G_i, P_i, or Q_i with $i \leq \epsilon$ moves any markers at any stage $s \geq s_1$.

By the construction, d_ϵ^s can only be moved at stage $s \geq s_1$ by a requirement M_i or F_i with $i \leq \epsilon$. Furthermore, when F_i ($i \leq \epsilon$) moves a marker, it puts an element into A_0, so it is satisfied at that point. Before then it may have tried to put finitely many other elements into A_0 as well, and any of them may go into A_0 or A_1 at a later stage, moving markers in the process. However, since there are only finitely many such elements, d_ϵ is moved only finitely many times on behalf of F_i.

Now M_0 moves d_ϵ at most 2^{s+1} times after stage s_1: once to put d_0 into V_0, possibly twice to put d_1 into V_0, and so on. Once M_0 has finished moving d_ϵ, M_1 moves it at most 2^s more times, to put markers into V_1. Similarly, once each M_i has moved d_ϵ for the last time, M_i+1 may move it at most 2^{s-i} more times. Hence we eventually reach a stage s_2 after which d_ϵ never moves again. Possibly $d_\epsilon^s \uparrow$, but since C is infinite and every d_i with $i < \epsilon$ has already converged to its limit, we know that d_ϵ^s will be defined at some stage $t > s_2$. Since it never moves again, this yields $d_\epsilon = \lim_s d_\epsilon^s$. ■

Lemma 3.5 For each ϵ, the requirements N_ϵ, P_ϵ, Q_ϵ, F_ϵ, and G_ϵ are all satisfied.

Proof. We proceed by induction on ϵ. Assume the lemma holds for all $i < \epsilon$. We write α for the pair coded by ϵ, and prove first that N_α is satisfied. Suppose $(B_\alpha \cap (S_\alpha - A_0)) \cup A_1 = (D_\alpha \cap (S_\alpha - A_0)) \cup A_1$ and $B_\alpha \subseteq C$ and $S_\alpha \subseteq \hat{S}_\alpha = C$. Then $F(\alpha)$ holds and Z_α is infinite. The construction of T_α then guarantees that $C \subseteq T_\alpha$. Let G_α be the intersection of all those V_α with $i < \alpha$ such that V_α is infinite, and let $\tilde{T}_\alpha = T_\alpha \cap G_\alpha$. Thus $C \subseteq \tilde{T}_\alpha$, since $C \subseteq V_\alpha$ whenever V_α is infinite.

Sublemma 3.6 For each α and each $n < \alpha$, there are only finitely many $x \in \tilde{T}_\alpha$ such that M_n ever wants to put x into A_0.

Proof. First, if V_n is finite, then M_n will only want to put finitely many elements into A_0. So we may assume that V_n is infinite, and hence that $\tilde{T}_\alpha \subseteq V_n$. \[19\]
If \mathcal{M}_n wants to put x into A_0 at stage s, then $x \in C^s - A^s$, so $x = d_k^s$ for some k. Moreover, there must be an i with $n < i \leq k$ and a $j > k$ such that $\sigma(n, d^s_i, s) = \sigma(n, d^s_j, s)$ and $d^s_k \not\in V^s_n$ and $d^s_j \in V^s_n$. Furthermore, d_i is the leftmost marker which any \mathcal{M}-requirement wants to put into A_0 at stage s, and n and j satisfy the minimality requirements of the construction.

Now if $d^s_k \not\in V^s_n$, then $d^s_k \not\in V_m$ since $C \setminus V_n = \emptyset$, and hence $d^s_k \not\in \hat{T}_a$. Therefore we may assume $d^s_k \in V^a_m$. (This guarantees $k \neq i$). Then minimality of n forces $\sigma(n, d^s_i, s) \geq \sigma(n, d^s_k, s)$, and minimality of j forces $\sigma(n, d^s_i, s) > \sigma(n, d^s_j, s)$ (since $d^s_k \not\in V^a_m$). Hence there is some $m < n$ such that $\sigma(m, d^s_i, s) = \sigma(m, d^s_k, s)$ and $d^s_i \in V^a_m$ and $d^s_k \not\in V^a_m$. This forces $d^s_i \in V_m$ and $d^s_k \not\in V_m$ (since $d^s_k \not\in C^s - V^a_m$). If V_m is infinite, then $d^s_k \not\in \hat{T}_a$. But if V_m is finite, then d^s_k lies in the finite set

$$V = \bigcup \{V_m : m < n \land V_m \text{ finite}\}.$$

Hence we need only find a stage t so large that for every $d \in V$, either $d \in A^l_0$ or \mathcal{M}_n wants to put d into A_0 at stage t or \mathcal{M}_n never wants to put d into A_0. Then \mathcal{M}_n will never want to put into A_0 any $x > \max(C^l)$ with $x \in \hat{T}_a$.

