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Chapter 1

Introduction

1.1 Background

Hat problems trace their roots at least as far back as Martin Gardner’s 1961
article (republished as [Gar61]), and in the infinite case to Fred Galvin’s
work in the mid 1960s [Gal65]. But the surge of interest in the last decade
was initiated by the following problem presented by Todd Ebert in his 1998
PhD thesis [Ebe98]. Three prisoners are told that they will be brought to
a room and seated so that each can see the other two. Hats will placed
on their heads and each hat is either red or green. The prisoners must
simultaneously submit a guess of their own hat color or “pass.” They all go
free if at least one guesses correctly and no one guesses incorrectly. While
no communication is allowed once the hats are placed, they will, however,
be allowed to have a strategy session before being brought to the room.

One strategy is to fix one of the prisoners and have him guess randomly
while the other two prisoners pass. With this strategy, they all go free for
exactly four of the eight possible ways that hat colors can be assigned. But
is there a better strategy?

Surprisingly, the answer is yes. Suppose that each prisoner assumes the
hats are not all the same color, and passes unless he definitely knows his
hat color under this assumption (which will happen precisely when he sees
two hats of the same color). Then for the two hat assignments in which
all have the same color hat, all three guess wrong. But for the other six
hat assignments, exactly one guesses correctly and the other two pass, thus
securing freedom for all three.

While Ebert’s hat problem is of considerable interest, the following
variant—which does not allow passing—is really the inspiration for most of
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CHAPTER 1. INTRODUCTION 2

what do here, and it, interestingly, predates Ebert’s version (see [ABFR94]).
There are only two prisoners this time but they will again be brought to a
room, seated so that each can see the other, and a red or green hat placed
on their heads. The prisoners must simultaneously submit a guess of their
own hat color, and both go free if at least one guesses correctly. Again, no
communication is allowed once the hats are placed but they do get to have
a strategy session before being brought to the room. Is there a strategy
ensuring their release?

This puzzle is instructive in (at least) two different ways. First, the
solution—which is essentially unique—can come either by an inexplicable
flash of insight or by an exhaustive (but hardly exhausting) examination of
the sixteen pairs of individual strategies arising from the observation that
each prisoner can do only one of four things: he can always say red, he
can always say green, he can guess the color he sees, or he can guess the
color he doesn’t see. Second, the solution, once found, can be phrased in
two different ways, one of which requires a moment’s thought to see why it
works and one of which doesn’t. The former is: “One prisoner guesses the
hat color he sees and the other guess the hat color he doesn’t see,” and the
latter is: “One prisoner assumes the hats are the same color while the other
prisoner assumes they are not.”

But what if there are more than two prisoners and more than two hat
colors? And what if each prisoner sees only some of the other hats, and
their collective freedom depends on several of them guessing correctly? Not
surprisingly, the innocent two-person hat problem above quickly leads to
interesting combinatorics, both finitary and infinitary, and an array of open
questions, with some natural variants having important connections with
extant areas like coding theory, ultrafilters, and cardinal invariants of the
continuum.

There is a reason that these hat problems are often stated in the metaphor-
ical setting of prisoners trying to secure their collective release (or players
who will share equally in a monetary prize), and this is the issue that led
to our use of “coordinated inference” in the title of this monograph. Hen-
drik Lenstra and Gadiel Seroussi [LS02] speak of a “strategy coordination
meeting” before the hats are placed. The individual players or agents (“pris-
oners”) are choosing a strategy as they would in any game, but instead of
pitting these strategies against those of the other agents, they are seeking to
coordinate these strategy choices into a “meta-strategy” that will be pitted
against a single adversary who will be placing the hats.

We shall, however, largely move away from the prisoners metaphor,
speaking instead of “agents,” as we turn to our main focus in this mono-
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graph, the infinite. The kind of strategies we are interested in were called
“public deterministic strategies” in [BHKL08]. They are public in the sense
that the adversary placing the hats is aware of the agents’ strategies and they
are deterministic in the sense that guesses are uniquely determined, rather
than relying on some element of randomness. This determinism leads to a
natural focus on worst-case scenarios as opposed to average-case scenarios.

A reasonably general framework for hat problems is the one in which we
have a set A (of agents), a set K of (colors), and a set C of functions (color-
ings) mapping A to K. The goal is for the agents to construct coordinated
strategies so that if each agent is given a certain piece of information about
one of the colorings, then he can provide a guess as to some other aspect of
the coloring. The collection of guesses, taken together over the set of agents,
picks out a (possibly empty) set of colorings—those consistent with every
agent’s guess. We think of this process of collecting together the guesses of
the agents as a “predictor.” In most cases of interest, this prediction will be
a single coloring.

The information provided to an agent a ∈ A is typically captured by
an equivalence relation ≡a on the set of colorings, the intuition being that
f ≡a g indicates that agent a cannot distinguish between the coloring f
and the coloring g. There is also a notion of when a prediction is successful
enough to be deemed acceptable. Much (but not all) of our interest is in
predictors that are either minimal in the sense of achieving the least success
in terms of the number of agents guessing correctly that could be called
non-trivial, or optimal in the (rough) sense of achieving the most success
that is possible in the given context.

Thus, although we later move to even more general contexts, we can for
now think of a hat problem as made up of a set A of agents, a set K of
colors, a set C of colorings, each of which maps A to K, and a collection
of equivalence relations {≡a : a ∈ A } on C. A guessing strategy Ga for
agent a is a function from C to P(C), the power set of C, with the property
that if f ≡a g, then Ga(f) = Ga(g). Intuitively, agent a is guessing that
the coloring f belongs to the set Ga(f) of colorings. The corresponding
predictor P is then defined to be the map from C to P(C) given by P (f) =
∩{Ga(f) : a ∈ A }. If P (f) is a singleton set for every f , then we regard
the predictor P as a function mapping C to C.

In many cases of interest, the equivalence relations {≡a : a ∈ A } will
be given by a directed graph V on A that we call the visibility graph. No-
tationally, we write aV b if there is a directed edge from a to b and we let
V (a) = { b : aV b }. The intuition is that agent a can see (the hat worn by)
agent b precisely when aV b, and thus f ≡a g iff f(b) = g(b) for every such
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b. We often (but not always) think of each agent as trying to guess his own
hat color, with the corresponding prediction being the single coloring that
is produced by this collection of guesses. In terms of the formalism from
the preceding paragraph, agent a’s guess of zero for his own hat color with
the coloring f corresponds to Ga(f) = { g ∈ C : g(a) = 0 }. Saying that
P (f) = ∩{Ga(f) : a ∈ A } simply means that g ∈ P (f) iff for every a we
have that g(a) is the color that agent a guessed his hat to be given what he
knew of the coloring f .

When the set of agents is ω (or any linearly ordered set), we will often
restrict ourselves to one-way visibility. That is, if a sees b then a < b. In
this situation, an undirected graph serves as a visibility graph by saying
that a sees b iff a < b and a is adjacent to b in the graph. When we use
an undirected graph for one-way visibility, we use V (a) to denote the set of
agents that a can see, as opposed to those connected to a by an edge.

A graph on ω is transitive if for every triple a, b, c with a < b < c, if aV b
and bV c, then aV c.

A predictor’s success is measured, at least in part, by the “size” of the
set of agents guessing correctly. In the finite case, size will correspond to
cardinality, but in the infinite case there are more refined notions, many of
which involve the concept of an ideal, which we present in the next section.

The rest of this chapter is organized as follows. In Section 1.2 we collect
together the set-theoretic preliminaries that arise in two or more sections
of the monograph; concepts like P-point ultrafilters that occur in only one
section are introduced where they occur. In Section 1.3 we present one very
successful predictor—the µ-predictor—which will arise repeatedly in differ-
ent guises, and in Section 1.4 we collect together several techniques that will
frequently be used to show the non-existence of certain kinds of predictors.
Finally, in Section 1.5 we give a brief chapter-by-chapter overview of what
is to follow.

1.2 Set-theoretic preliminaries

Our set-theoretic notation and terminology are reasonably standard. If A is
a set, then P(A) is the power set of A and |A| is the cardinality of A. We
use [A]k to denote the set of all k-element subsets of A, [A]ω to denote the
set of all countably infinite subsets of A, and [A]<λ to denote the collection
of subsets of A of cardinality less than λ. If f is a function, then f |X is
the restriction of f to X, and AK is the set of functions mapping the set A
into the set K. If X and Y are sets, then X − Y = {x ∈ X : x /∈ Y } and
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X∆Y = (X − Y ) ∪ (Y − X). If f and g are functions, then f∆g = {x :
f(x) 6= g(x)}. For a real number x, we use bxc for the largest integer not
greater than x and dxe for the smallest integer not less than x.

Each ordinal is identified with the set of smaller ordinals, so ω is the
set of natural numbers, n = {0, 1, . . . , n− 1}, and, in particular, 2 = {0, 1}.
ZF denotes the Zermelo-Fraenkel axioms for set theory, ZFC is ZF plus the
axiom of choice, and DC is the axiom of dependent choices (the assertion
that if R is a binary relation on X such that for every x ∈ X there exists
y ∈ X such that xRy, then there exists a sequence 〈xn : n ∈ ω〉 such that
xnRxn+1 for every n ∈ ω).

We will have several occasions to make use of the special case of Ramsey’s
theorem [Ram30] that asserts that an infinite graph has either an infinite
complete subgraph or an infinite independent subgraph. Generalizations of
this result (and the standard notation used) will be introduced as they arise.

The topology and measure on ω2 are the usual ones. That is, if X ∈ [ω]n

and s : X → 2 then the set [s] = { g ∈ ω2 : g|X = s } is a basic open set
whose measure is 2−n. Identifying ω2 with the binary expansions of reals in
[0, 1], this is Lebesgue measure. The topology is that of the Cantor set via
the identification of ω2 with the reals in [0, 1] having a ternary representation
containing only zeros and twos.

An ideal on a set A is a non-empty collection of subsets of A that is
closed under finite unions and subset formation. An ideal is non-principal
if it contains all singletons and proper if it does not contain the set A itself.
Unless otherwise specified, when we say “ideal” we mean “proper, non-
principal ideal.”

Sets in an ideal I are said to be of I-measure zero; sets not in I of
positive I-measure; and sets whose complement is in I of I-measure one.
We let I+ denote the collection of sets of positive I-measure and I∗ denote
the collection of sets of I-measure one. An important example of an ideal is
I = [κ]<λ where λ ≤ κ are infinite cardinals.

A filter on a set A is a non-empty collection of subsets of A that is closed
under finite intersections and superset formation. A filter is non-principal
if it contains all cofinite sets and proper if it does not contain the empty
set. Unless otherwise specified, when we say “filter” we mean “proper, non-
principal filter.” Notice that if I is an ideal, then I∗ is a filter. A maximal
filter is called an ultrafilter ; it contains exactly one of X and A−X for every
X ⊆ A.

Finally, if I∗ and J∗ are filters on A then we can form the product filter
I∗×J∗ on A×A by X ∈ I∗×J∗ iff { a ∈ A : { b ∈ A : (a, b) ∈ X } ∈ J∗ } ∈ I∗.
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1.3 One basic positive result: the µ-predictor

This section contains only one definition (and no lemmas, propositions, or
theorems). But the definition given here is—at least for the purposes of the
present monograph—the most important one that we present.

Definition 1.3.1. Suppose A is the set of agents, K is the set of colors, and
≡a is agent a’s equivalence relation on AK. Let [f ]a denote the equivalence
class of f with respect to ≡a. We now fix a well ordering ≺ of AK and,
for each a ∈ A, we let 〈f〉a denote the ≺-least element of [f ]a. Agent a’s
guessing strategy, denoted µa, is to assume the given coloring is the ≺-least
one that is consistent with what he can see. More precisely, µa(f) = 〈f〉a;
in particular, agent a’s guess is that his hat color is 〈f〉a(a). The predictor
M≺ = 〈µa : a ∈ A〉 is called the µ-predictor .

One can remember the way the µ-predictor works more easily by noting
the similarity to Occam’s razor, which would have us guess according to
the simplest theory consistent with what can be observed. In a great many
situations in later chapters, when we need a successful predictor, we turn to
some variant of the µ-predictor.

1.4 Two basic negative results

Throughout this section, we assume that A is the set of agents, K is the set
of colors with |K| ≥ 2, and V is a directed graph on A that serves as the
visibility graph.

Definition 1.4.1. For any set X of agents, we define a sequence of subsets
of X inductively as follows: B0 = ∅, and for 0 < α < |X|+, we let Bα
consist of those agents a ∈ X for which V (a) ∩ X ⊆ ∪{Bβ : β < α }. Let
B(X) = ∪{Bα : α < |X|+ }.

Proposition 1.4.2. For every predictor, every set X of agents, and every
f ∈ A−XK, there exists a hat coloring fX ∈ AK that extends f and makes
all agents in B(X) guess incorrectly.

Proof. Because of f , every agent in B0 has his guess determined, so we can
change the hats of those agents in B0 who guessed correctly. Proceeding
inductively, if we’ve placed hats on all the agents in ∪{Bβ : β < α }, then
the guesses of all the agents in Bα have been determined, so we can change
hats where necessary to make them all guess incorrectly.



CHAPTER 1. INTRODUCTION 7

Corollary 1.4.3. For every predictor, every set X of agents that is inde-
pendent in V , and every f ∈ A−XK, there exists a hat coloring fX ∈ AK
that extends f and makes all agents in X guess incorrectly.

Proof. Suppose X is independent in V . Then B1(X) = {a ∈ X : V (a)∩X =
∅} = X. Thus X = B1(X) ⊆ B(X) ⊆ X, so B(X) = X.

Corollary 1.4.4. If the visibility graph is acyclic, then for every predictor,
every finite set X of agents, and every f ∈ A−XK, there exists a hat coloring
fX ∈ AK that extends f and makes all agents in X guess incorrectly.

Proof. Suppose |X| = n. We can assign a rank to each a ∈ X by saying that
a has rank m if there is a directed path of length m beginning at a, but not
one of length m + 1 beginning at a. Notice that if there is a directed edge
from a to b, then the rank of a is strictly greater than the rank of b. Hence,
each agent in X sees only agents in X of smaller rank. It now follows that
X ⊆ ∪{Bk : k ≤ n } ⊆ B(X) ⊆ X.

To motivate our next definition and corollary, suppose that agent x can-
not see y. Then for any predictor, we can make both x and y wrong by
starting with an arbitrary coloring, changing x’s hat to make x wrong, and
then changing y’s hat to make y wrong; since x cannot see the change to
y, x’s guess does not change so x and y are both now wrong. The follow-
ing corollary is simply the extension of this idea to the transfinite, to get
a simple upper bound on how well a well a predictor can possibly perform.
We will see later that for transitive visibility relations, there exist predictors
that attain this bound.

Definition 1.4.5. A set X of agents is co-well-founded in V if for every
nonempty X ′ ⊆ X, there exists x ∈ X ′ such that V (x) ∩X ′ = ∅.

Note that when V is a strict partial order, this agrees with the usual
definition of co-well-founded.

Corollary 1.4.6. For every predictor, every set X of agents that is co-well-
founded in V , and every f ∈ A−XK, there exists a hat coloring fX ∈ AK
that extends f and makes all agents in X guess incorrectly.

Proof. We’ll show that if X is co-well-founded in V , then B(X) = X. Sup-
pose not and let X ′ = X−B(X). Because X ′ 6= ∅ and X is co-well-founded,
we can choose x ∈ X ′ such that V (x) ∩ X ′ = ∅. Thus x /∈ B(X) but
V (x) ∩X ⊆ B(X). Hence, for each y ∈ V (x) ∩X we can choose αy < |X|+
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such that y ∈ Bαy . Let α = sup{αy : y ∈ V (x) ∩X}. Then α < |X|+ and
V (x) ∩X ⊆ ∪{Bβ : β < α }. Hence, x ∈ Bα, so x ∈ B(X), a contradiction.

Our second technique here for producing negative results relies on the
compactness of ω2.

Proposition 1.4.7. If |K| = 2 and V is acyclic, then for every predictor,
every set X of agents with the property that V (x) ∩ X is finite for every
x ∈ X, and every f ∈ A−XK, there exists a hat coloring fX ∈ AK that
extends f and makes all agents in X guess incorrectly.

Proof. For each n, let In denote the set of 2-colorings that extend f and for
which agent n guesses incorrectly using the given predictor. We make two
claims.

Claim 1. For each n ∈ ω, the set In is a closed subset of ω2.
Proof. Assume that fX /∈ In. If fX disagrees with f at a, we need only

consider the basic neighbor corresponding to the set of all colorings that
agree with fX on {a}. Otherwise, we can consider the basic neighborhood
given by the restriction of fX to the set V (n)∪{n}. If g is in this neighbor-
hood, then agent n’s guess with g is the same as his guess with fX , which
is correct. Hence g /∈ In. This shows that In is closed.

Claim 2. The collection { In : n ∈ ω } has the finite intersection property.
Proof. Suppose X = {n1, . . . , nk}, and let fX be the hat assignment

whose existence is guaranteed by Corollary 1.4.4. Then fX ∈ In1 ∩ · · · ∩ Ink

as desired.
With claims 1 and 2, we can now apply the compactness of ω2 to get a

coloring f in all of the Ins.