\[\square\]

We will show that the conclusion of \mathcal{N}_α holds for \hat{T}_a:

$$(A_0 \cap S_0 \cap \hat{T}_a) \cup A^1 = (B_0 \cap S_0 \cap \hat{T}_a) \cup A^1.$$

Once we have established this for all α, clearly $R(A_0, A^1)$ itself must hold, since for each α we can choose another \hat{T}_a which excludes the (finite) difference set of the two sides and still contains C.

Suppose first that $x \in A_0 \cap S_0 \cap \hat{T}_a$ and $x \not\in A^1$, and assume that x is sufficiently large that:

- $x > |Z_\beta|$ for every $\beta < \alpha$ such that Z_β is finite, and
- No \mathcal{F}_i with $i < \alpha$ ever tries to put x into A_0, and
- No \mathcal{M}_i with $i < \alpha$ ever tries to put x into A_0.

The last condition is possible by Sublemma 3.6. Notice also that the first condition forces $x \not\in T_\beta$ for all $\beta < \alpha$ with $|Z_\beta|$ finite.

Then for all s, either $p(x, s) \geq \alpha$ or $p(x, s) \uparrow$. But since $x \in A_0$, we know that some $p(x, s) \downarrow$. For the least such s we have $x \in C^s$, and hence $x \in T^s_\alpha$, since $C \cap T^s_\alpha \subseteq T_\alpha \setminus C$.

\[20\]
Now α satisfies conditions (a)-(c) in the construction at stage s, since $F(\alpha)$ holds and $x \in S_\alpha$. So there must exist $\beta = \langle i, j' \rangle \leq \alpha = \langle i, j \rangle$ which satisfies (a)-(d) at stage s.

We claim that this β satisfies conditions (a)-(d) at every stage after s as well. Since $x \in T^s_\beta$, we know that Z_β is infinite and $F(\beta)$ holds, by choice of x. Hence (a) and (c) hold at all subsequent stages. Let t be the first stage at which $q(x, t)$ converged. Then $x \in C^t$, and $x \in T^t_\beta$ since $C \setminus T^t_\beta = \emptyset$. By the definition of q, we must have had $x \in S_\beta^t \cup \hat{S}_\beta^t$. But $x \notin \hat{S}_\beta^t$ since (b) holds at stage s, and because $s > t$, this forces $x \in S_\beta^t$, so (b) always holds of β.

To show that (d) always holds of β, we choose an arbitrary $\gamma < \beta$ with the same first coordinate as β. Since β satisfies (d) at stage s, γ must fail one of (a)-(c) at stage s. If γ fails (a) or (b) at stage s, then clearly it fails that same condition at every subsequent stage. Moreover, if γ fails (c) at stage s, then $x \notin T^s_\gamma$, and since $x \in C^s$, this forces $x \notin T_\gamma$. Thus β will always satisfy condition (d).

But since $x \in A_\alpha$, there must also be a stage s' with $q(x, s') = -1$. Since (a)-(d) continue to hold of β, the only way for $q(x, s') < \beta$ to occur is for x to enter B_β. (Recall that for all s, either $p(x, s) \geq \alpha$ or $p(x, s) = \alpha$.) But $B_\beta = W_1 = A_\alpha$ since $\beta = \langle i, j' \rangle$ and $\alpha = \langle i, j \rangle$, so this forces $x \in B_\alpha$. Hence

$$(A_0 \cap S_\alpha \cap \hat{T}_\alpha) \cup A_1 \subseteq (B_\alpha \cap S_\alpha \cap \hat{T}_\alpha) \cup A_1.$$

Now suppose that $x \in B_\alpha \cap S_\alpha \cap \hat{T}_\alpha$ and $x \notin A_1$, and assume x is greater than $\max(d_0, \ldots, d_n)$, and also greater than the greatest finite $|Z_\beta|$ with $\beta < \alpha$. (Thus $x \notin T^s_\beta$ for all such β.) Now $x \in C$ since $S_\alpha \subseteq C$, so at some stage s_0, x will enter C and be given a marker: say $x = d^\alpha_{s_0}$. So $x \in C^s_{s_0}$, and since $x \in C^s_{\alpha}$, this forces $x \in T^s_{s_0}$.