1.5 A preview of what is to come

We begin in Chapter 2 with the case in which the set A of agents is finite
and the equivalence relations ≡a are given by a directed graph V on A. So
how much visibility is needed for the existence of a minimal predictor? And
for a given visibility graph, what is the value of k for an optimal predictor?
These are the kinds of questions dealt with in Chapter 2.

The context in Chapter 3 is similar to that in Chapter 2 except that we
focus on the case in which the set of agents is denumerable. Results from
the finite setting suggest there should be a predictor ensuring that infinitely
many agent guess correctly, and indeed, this turns out to be trivial. But
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something quite unexpected also turns out to be true, as was noticed by
Yuval Gabay and Michael O’Connor while they were graduate students at
Cornell in 2004. Regardless of how large the infinite set of agents is and
regardless of how large the (perhaps infinite) set of hat colors is, there exists
a predictor ensuring that only finitely many agents guess incorrectly. We
are assuming here that every agent sees all the hats but his own. And we
are most definitely assuming the axiom of choice.

In Chapter 4 we restrict ourselves to “one-way visibility” on ω. This
means that agents never see smaller-numbered agents. In this context, vis-
ibility can be given by an undirected graph, wherein an edge means the
smaller vertex can see the larger. We introduce here a highly non-transitive
setting that corresponds to the agents being natural numbers with each even
agent seeing all the higher-numbered odd agents and vice-versa. Quite un-
expectedly, it turns out that the existence of a minimal predictor here is
very dependent on the number of colors. In fact, with finitely many colors,
there always is one, while with ℵ2 colors, there never is one. The continuum
hypothesis yields one if the are ℵ1 colors, and the existence of one with a
denumerable set of colors is independent of ZFC + 2ℵ0 = ℵ2. It also turns
out that P-point and Ramsey ultrafilters arise naturally in this context.

In Chapter 5 we study dual hat problems where, roughly speaking, no-
tions corresponding to injective functions or subsets are altered by consid-
ering surjective functions or partitions. Within the hat problem metaphor
this shifts the focus from near-sightedness to colorblindness. We also move
on to see the role played by non-regular ultrafilters and we establish an
equivalence with the GCH.

The context originally studied by Galvin in the 1960s involved predictors
for ω where (roughly speaking) the agents did not know where in line they
were standing. Such considerations lead naturally to so-called “neutral” and
“anonymous” predictors, and these are investigated in Chapter 6.

In Chapter 7 we start to move further away from the hat problem
metaphor and think instead of trying to predict a function’s value at a
point based on knowing (something about) its values on nearby points. The
most natural setting for this is a topological space and if we wanted to
only consider continuous colorings, then the limit operator would serve as
a unique optimal predictor. But we want to consider arbitrary colorings.
Thus we have each point in a topological space representing an agent and
if f and g are two colorings, then f ≡a g if f and g agree on some deleted
neighborhood of the point a. It turns out that an optimal predictor in this
case is wrong only on a set that is “scattered” (a concept with origins going
back to Cantor). Moreover, this predictor again turns out to be essentially
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unique, and this is the main result in Chapter 8.
To illustrate one corollary of this topological result, consider the hat

problem in which the agents are indexed by real numbers, and each agent
sees the hats worn by those to his left (that is, those indexed by smaller real
numbers). The set of hat colors is some arbitrary set K. The question is
whether or not there is a predictor ensuring that the set of agents guessing
incorrectly is a small infinite set—e.g., indexed by a set of reals that is
countable and nowhere dense. The answer here (again assuming the axiom
of choice) is yes. In fact, there is a predictor guaranteeing the set of agents
guessing incorrectly is a set of reals that is well ordered by the usual ordering
of the reals. Moreover, this is an optimal predictor and again the predictor
is essentially unique.

We published the above result (absent the uniqueness assertion) in the
American Mathematical Monthly in an article with the deliberately provoca-
tive title “A peculiar connection between the axiom of choice and predicting
the future.” The point is that this hat problem allows one to conclude that
if time is modeled by the real line, then the axiom of choice guarantees that
the present state of any system can “almost always” be correctly predicted
based on its past states. The economist Steven Landsburg, author of The
Armchair Economist, (The Free Press, 1993), referred to this in his internet
blog as “the single most counterintuitive-but-true thing I’ve ever heard.”
While this is almost certainly an overstatement, the result is reminiscent
of the Banach-Tarski paradox, which allows one to conclude that if space
is modeled by R3, then the axiom of choice guarantees that a solid ball
can be divided into finitely many parts and reassembled by rotations and
translations into two balls identical to the original solid ball.

Finally, in Chapter 9, we explore the relationships between results ex-
tending those in Chapter 4 and so-called Galois-Tukey connections.

As the above suggests, we will be discussing topics that range from hat
problems that are accessible to everyone willing to think hard, to some top-
ics in set theory and infinitary combinatorics that will make little sense to
anyone but a trained logician. With this in mind, the monograph delib-
erately moves from topics requiring fewer prerequisites to those requiring
more, with most of the monograph accessible to any graduate student in
mathematics.



Chapter 2

The Finite Setting

2.1 Background

Although our primary interest in this monograph is with the infinite, we
begin with a discussion of hat problems in which the set A of agents is finite
and visibility is given by a directed graph V on A (the visibility graph). The
set K of colors is typically a natural number k and the set C of colorings
is the entire set AK. Thus if f and g are two colorings in AK and a is an
agent, then f ≡a g iff f(b) = g(b) for every b ∈ V (a).

As indicated in the introduction, we think of each agent a as trying to
guess his own hat color via a guessing strategy Ga : C → K satisfying
Ga(f) = Ga(g) whenever f ≡a g. This ensures that agent a’s guess is the
same for any two colorings that he cannot distinguish between. The predic-
tor P arising from these guessing strategies is given by P (f)(a) = Ga(f).
We say that agent a guesses correctly for f if Ga(f) = f(a); equivalently, if
P (f)(a) = f(a).

Most of what is known in the finite case (where agents cannot pass) can
be found in a single paper entitled Hat Guessing Games, by Steven Butler,
Mohammed Hajiaghayi, Robert Kleinberg, and Tom Leighton [BHKL08].
Some of these results were obtained independently and appeared in [HT08a].

The rest of this chapter is organized as follows. In Section 2.2 we illus-
trate the notion of a minimal predictor, including a result from [BHKL08]
on bipartite visibility graphs that we will need in Chapter 4. In Section 2.3,
we consider optimal strategies, and in Section 2.4 we present another result
from [BHKL08] that uses the Tutte-Berge formula to completely solve the
prediction problem for finite symmetric graphs. In Section 2.5 we consider
the situation in which the agents have different color-sets for their hats, and

11
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in Section 2.6 we look at some variants of the standard hat problem, one
of which will arise again in Chapter 3. We conclude in Section 2.7 with a
discussion of some open questions.

2.2 Minimal predictors

In the present context, a minimal predictor will be one that guarantees at
least one correct guess. Thus, with n agents, we can ask how much visibility
is needed for the existence of a minimal predictor. Stated differently, for a
fixed number of colors, we seek a characterization of those visibility graphs
that yield a minimal predictor. Our first theorem answers this for the case
of 2 colors and the case of n colors; the result appears as Theorem 1 in
[HT08a], although most of it can be derived from results in [BHKL08]. But
first we need a lemma that confirms an intuition about how many agents
guess correctly on average.

Lemma 2.2.1. In an n-agent, k-color hat problem, for any particular pre-
dictor, the average number of agents who guess correctly is n/k. (The aver-
age is taken over all colorings.)

Proof. Suppose there are n agents and k colors. Let P be any predictor. It
suffices to show that any particular agent a is correct in one out of k color-
ings. Given any assignment of hat colors to all agents other than a, agent
a’s guess will be determined; of the k ways to extend this hat assignment to
a, exactly one will agree with a’s guess.

Theorem 2.2.2. An n-agent, 2-color hat problem has a minimal solution
iff the visibility graph has a cycle. An n-agent, n-color hat problem has a
minimal solution iff the visibility graph is complete.

Proof. Suppose first that there are 2 colors. For the right-to-left direction,
assume the visibility graph has a cycle. Fix an agent on the cycle and let his
strategy be to guess assuming his hat and the one on the agent just ahead
of him on the cycle are the same color. The other agents on the cycle guess
according to the opposite assumption; they assume that their hat and that
of the agent just ahead of them on the cycle are different colors. To see
that this works, assume that the first agent on the cycle has a red hat and
that everyone on the cycle guesses incorrectly using this strategy. Then the
second agent on the cycle has a green hat, the third agent on the cycle has
a green hat, and so on until we’re forced to conclude that the first agent on
the cycle also has a green hat, contrary to what we assumed.
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For the other direction, we can appeal to Corollary 1.4.4 which ensures
that if there is no cycle in the visibility graph V , then for every predictor
there is a coloring for which everyone guesses incorrectly.

Now suppose there are n colors. For the right-to-left direction, assuming
the visibility graph is complete, the strategies are as follows. Number the
agents 0, 1, . . . , n − 1, and the colors 0, 1, . . . , n − 1, and for each i, let si
be the mod n sum of the hats seen by agent i. The plan is to have agent i
guess i− si (mod n) as the color of his hat. If the colors of all the hats add
to i (mod n), then agent i will be the one who guesses correctly. That is, if
c0 + · · ·+ cn−1 = i (mod n) then ci = i− si (mod n).

For the other direction, assume that there are n agents and n colors, and
assume the visibility graph is not complete. Let P be any predictor. We
must show that there is a coloring in which every agent guesses incorrectly.
Suppose agent a does not see agent b’s hat (with a 6= b), and pick a coloring
in which agent a guesses correctly. If we change the color of agent b’s hat to
match agent b’s guess, agent a will not change his guess, and we will have
a coloring in which a and b guess correctly. By Lemma 2.2.1, the average
number of agents who guess correctly is n/n = 1; because we have a coloring
with at least two agents guessing correctly, there must be another coloring
in which less than one (namely, zero) agents guess correctly.

We conclude this section with one other result about minimal predictors.
It was first established in [BHKL08] and later rediscovered by Daniel J.
Velleman [Vel11] in his solution to a question left open in [HT10]. Velleman’s
result is in Chapter 4.

Theorem 2.2.3. For every k there is a bipartite graph V such that there is
a minimal predictor for the k-color hat problem with visibility graph V .

Proof. Thinking of the problem as involving two teams that see each other,
the trick is to get team 1 to guess in such a way that if they’re all wrong,
there are relatively few possibilities for how team 2 is colored.

Let team 2 have k − 1 agents. There are only finitely many possible
individual strategies for agents on team 1, so let team 1 have one agent
for each possible individual strategy. We claim that given a coloring f of
team 1 and k distinct colorings g1, . . . , gk of team 2, someone on team 1
is correct for at least one of these colorings; for, at least one of the agents
on team 1 will guess a different color for each of g1, . . . , gk, so one of these
guesses must agree with f . In light of that claim, team 2 does the following:
assuming every guess on team 1 is wrong leaves at most k − 1 different
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possible colorings of team 2, so with k − 1 agents, they can let agent i
among them guess according to the ith such possibility.

Note that with k colors, both teams need at least k − 1 agents, as the
following argument shows. Suppose team 2 has fewer than k − 1 agents,
and that team 1 has any set (possibly infinite) of agents. Fix any predictor
P . We will commit to coloring team 2 with a constant coloring among
0, . . . , k − 2. Let fi be the coloring guessed by team 1 when team 2 is all
colored i, for i = 0, . . . , k − 2. There are only k − 1 such fis, so for each
agent a on team 1, there is a color that differs from f0(a), . . . , fk−2(a), so
we can fix a coloring h of team 1 that makes them all wrong when team 2
is all colored i, for 0 ≤ i ≤ k − 2. Now, look at what team 2 guesses when
they see h. Since they have only k − 2 agents, there is some color among
0, . . . , k − 2 that none of them guesses; color everyone on team 2 this color.

2.3 Optimal predictors

As we said in the preface, an optimal predictor achieves a degree of correct-
ness that is maximal in some sense. For the case of a visibility graph that is
complete, there is a very satisfying result that we present below. It occurs
as Theorem 2 in [BHKL08] and as Theorem 3 in [HT08a], although it was
first proved for two colors by Peter Winkler [Win01] and later generalized
to k colors by Uriel Feige [Fei04].

By way of motivation, recall that Lemma 2.2.1 showed that, regardless of
strategy, if there are n agents and k colors, the number who guess correctly
will on average be n/k. But this is very different from ensuring that a certain
fraction will guess correctly regardless of luck or the particular coloring at
hand. Nevertheless, the fraction n/k is essentially the correct answer.

Theorem 2.3.1. Consider the hat problem with |A| = n, |K| = k, and
a complete visibility graph V . Then there exists a predictor ensuring that
bn/kc agents guess correctly, but there is no predictor ensuring that bn/kc+1
agents guess correctly.

Proof. The strategy ensuring that bn/kc agents guess correctly is obtained
as follows. Choose k × bn/kc of the agents (ignoring the rest) and divide
them into bn/kc pairwise disjoint groups of size k. Regarding each of the
groups as a k-agent, k-color hat problem, we can apply Theorem 2.2.2 to
get a strategy for each group ensuring that (precisely) one in each group
guesses correctly. This yields bn/kc correct guesses altogether, as desired.
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For the second part, we use Lemma 2.2.1. For any predictor, the average
number of agents who guess correctly will be n/k, and n/k < bn/kc+ 1, so
no predictor can guarantee at least bn/kc+1 agents guess correctly for each
coloring.

2.4 The role of the Tutte-Berge formula

In this section, we consider only symmetric visibility relations on a finite set
A of agents and we present a very nice result from [BHKL08] that specifies
exactly how successful a predictor for two colors can be for such a visibility
graph. The obvious strategy with a symmetric visibility graph V = (A,E)
is to pair up agents who can see each other, and then have them use the
trivial two-agent strategy that we described in Chapter 1. Remarkably, this
obvious strategy turns out to be optimal.

A matching M for a graph V is a collection of pairwise disjoint edges,
where we are thinking of an edge as a two-element set. Thus, the size of the
matching M is literally the cardinality of M ; that is, the number of edges in
the matching. A vertex is said to be covered by the matching M if it is in
the union of M , that is, if it is an endpoint of one of the edges in M . Thus,
if M is a matching of maximum size for a finite symmetric visibility graph,
then there is a two-color predictor ensuring that at least |M | agents guess
correctly. The theorem below shows that no predictor can ensure more.

First, however, we need to discuss the so-called Tutte-Berge formula for
the maximum size of a matching for a graph V . William Tutte’s original
contribution [Tu47] was in characterizing those graphs V for which there is
a matching that covers every vertex of V . His starting point was with an
obvious necessary condition for such a matching: Every set S ⊆ A of vertices
must have at least as many points as there are odd-sized components in
A−S. The point is that in a component of V −S, vertices can appear in the
matching only when paired with either another element of that component,
or with a vertex in S. If the component has odd size, at least one of the
vertices in the component will need to be paired with an element of S.
And different components require different vertices in S. Tutte showed that
this necessary condition for a matching covering all vertices of V was also
sufficient.

Claude Berge’s generalization [B58] of Tutte’s result involves the finer
analysis resulting from the “deficiency” of a set S in having enough vertices
to handle each of the leftover vertices in the components of odd size in V −S.
Notationally, let O(V −S) denote the set of components of odd size in V −S,
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and let def(S), the deficiency of S, be given by def(S) = |O(V − S)| − |S|.
It now follows from what we’ve said that for every set S ⊆ V , every

matching will leave at least def(S) vertices not covered. Thus, if M is a
matching of maximum size, then for every set S ⊆ V , we can cover at most
V − def(S) vertices, and so we must have |M | ≤ 1

2(|V | − def(S)). Berge’s
contribution was to show that equality always holds for some S ⊆ V . This
is the Tutte-Berge formula.

With this at hand, we can now establish the following from [BHKL08].

Theorem 2.4.1. Let V be any finite graph and consider the corresponding
two-color hat problem with symmetric visibility given by V . Let M be a
matching of maximum size for V . Then there is a predictor ensuring |M |
correct guesses, and there is no predictor ensuring |M |+ 1 correct guesses.