If $x \notin A_0$, then we must have $x \notin D_\alpha$, since $(B_\alpha \cap (S_\alpha \setminus A_0)) \cup A_1 = (D_\alpha \cap (S_\alpha \setminus A_0)) \cup A_1$ and $x \notin A_1$. (Notice that then x, being in C^s_{α}, eventually receives some permanent marker $d^\alpha_{s' \geq k}$, with $k' > \alpha$ by choice of x.) For x to have entered D_α, there must have been a stage $s_1 \geq s_0$ with $q(x, s_1) = \gamma = \langle i, j' \rangle$, where $\alpha = \langle i, j \rangle$. (Also, then $p(x, s_1) \uparrow$, and since $x \notin A_1$, $p(x, s) \downarrow$ for all $s \geq s_1$.) But α satisfies conditions (a)-(c) at all stages $s \geq s_0$, so by condition (d) on γ, we must have $\gamma \leq \alpha$. The assumption $x \notin A_0 \cup A_1$ then means that there is some $s_2 > s_1$ such that $q(x, s_2) \downarrow = q(x, s_2)$ for all $s \geq s_2$. Let $\beta = q(x, s_2) \leq \gamma$. Then $x \in D_{s_2} - B_{\beta}$, and furthermore β satisfies the conditions (a)-(d) at all stages $s \geq s_2$.

Now $x \in T^s_{s_2}$, to satisfy condition (c), so $x < |Z_\beta|$ and $\beta \leq \gamma \leq \alpha$. If $\beta = \alpha$, then Z_{s_2} is infinite since $F(\alpha)$ holds, and if $\beta < \alpha$, then Z_{s_2} must
be infinite, by our choice of x. Therefore $F(\beta)$ holds, and in particular $S_\beta \cup \hat{S}_\beta = C$. Now $x \notin \hat{S}_\beta$ by condition (b), so $x \in S_\beta$. However, with $x \in D_\beta - B_\beta$, this contradicts $F(\beta)$. Hence $x \in A_0$, and

$$(A_0 \cap S_a \cap \hat{T}_a) \cup A_1 \subseteq^* (B_a \cap S_a \cap \hat{T}_a) \cup A_1.$$

This completes our proof that \mathcal{N}_α is satisfied.

Now we continue with the other requirements. Let s_0 be a stage such that no \mathcal{P}_i, \mathcal{Q}_i, \mathcal{F}_i, or \mathcal{G}_i with $i < \epsilon$ tries to put any element into A_0 or A_1 at any stage after s_0. (\mathcal{F}_i is different from the other requirements in that it may try to put more than one element into A_0. It only stops trying when one of those elements succeeds in entering A_0. We choose s_0 so that every element which \mathcal{F}_i wants to put into A_0 either is in A^{s_0} or never enters A.) Assume also that s_0 is sufficiently large that $d^{s_0}_i = d_i$ for every $i < \epsilon$.

Now if $W_\epsilon \setminus A$ is infinite, then there must be an x in some $W_{\epsilon,s} - A^s$ with $s > s_0$ and \{d_0, ..., d_\epsilon\}. No requirement of higher priority will need to put this x anywhere, except possibly some \mathcal{M}_i, and according to our construction, \mathcal{G}_ϵ does not respect the priority of the requirements \mathcal{M}_i, so $x \in A^{s_0+1}_1$, and \mathcal{G}_ϵ is satisfied.

Similarly, if W_ϵ is infinite, then there must be an x and an $s > s_0$ such that $x \in W_{\epsilon,s} - W_{\epsilon,s-1} \cap x \in C^{w(s)}$, by prompt simplicity of C. If this x is not already in $A^{w(s)-1}_1$, then the construction puts it into $A^{w(s)}_1$, so \mathcal{P}_ϵ holds. Also, there must be an x and an $s > s_0$ with $x \in W_{\epsilon,s} - W_{\epsilon,s-1}$ such that $C^s(x) \neq C^{w(s)}\setminus x$, by promptness of C. Thus there is a $y < x$ which entered C at some stage t with $s < t \leq w(s)$. We must have $y \notin A^{t-1}$ since $A^{t-1} \subseteq C^{t-1}$. But now $y \notin \{d_0, ..., d_\epsilon\}$, since these markers had reached their limits by stage s_0 and y only entered C at stage t. Hence the construction will put this y into A^t_1, and $A^{w(s)}_1 \setminus x \neq A^t_1 \setminus y$, satisfying \mathcal{Q}_ϵ.