Proof. The predictor ensuring |M | correct guesses is the one described in the
first paragraph of this section. What must be shown is that no predictor
P can do better. So let S be a set of agents (vertices) as in the Tutte-
Berge formula, wherein |M | ≤ 1

2(|V | − def(S)). Let W1, . . . ,Wj denote the
components of odd size in V − S, and let Y = (V − S) − (W1 ∪ · · · ∪Wj).
Thus A is the disjoint union of S, Y , and the Wis. We begin by placing hats
on S arbitrarily. Any agent in Wi sees only other agents in Wi or agents
in S. Because hats have been placed on agents in S, we can regard the
predictor P as operating on W1 alone, and by Theorem 2.3.1 we can place
hats so as to make at most 1

2(|W1| − 1) of the agents in W1 guess correctly.
We do this for each Wi. Finally, we place hats on the agents in Y so that
at most half of them guess correctly. It now follows that the total number
of agents guessing correctly for this hat assignment is at most

|S|+ 1

2
(|W1| − 1) + · · ·

+
1

2
(|Wj | − 1) +

1

2
|Y | = |S|+ 1

2
(|W1|+ · · ·+ |Wj | − j + |Y |)

= |S|+ 1

2
(|V − S| − j)

=
1

2
|S|+ 1

2
|V − S|+ 1

2
|S| − 1

2
j

=
1

2
|V |+ 1

2
|S| − 1

2
j

=
1

2
(|V | − def(S))

= |M |.
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2.5 A variable number of hat colors

Suppose we have finitely many agents, each of whom can see all of the others.
When does there exist a minimal predictor? If the same set of colors is used
for each agent, we already know: there is a minimal predictor iff there are
at least as many agents as colors. But what if different agents have different
sizes of sets from which their hat colors are drawn?

Suppose then that p = {0, . . . , p − 1} is our set of agents and that
c0, . . . , cp−1 ∈ ω − {0}. We will assume that agent i’s hat color will be
in the set ci = {0, . . . , ci − 1}, and we will let the tuple (c0, c1, . . . , cp−1)
encode this problem. Our first observation is that if

∑
i 1/ci < 1, then there

is no minimal predictor because, as in Lemma 2.2.1, the average number of
correct guesses will be less than 1. A natural question here is whether or
not the converse holds. That is, if

∑
i 1/ci ≥ 1, must there be a minimal

predictor? The following theorem shows that the answer is yes.

Theorem 2.5.1. Let p ∈ ω and c0, . . . , cp−1 ∈ ω − {0}, and consider the
hat problem in which p is the set of agents and the set of colorings is { f ∈
pω : (∀i ∈ p)(f(i) ∈ ci) }; that is, agent i has ci possible hat colors. Let
r =

∑
i 1/ci. Provided no agent sees himself, the average number of correct

guesses will be r, regardless of the predictor. If the agents have full visibility,
then there is a predictor under which the number of correct guesses is always
brc or dre. In particular, a minimal predictor exists iff r ≥ 1.

Proof. The fact that the average number of correct guesses will be r is again
by the same argument as in Lemma 2.2.1.

Suppose now that the agents have full visibility. We define the predictor
P as follows. Colorings can be seen as elements of the group C = Zc0 ⊕
· · · ⊕ Zcp−1 in the obvious fashion. Define π : R → R/Z (as a group
homomorphism) by π(x) = x + Z (that is, we are projecting modulo Z).
Define ϕ : C → R/Z by

ϕ(f) =
∑
k∈p

f(k)

ck
.

Define dk ∈ R by
∑

j<k 1/cj , let Îk = [dk, dk+1/ck) ⊆ R, and let Ik = π[Îk].

The intervals Îk lie end-to-end, and have total length r, so when we project
to R/Z, each point in R/Z occurs in brc or dre of the Ik.

For our predictor, agent k assumes that the coloring f satisfies ϕ(f) ∈ Ik
and guesses accordingly. (This is a well-defined predictor: agent k knows
the value of ϕ(f) up to a multiple of 1/ck, and exactly one of these multiples
would put ϕ(f) in Ik, because Ik is left-closed right-open with length 1/ck.)
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Now, agent k will guess correctly iff ϕ(f) ∈ Ik, and as observed above, this
occurs for brc or dre values of k.

When r ≥ 1, of course, the number of correct guesses under this predictor
is at least 1, so we have a minimal predictor; when r < 1, the average number
of correct guesses is < 1, so there can be no minimal predictor.

2.6 Variations on the standard hat problem

In addition to the two kinds of hat problems we’ve mentioned (one which
allows passing and one which doesn’t) several interesting variants have arisen
over the years. We’ll mention two of these here.

The first variant is the following. Ten prisoners are lined up facing
forward, and red and green hats are placed on their heads. Each prisoner
will be asked to make a verbal guess as to the color of his hat, and, before
guessing, each will be able to hear the guesses of those prisoners behind him
as well as seeing the hats of those prisoners in front of him. If at most one
guesses incorrectly, all will go free.

No strategy can ensure that the first prisoner will guess correctly, but if
the first player uses his guess to announce red iff he sees an even number of
red hats, then all of the others can use this signal (and the knowledge that
the others are also using it) to correctly guess their hat color.

The extension of this problem and its solution to countably many agents
will be given in Chapter 3. We also show there that these signaling problems
are equivalent (in ZF + DC) to the kind of non-signaling problems that we
are considering.

The second variant goes as follows. There are again ten prisoners, this
time wearing shirts that are numbered one through ten. Each prisoner
has a hat with a number on it matching the number on his shirt. The
warden confiscates the hats and places them randomly in boxes numbered
one through ten. One-by-one, the prisoners are called to the room and
allowed to open nine of the ten boxes. If all ten prisoners find their own
hats, then all go free. If any one of the ten fails, they all remain in prison.
Find a strategy yielding a 90 percent chance that all will go free.

The solution is for prisoner i to begin by looking in box i. If he sees hat
j, then he next looks in box j. And so on. The only way for any prisoner to
lose using this strategy is for the placement of the hats to correspond to one
of the 9! cycles. But there are 10! permutations, so the chance of failure is
only 9!/10! = 1/10.
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2.7 Open questions

There is no shortage of questions that could be stated here, but we’ll intro-
duce a bit of notation in order to state the most obvious (and perhaps the
most difficult). For positive integers k, n, and m, let Pk(n,m) denote the
collection of all directed graphs on n vertices (“n-graphs”) for which there
is a predictor ensuring that at least m agents guess correctly when there are
k hat colors. The results in this section show that:

• P2(n, 1) is the collection of n-graphs with a cycle.

• Pn(n, 1) is the collection of n-graphs that are complete.

• Pk(n, bn/kc+ 1) is the empty collection.

Question 2.7.1. Can one characterize the graphs in Pk(n,m) for other
values of k, n, and m?

There are also two questions related to the theorem on bipartite graphs;
the first is from [BHKL08], and the second is due to Velleman.

Question 2.7.2. Is there a bipartite graph ensuring the existence of a min-
imal predictor for k colors whose size is polynomial in k?

Question 2.7.3. Given cardinals (possibly finite, treated as sets) c,m, k,
with k ≤ c, what is the smallest size of a family F of functions from m to
c such that, for every subset A of m of size k, f |k is one-to-one for some
f ∈ F?

There is an old saying, variously attributed to everyone from the French
Minister Charles Alexandre de Calonne (1734–1802) to the singer Billie Hol-
iday (1915–1959), that goes roughly as follows: “The difficult is done at
once; the impossible takes a little longer.” More to the point, Stanislaw
Ulam (1909–1984) provided the adaptation that says, “The infinite we shall
do right away; the finite may take a little longer.” With this in mind, we
leave the finite.



Chapter 3

The Denumerable Setting:
Full Visibility

3.1 Background

With two colors and an even number of agents, Theorem 2.3.1 says that—
with collective strategizing—the on-average result of 50% guessing correctly
can, in fact, be achieved with each and every coloring. But it also says
that this is the best that can be done by collective strategizing. In the
finite case, this latter observation does little more than provide proof for
what our intuition suggests: collective strategizing notwithstanding, the on-
average result of 50% cannot be improved in a context wherein guesses are
simultaneous. The infinite, however, is very different, and it is to this that
we next turn.

With two colors, it is easy to produce a predictor for a denumerably
infinite set of agents ensuring infinitely many will guess correctly. One can,
for example, pair up the agents and let each pair use the strategy given in
the preface. Or, if agents only see higher-numbered agents, one can have an
agent guess red if he sees infinitely many red hats, and guess green otherwise.
If there are infinitely many red hats, everyone will guess red and the agents
with red hats will be correct; if there are finitely many red hats, everyone will
guess green, and the cofinitely many agents with green hats will be correct.
This generalizes to the case of a finite set of colors by numbering the colors
and having each agent guess that his hat color is the lowest numbered color
that occurs infinitely often.

But as we have said, something much more striking is true. There is a
predictor ensuring that all but finitely many—not just infinitely many—are
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correct, and this is what Gabay and O’Connor obtained using the axiom
of choice. Such a predictor is called a finite-error predictor. In fact, with
the Gabay-O’Connor theorem, the set of agents and the set of colors can
be arbitrary, although the special case in which the set of agents is count-
able follows from a 1964 result of Galvin (see [Gal65] and [Tho67]). While
Galvin’s argument and the Gabay-O’Connor argument are similar, they are
different enough that neither subsumes the other; a comparison will appear
in Chapter 6.

Throughout this chapter, we take the set A of agents to be the set ω,
and if there are two colors, we take them to be 0 and 1.

The rest of this chapter is organized as follows. In Section 3.2, we present
the Gabay-O’Connor theorem and we point out the essential uniqueness of
their predictor. In Section 3.3, we derive from this a result of Hendrik
Lenstra that guarantees a predictor ensuring that every agent will guess
correctly or every agent will guess incorrectly. We also consider the kind of
sequential guessing that arose in Chapter 2, and we prove an equivalence
between this and Lenstra’s context. Sections 3.4 and 3.5 examine the need
for the axiom of choice, with the former relying on the property of Baire
and the latter relying on square bracket partition relations.

3.2 The Gabay-O’Connor theorem

We begin with a statement and proof of the Gabay-O’Connor theorem.

Theorem 3.2.1 (Gabay, O’Connor). Consider the situation in which the
set A of agents is arbitrary, the set K of colors is arbitrary, and every agent
sees all but finitely many of the other hats. Then there exists a predictor
ensuring that all but finitely many agents guess correctly. Moreover, the
predictor is robust in the sense that each agent’s guess is unchanged if the
colors of finitely many hats are changed.

Proof. For h, g ∈ AK, say h ≈ g if { a ∈ A : h(a) 6= g(a) } is finite; this
is an equivalence relation on AK. By the axiom of choice, there exists a
function Φ : AK → AK such that Φ(h) ≈ h and if h ≈ g, then Φ(h) = Φ(g).
Thus, Φ is choosing a representative from each equivalence class. Notice that
for each coloring h, each agent a knows the equivalence class [h], and thus
Φ(h), because the agent can see all but finitely many hats. The strategies
are then to have the agents guess their hat colors according to the chosen
representative of the equivalence class of the coloring; more formally, we are
letting Ga(h) = Φ(h)(a). For any coloring h, since this representative Φ(h)
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only differs from h in finitely many places, all but finitely many agents will
guess correctly. Also, if finitely many hats change colors, the equivalence
class remains the same and agents keep the same guesses.

Theorem 3.2.1 is sharp in the sense that even with countably many
agents and two colors, no predictor can ensure that, for a fixed m, all but
m agents will guess correctly, even if everyone sees everyone else’s hat. The
reason is that any such predictor would immediately yield a strategy for
2m + 1 agents in which more than 50% would guess correctly each time,
contradicting Lemma 2.2.1.

The robust predictor whose existence is given by the Gabay-O’Connor
theorem is essentially unique. That is, if P = 〈Ga : a ∈ A〉 is a finite-error
predictor that is robust, then there exists a function Φ : AK → AK such that
Φ(h) ≈ h and if h ≈ g, then Φ(h) = Φ(g)—and such that Sa(h) = Φ(h)(a).
In fact, the function Φ is just P itself. To see this, note first that P (h) ≈ h
because P is a finite-error predictor. Moreover, because P is robust, we have
that if f ≈ g then P (f) = P (g). And finally Ga(h) = P (h)(a), by definition
of P in terms of the Gas. It is also worth noting that for any f , P (f) is the
unique fixed point in f ’s equivalence class; that is, we have f ≈ P (f), and
so P (f) = P (P (f)).

3.3 Lenstra’s theorem and sequential guessing

The following theorem was originally obtained by Hendrik Lenstra using
techniques (described below) quite different from our derivation of it here
from Theorem 3.2.1.

Theorem 3.3.1 (Lenstra). Consider the situation in which the set A of
agents is arbitrary, |K| = 2, and every agent sees all of the other hats. Then
there exists a predictor under which everyone’s guess is right or everyone’s
guess is wrong.

Proof. Let P be the predictor in Theorem 3.2.1. A useful consequence of
the robustness of P is that, for a given coloring h, an agent a can determine
Gb(h) for every agent b. Since we are assuming agents can see all other hats,
a also knows the value of h(b) for every b 6= a. So, we can define a predictor
T by letting Ta(h) = Ga(h) iff |{ b ∈ P : b 6= a and Gb(h) 6= h(b) }| is an
even number. That is, the agents take it on faith that, when playing P , an
even number of agents are wrong: if they see an even number of errors by
others, they keep the guess given by P , and otherwise they switch.
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To see that T works, let h be a given coloring. When |{ b ∈ P : Gb(h) 6=
h(b) }| is even, every guess given by T will be correct: the agents who were
already correct under P will see an even number of errors (under P ), and
keep their guess; the agents who were wrong under P will see an odd number
of errors and switch. When |{ b ∈ A : Gb(h) 6= h(b) }| is odd, the opposite
occurs, and every guess given by T will be incorrect: the agents who would
be correct under P will see an odd number of errors and switch (to the
incorrect guess); the agents who would be wrong under P will see an even
number of errors and stay (with the incorrect guess).

The assumption that everyone can see everyone else’s hat in Theo-
rem 3.3.1 is necessary. That is, if agent a could not see agent b’s hat,
then changing agent b’s hat would change neither his nor agent a’s guess,
but agent b would go from wrong to right or vice-versa, and agent a would
not.

Lenstra’s theorem can be generalized from two colors to the case in which
the set of colors is an arbitrary (even infinite) Abelian group. The conclusion
is then that, for a given coloring, everyone’s guess will differ from their true
hat color by the same element of the group. Intuitively, the strategy is for
everyone to take it on faith that the (finite) group sum of the differences
between the true coloring and the guesses provided by the Gabay-O’Connor
theorem is the identity of the group. (Variants of this observation were made
independently by a number of people.)

Lenstra’s original proof is certainly not without its charms, and goes as
follows. If we identify the color red with the number zero and the color
green with the number one, then we can regard the collection of all color-
ings as a vector space over the two-element field. The collection W of all
colorings with only finitely many red hats is a subspace, and the function
that takes each such coloring to zero if the number of red hats is even, and
one otherwise, is a linear functional defined on W . The axiom of choice
guarantees that this linear functional can be extended to the whole vector
space. Moreover, a coloring is in the kernel iff the changing of one hat yields
a coloring that is not in the kernel. Hence, the strategy is for each agent
to guess his hat color assuming that the coloring is in the kernel. If the
coloring is, indeed, in the kernel, then everyone guesses correctly. If not,
then everyone guesses incorrectly.

Another proof of Lenstra’s Theorem, at least for the case where the
set of players is countably infinite, was found by Stan Wagon. It uses the
existence, ensured by the axiom of choice, of a (non-principal) ultrafilter on
A. Wagon’s proof goes as follows. Label the agents by natural numbers
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and call an integer a “red-even” if the number of red hats among agents
0, 1, . . . , a is even. Agent a’s hat color affects which integers b > a are red-
even in the sense that changing agent a’s hat color causes the set of red-even
numbers greater than a to be complemented. The strategy is for agent a
to make his choice so that, if this choice is correct, then the set of red-even
numbers is in the ultrafilter U . The strategy works because either the set
of red-even numbers is in U (in which case everyone is right) or the set of
red-even numbers is not in U (in which case everyone is wrong).

In Section 2.6, we described the 10-prisoner hat problem in which the
prisoners are lined up facing forward so that each sees all the hats ahead
of him, and the guesses are sequential so that each prisoner also hears the
guesses of all the agents behind him before venturing his own guess. The
extension of this problem and its solution to countably many players (de-
scribed below) is due to Yuval Gabay. Our interest here is in the ways these
signaling problems are equivalent (in ZF + DC) to the kind of non-signaling
problem in Lenstra’s theorem. The following is one example.

Theorem 3.3.2 (ZF + DC). With an arbitrary (finite or infinite) set A
of agents, an arbitrary visibility graph V , and 2 colors, the following are
equivalent:

(i) The visibility graph V is complete and there exists a “signaling strat-
egy” S under which a designated agent (“agent 0”) guesses his hat color
out loud (this guess may or may not be correct—it should be thought of
more as a signal than a guess), and then everyone else simultaneously
produces a correct guess of his own hat color.

(ii) There exists a predictor P under which everyone simultaneously guesses
his own hat color, and either everyone guesses correctly or everyone
guesses incorrectly.

Proof. Assume that V is complete, K = 2, and that S = 〈Sa : a ∈ A〉 is
a signaling strategy as in (i). Note the following (the last of which we will
prove momentarily):

(a) S0 : AK → K and if h|A− {0} = g|A− {0}, then S0(h) = S0(g).

(b) If a 6= 0, then Sa : AK ×K → K, and if h|A − {a} = g|A − {a}, then
Sa(h, i) = Sa(g, i) for i = 0, 1.

(c) If a 6= 0, then for every h ∈ AK, we have Sa(h, S0(h)) = h(a).