Continuing with the induction, we need a sublemma to handle \mathcal{F}_ϵ.

Sublemma 3.7 For this ϵ and for all sufficiently large x, if \mathcal{F}_ϵ wants to put x into A_0 at some stage, then $x \in A_0$.

Proof. Choose x so large that it satisfies all of the following:

1. $x > \max\{|Z_\beta| : \beta \leq \epsilon \land Z_\beta \text{ is finite}\}$.
2. No $\mathcal{F}_i, \mathcal{G}_i, \mathcal{P}_i, \text{ or } \mathcal{Q}_i$ with $i < \epsilon$ ever wants to put x into A_0 or A_1.
3. $x \notin \{d_0, ..., d_\epsilon\}$.

22
Suppose F_e wants x to enter A_0 at stage s_0. Then $x = d^{s_0}_k$ for some k and $p(x, s_0) \leq \epsilon$. Now no G_j, P_j, or Q_j with $j \geq 1$ ever manages to put x into A_1, since F_e takes priority over these. (Since $x \neq d_e$, the only way to have $k \leq 1$ is for x eventually to enter A_0. Hence we may assume $k > 1$.) Also, for every $\beta < \epsilon$, either $x \notin T_\beta$ (if $|Z_\beta| < x$) or $F(\beta)$ holds (if Z_β is infinite). Hence there is an $s_1 \geq s_0$ such that $q(x, s_1) \downarrow$ and $q(x, s_1 + 1) \downarrow \leq \epsilon$.

Now suppose $q(x, s) = \beta$ for some $s \geq s_1$ (so $\beta \leq \epsilon$). If $F(\beta)$ failed, then Z_β would have to be finite, so $x \notin T_\beta$ (since $|Z_\beta| < x$) and $q(x, s)$ would never equal β. Therefore, $F(\beta)$ must hold. Suppose $x \notin A_0$. If $x \notin S_\beta$, then $x \in \bar{S}_\beta$ by $F(\beta)$ and so $q(x, s_\beta) < \beta$ for some $s_\beta \geq s_1$. Otherwise $x \in D_\beta \cap (S_\beta - A_0) \subseteq B_\beta$ by $F(\beta)$, so $x \in B^{s_\beta}$ for some $s_\beta \geq s_1$, and hence $q(x, s_\beta) < \beta$. Thus, by induction on $\beta < \epsilon$, eventually we must have $q(x, s) = -1$, and so $x \in A_0^{s+1}$, proving the sublemma.

Now if $W_e \setminus A$ is infinite, then F_e has infinitely many elements at its disposal to try to put into A_0. Hence once we find a sufficiently large $x \in W_e \setminus A$, we know by the sublemma that this x will eventually enter A_0, thus satisfying F_e. This completes the induction of Lemma 3.5.

Lemma 3.8 The requirements M_e are all satisfied by our construction.

Proof. Suppose that $C \subseteq W_e$. To prove that M_e holds, we must show $C \subseteq W_e$. By induction we assume that M_i holds for all $i < e$. Let

$$\sigma = \{i < e : C \subseteq W_i\}.$$

Now if $i \in \sigma$, then also $C \subseteq V_i$, so by inductive hypothesis $C \subseteq V_i$, whereas if $i \notin \sigma$ (and $i < e$), then V_i is finite. Hence for all but finitely many k we have $\sigma(e, d_k) = \sigma$.

Now let $V_\epsilon = V_{\eta} \cap (\bigcap \{V_i : i \in \sigma\})$. Then $C \subseteq V_\epsilon$. But C, being promptly simple, is noncomputable, so $V_\epsilon \setminus C$ must be infinite. Choose y so large that no element $\geq y$ can be held out of A_0 forever by any requirement N_α with $\alpha < e$, and let s_0 be a stage such that $C^{s_0}[y] = C[y]$.

Suppose for a contradiction that $V_\epsilon \cap (C - A)$ is infinite. Then there exists p such that $d^e_p \notin V_e$ with p so large that $d^e_p \notin C^{s_0}$ and with $\sigma(e, d^e_p) = \sigma$. (Hence $d^e_p > y$.) Let s_1 be a stage with $d^e_\beta = d^e_p$ and $\sigma(e, d^e_p, s_1) = \sigma$. Now since $V_\epsilon \setminus C$ is infinite, there will be a stage $s > s_1$ at which some element $x \in V^{s-1}_\epsilon$ enters C, and is assigned the marker d^e_q (with $q > p$ since $d^{s_0}_p = d^e_p$). Moreover, we may assume that q is sufficiently large that not only is d^e_q in V_ϵ, but that $\sigma(e, d^e_q, s) = \sigma$, since every V_i with $i < e$ and $i \notin \sigma$ is finite. Since $d^e_q \in V_\epsilon \subseteq V_e$ and $d^e_p \notin V_e$, M_e will want to put d^e_p into A_0.
at stage s, and since $d_p > y$, no negative requirement will keep d_p out of A_0. Possibly d_p will be diverted into A_1 by some requirement G_j, P_j, or Q_j, since these do not respect the priority of M_ϵ. If so, then d_p will enter A_1; if not, then d_p will enter A_0. Either way, d_p enters A, contradicting our assumption that the marker d_p had reached its limit at stage s_0.

Hence $V_\epsilon \cap (C - A)$ is finite, and $\overline{A} \subseteq (C - A) \cup \overline{C} \subseteq * V_\epsilon \subseteq W_\epsilon$. Thus M_ϵ is satisfied, and the lemma is proven.

Knowing that the requirements are all satisfied, we can easily complete the proof of the theorem. The construction ensured that $A_0 \cup A_1 = \emptyset$, and

the conjunction of all the F_i and G_i implies that $A_0 \cup A_1$ is a Friedberg splitting of A. (See pp. 181-182 of [16].) The requirements P_i together make A a promptly simple set, by definition, and the Q_i together allow A_1 to satisfy the Promptly Simple Degree Theorem (Thm. XIII.1.6 of [16]), so that A_1 is of prompt degree. To prove that $R(A_0, A_1)$ holds, we note that the requirements M_ϵ, along with Lemma 3.4, show that $A = A_0 \cup A_1$ is a major subset of C. Moreover, given a $B = W_i$ and a pair $(S_{j'}, \bar{S}_{j''})$ with $S_{j'} \cup \bar{S}_{j''} = C$, we have the D_i and T_α (with $\alpha = \langle i, \langle j', j'' \rangle \rangle$) constructed above. If

$$(B_i \cap (S_{j'} - A_0)) \cup A_1 = (D_i \cap (S_{j'} - A_0)) \cup A_1,$$

then $F(\alpha)$ holds. Since N_α is satisfied, we know that there exists a T with $\overline{C} \subseteq T$ such that

$$(A_0 \cap S_{j'} \cap T) \cup A_1 = * (B_i \cap S_{j'} \cap T) \cup A_1.$$

So we can pick a sufficiently large n_α, and let

$$T' = \{x \in T : x \geq n_\alpha\} \cup \{x \in \overline{C} : x < n_\alpha\}.$$

Then $\overline{C} \subseteq T'$ and also $(A_0 \cap S_{j'} \cap T') \cup A_1 = (B_i \cap S_{j'} \cap T') \cup A_1$, since $S_{j'} \cap \overline{C} = \emptyset$. Thus $R(A_0, A_1)$ holds. Finally, since A is a major subset of the set C, A must be of high degree (see [10], page 214).

24
References

[13] A.A. Muchnik; On the Unsolvability of the Problem of Reducibility in
pp. 194-197 (Russian).

[14] J. Myhill; The Lattice of Recursively Enumerable Sets, *Journal of Sym-
...obic Logic* 21 (1956), 215, 220.

[15] H. Rogers, Jr.; *Theory of Recursive Functions and Effective Com-

[16] R. I. Soare; *Recursively Enumerable Sets and Degrees* (New York:
Springer-Verlag, 1987).

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF CHICAGO
CHICAGO, ILLINOIS 60637

CURRENT ADDRESS:
DEPARTMENT OF MATHEMATICS
CORNELL UNIVERSITY
ITHACA, NEW YORK 14853
E-mail: russell@math.cornell.edu