(d) If a 6= 0, then for every h ∈ AK, we have Sa(h, 0) 6= Sa(h, 1).
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To see that (d) is true, assume for contradiction that for some h ∈ AK
and some a 6= 0, we have Sa(h, 0) = Sa(h, 1) = (say) 0. It now follows that
Sa(h, S0(h)) = 0. Choose g ∈ AK so that g|A−{a} = h|A−{a}, but g(a) 6=
h(a). By (b), we know that Sa(g, 0) = Sa(h, 0) = 0 and Sa(g, 1) = Sa(h, 1) =
0. Thus, Sa(g, S0(g)) = 0. But then we have g(a) = Sa(g, S0(g)) = 0 =
Sa(h, S0(h)) = h(a), which is a contradiction. This proves (d).

Define P = {Ga : a ∈ A} as follows: Given h ∈ AK, we set G0(h) =
S0(h), and for a 6= 0, we set Ga(h) = Sa(h, h(0)). That is, agent a is
guessing as if agent 0 had signaled with agent 0’s actual hat color. Assume
now that h ∈ AK. We claim that with P , either everyone guesses correctly
or everyone guesses incorrectly.

Case 1: S0(h) = h(0).

In this case, G0(h) = S0(h) = h(0), and if a 6= 0, then Ga(h) =
Sa(h, h(0)) = Sa(h, S0(h)) = h(a). Hence, in this case, everyone
guesses correctly using P .

Case 2: S0(h) 6= h(0).

In this case, G0(h) = S0(h) 6= h(0), and if a 6= 0, then Ga(h) =
Sa(h, h(0)) 6= Sa(h, S0(h)) = h(a), where we have used (d) above
to conclude that Sa(h, h(0)) 6= Sa(h, S0(h)). Hence, in this case,
everyone guesses incorrectly using P .

Assume now that K = 2, and that P = 〈Ga : a ∈ A〉 is a predictor as
in (ii). As pointed out in Section 3.3, the assumption that everyone can see
everyone else’s hat in Theorem 3.3.1 is necessary. Let S = 〈Sa : a ∈ A〉 be
the following signaling strategy: Given h ∈ AK, we set S0(h) = G0(h), and
for a 6= 0, we set Sa(h, S0(h)) = Ga(h) iff S0(h) = h(0). We claim that if
a 6= 0, then Sa(h, S0(h)) = h(a).

Case 1: S0(h) = h(0).

Because S0(h) = G0(h), we know G0(h) = h(0) in this case, and
so everyone must guess correctly given h and using P . Thus,
Sa(h, S0(h)) = Ga(h) = h(a), as desired.

Case 2. S0(h) 6= h(0).

Because S0(h) = G0(h), we know G0(h) 6= h(0) in this case,
and so everyone must guess incorrectly given h and using P .
Thus, Sa(h, S0(h)) 6= Ga(h) 6= h(a), so Sa(h, S0(h)) = h(a), as
desired.
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For Gabay’s extension of the hat problem in Section 2.4, suppose there
are countably many agents labeled by natural numbers and lined up in
order so that everyone sees the hats of higher-numbered agents, and hears
the guesses of lower-numbered agents. To obtain a strategy under which
everyone but possibly agent 0 guesses correctly, one simply uses Lenstra’s
theorem and (ii) implies (i) in Theorem 3.3.2, together with the fact that
hearing correct answers from agents less than m is, for agent m, the same
as being able to see everyone but agent 0.

3.4 The role of the axiom of choice

In this section we show that the system ZF + DC is not strong enough to
prove Lenstra’s theorem or the Gabay-O’Connor theorem, even when re-
stricted to the case of two colors and countably many agents. Historically,
the precursor to our results here is a slightly weaker observation (in a dif-
ferent but related context) of Roy O. Davies that was announced in [Sil66].

Let BP be the assertion that every set of reals has the property of Baire.
It is known (assuming ZF is consistent) that ZF + DC cannot disprove

BP [JS93]. (This was established earlier, assuming the existence of a large
cardinal, in [Sol70].) It follows that ZF + DC cannot prove any theorem
that contradicts BP, as any such proof could be turned into a proof that
BP fails. We will show that Lenstra’s theorem and the Gabay-O’Connor
theorem contradict BP, and thus ZF + DC cannot prove Lenstra’s theorem
or the Gabay-O’Connor theorem. While BP is very useful for establishing
results such as these, one should note that BP is false in ZFC (for instance,
ZFC can prove Lenstra’s theorem, which contradicts BP).

Let Tk be the measure-preserving homeomorphism from ω2 to itself that
toggles the kth bit in a sequence of 0s and 1s. Call a set D ⊆ ω2 a toggle set
if there are infinitely many values of k for which Tk(D) ∩D = ∅.

The next lemma is key to the results in this section; its proof makes use
of the following observation. If a set D has the property of Baire but is not
meager, then there exists a non-empty open set V such that the symmetric
difference of D and V is meager. Hence, if we take any basic open set
[s] ⊆ V , then it follows that [s]−D is meager.

Lemma 3.4.1. Every toggle set with the property of Baire is meager.

Proof. Assume for contradiction that D is a non-meager toggle set with the
property of Baire, and choose a basic open set [s] such that [s]−D is meager.
Because D is a toggle set, we can choose k greater than the length of s such
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that Tk(D)∩D = ∅. It now follows that [s]∩D ⊆ [s]−Tk(D). But Tk([s]) =
[s], because k is greater than the length of s. Hence, [s] ∩D ⊆ [s]− Tk(D)
= Tk([s]) − Tk(D) = Tk([s] −D). Thus, [s] ∩D is meager, as was [s] −D.
This means that [s] itself is meager, a contradiction.

With these preliminaries, the following theorem (of ZF+DC) shows that
Lenstra’s theorem contradicts BP, and hence it cannot be proven without
some nontrivial version of the axiom of choice.

Theorem 3.4.2. Consider the situation in which the set A of agents is
countably infinite, there are two colors, and each agent sees all of the other
hats. Assume BP. Then for every predictor there exists a coloring under
which someone guesses correctly and someone guesses incorrectly.

Proof. Assume that P is a predictor and let D denote the set of colorings
for which P yields all correct guesses, and let I denote the set of colorings
for which P yields all incorrect guesses. Notice that both D and I are toggle
sets, since changing the hat on one agent causes his (unchanged) guess to
switch from right to wrong or vice versa. If D and I both have the property
of Baire, then both are meager. Choose h ∈ ω2− (D∪I). Under h, someone
guesses correctly and someone guesses incorrectly.

In ZFC, non-meager toggle sets do exist: as seen in the above proof, if all
toggle sets are meager, then Lenstra’s theorem fails, but Lenstra’s theorem
is valid in ZFC.

We derived Lenstra’s theorem from the Gabay-O’Connor theorem, so
Theorem 3.4.2 also shows us that some nontrivial version of the axiom
of choice is needed to prove the Gabay-O’Connor theorem. However, the
Gabay-O’Connor theorem, even in the case of two colors and countably many
agents, is stronger than the assertion that the corresponding hat problem has
a solution: the theorem does not require that agents can see all other hats,
and it produces not just a predictor, but a robust predictor. The follow-
ing theorem (of ZF + DC) shows that any solution to the Gabay-O’Connor
hat problem, even in the countable case, contradicts BP and hence requires
some nontrivial version of the axiom of choice.

Theorem 3.4.3. Consider the case of the Gabay-O’Connor hat problem in
which the set of agents is countably infinite. Assume BP. Then for every
predictor there exists a coloring under which the number of agents guessing
incorrectly is infinite.
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Proof. Assume that P is a predictor and, for each k, let Dk denote the set
of colorings for which P yields all correct guesses from agents numbered k
and higher. Notice that each Dk is a toggle set, since changing the hat on
an agent higher than k causes his (unchanged) guess to switch from right to
wrong. If all the Dks have the property of Baire, then all are meager. Let
D be the union of the Dks, and choose h ∈ ω2 −D. Under h, the number
of agents guessing incorrectly is infinite.

Theorems 3.4.2 and 3.4.3 can be recast in the context of Lebesgue mea-
surability, to show that Lenstra’s theorem and the Gabay-O’Connor theorem
both imply the existence of non-measurable sets of reals. However, to show
that ZF+DC cannot prove the existence of non-measurable sets of reals, one
must assume the consistency of ZFC plus the existence of a large cardinal
[Sol70, She84]. Although this is not a particularly onerous assumption, it is
why we favored the presentation in terms of the property of Baire.

3.5 The role of square bracket partition relations

As we said earlier, as long as the set of colors is finite there are trivial predic-
tors ensuring that infinitely many agents guess correctly. Thus, the startling
part of the predictor in the Gabay-O’Connor theorem is that “almost ev-
eryone” guesses correctly when using them. Intuitively, it is tempting to
link the need for the axiom of choice with the goal of having a finite-error
predictor.

This intuition, however, is somewhat incomplete. It turns out (as we
momentarily show) that if the set of colors is infinite, then some non-trivial
version of the axiom of choice is needed to obtain a predictor ensuring that
at least one agent guesses correctly, even if every agent can see every other
agent. To prove this, we need a preliminary definition that explains the
“arrow notation” used in discussing generalizations of Ramsey’s theorem.

Definition 3.5.1. The notation ω → (ω)ω2 means that for every function
f : [ω]ω → 2, there exists an infinite set X such that f is constant on [X]ω.
Similarly, the notation ω → [ω]ωω means that for every function f : [ω]ω → ω,
there exists an infinite set X and a number n ∈ ω such that n /∈ f([X]ω).

Adrian Mathias [Mat77] showed that if ZFC plus the existence of a large
cardinal is consistent, then so is ZF + DC together with the assertion that
ω → (ω)ω2 . We only need the (apparently) weaker assertion ω → [ω]ωω, and
the following easy consequence of it.
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Lemma 3.5.2. Assume ω → [ω]ωω. Then for every X ∈ [ω]ω and every
function f : [X]ω → ω, there exists an infinite set X ′ ⊆ X and a number
n ∈ X such that n < min(X ′) and for every Y ∈ [X ′]ω, we have f(Y ) 6= n.

Proof. Given f : [X]ω → ω, define g : [X]ω → X by setting g(Y ) = f(Y )
if f(Y ) ∈ X and g(Y ) = min(X) otherwise. Because ω → [ω]ωω, we can (by
identifying X with ω) choose X ′′ ∈ [X]ω and n ∈ X such that n /∈ f([X ′′]ω).
Letting X ′ = X ′′ − {0, . . . , n} works.

The following theorem is inspired by results in Fred Galvin and Karel
Prikry’s 1976 paper [GP76].

Theorem 3.5.3. Consider the version of the hat problem in which A = ω,
K = ω, and each agent gets to see all of the other hats. Assume that
ω → [ω]ωω. Then for every predictor there exists a hat assignment under
which every agent guesses incorrectly.

Proof. Assume that ω → [ω]ωω and that P = 〈Gn : n ∈ ω〉 is a predictor in
which everyone gets to see everyone else’s hat. We will inductively construct
a sequence 〈(xn, Xn) : n ∈ ω〉 of pairs such that x0 < x1 < · · · and X0 ⊃
X1 ⊃ · · · and such that for each n ∈ ω, the following hold:

1. xn ∈ Xn and Xn ∈ [ω]ω.

2. xn < min(Xn+1).

3. For each Y ∈ [Xn+1]
ω, if 〈y0, y1, . . .〉 is the increasing enumeration of

Y , then Gn(〈x0, . . . , xn−1, ∗, y0, y1, . . .〉) 6= xn for any value of *. Notice
that Gn(〈x0, . . . , xn−1, ∗, y0, y1, . . .〉) is uniquely determined regardless
of what number is substituted for * (i.e., agent n cannot see his own
hat).

We begin with X0 = ω. Suppose now that n ≥ 0 and that we have con-
structed Xn as well as xk for each k with 0 ≤ k < n. Let f : [Xn]ω → ω be
given by f(Y ) = Gn(〈x0, . . . , xn−1, ∗, y0, y1, . . .〉). By Lemma 3.5.2, we can
choose xn ∈ Xn and Xn+1 ∈ [Xn]ω such that xn < min(Xn+1) and for each
Y ∈ [Xn+1]

ω, f(Y ) 6= xn. That is, for each Y ∈ [Xn+1]
ω, if 〈y0, y1, . . .〉 is the

increasing enumeration of Y , then Gn(〈x0, . . . , xn−1, ∗, y0, y1, . . .〉) 6= xn.

3.6 Open questions

The single most prominent open question related to the material in this
chapter is the following:



CHAPTER 3. FULL VISIBILITY 30

Question 3.6.1. Is the Gabay-O’Connor theorem equivalent to the axiom
of choice?

We also don’t know the answer to the following question about the par-
tition relations that we used in this chapter.

Question 3.6.2. Does ω → [ω]ωω imply ω → (ω)ω2 ?

Question 3.6.3. Assume ZF + DC + the assumption that for every pre-
dictor with A = ω and K = ω there exists a hat assignment under which
every agent guesses incorrectly. Does ω → [ω]ωω? Does ω → (ω)ω2 ?

Question 3.6.4. Assuming ZF + DC + ω2 is compact, Proposition 1.4.7
showed that if V (n) is finite for each n, then for every predictor there is a
hat assignment making everyone guess incorrectly. Assume ZF + DC + the
assumption that if V (n) is finite for each n, then for every predictor there
is a hat assignment making everyone guess incorrectly. Can one prove ω2 is
compact?



Chapter 4

The Denumerable Setting:
One-Way Visibility

4.1 Background

In this chapter, we again have ω as the set of agents, but we only consider
one-way visibility on ω. That is, if x sees y then x < y. For this reason, an
undirected graph serves as a visibility graph by saying that a sees b iff a < b
and a is adjacent to b in the graph.

Our starting point in Section 4.2 is to use the µ-predictor from Chapter 1
to completely characterize those transitive graphs adequate for minimal and
optimal predictors. In Section 4.3, we handle the non-transitive character-
ization for optimal predictors. For minimal predictors, this is still an open
question, and we explore a particular visibility relation called the “parity
relation” in Section 4.4 and Section 4.5.

Section 4.6 deals with P-point ultrafilters and Ramsey ultrafilters on ω,
and this requires a few definitions that we now motivate and present.

On ω, a minimal predictor will be one ensuring at least one correct guess,
but with one-way visibility this is easily seen to be equivalent to requiring
infinitely many correct guesses. So if I = [ω]<ω, then a minimal predictor is
one ensuring that the set of agents guessing correctly is of positive I-measure
and a finite-error predictor is one ensuring that the set of agents guessing
correctly is of I-measure one.

In the context of ideals, it is often more natural to use terminology
based on the set of agents who guess correctly than on the set of agents who
guess incorrectly. Hence, with I = [ω]<ω, we will sometimes speak of posi-
tive I-measure predictors rather than minimal predictors and I-measure one

31
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predictors rather than finite-error predictors; we also use similar terminology
with other ideals and ultrafilters.

4.2 Optimal and minimal predictors for transitive
graphs

In this section, we consider two questions: For which transitive visibility
graphs on ω do we get a finite-error predictor? For which transitive visibility
graphs on ω do we get a minimal predictor?

Theorem 4.2.1. Suppose V is an undirected graph on ω and consider the
hat problem with one-way visibility given by V . Assume also that V is tran-
sitive. Then the following are equivalent:

1. The graph V contains no infinite independent subgraph.

2. There exists a finite-error predictor for any set K of colors.

3. There exists a finite-error predictor for 2 colors.

Proof. Suppose first that V contains no infinite independent set, and for
each a ∈ ω, we have ≡a defined on ωK by f ≡a g iff f(b) = g(b) for every b
that a can see. We claim that the µ-predictor from Section 1.3 is the desired
finite-error predictor.

Suppose for contradiction that there are infinitely many agents who guess
incorrectly for some coloring f while using the µ-predictor. By Ramsey’s
theorem and the fact that V contains no infinite independent set, we can
assume that, among these agents guessing incorrectly, i can see j whenever
i < j. The following two claims now yield an infinite descending chain in
the well ordering of ωK, and this will be our desired contradiction.

Claim 1. If i < j, then 〈f〉i � 〈f〉j .
Proof. Because i < j we have V (i) ⊇ V (j) by transitivity. Hence

[f ]i ⊆ [f ]j , because any coloring consistent with what i sees will be consistent
with what j sees. Hence the ≺-least element 〈f〉j of the bigger set [f ]j will
be at least as small as the ≺-least element 〈f〉i of the smaller set [f ]i.

Claim 2. If i < j, then 〈f〉i 6= 〈f〉j .
Proof. Because i sees j, we have that 〈f〉i(j) = f(j). But because

j guesses incorrectly for the coloring f , we have 〈f〉j(j) 6= f(j). Thus
〈f〉i(j) 6= 〈f〉j(j) so 〈f〉i 6= 〈f〉j .

This completes the proof that (1) implies (2). The proof that (2) implies
(3) is trivial. Finally, for (3) implies (1) we invoke Proposition 1.4.3 which
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guarantees that for any predictor, we can make everyone in an independent
set wrong.

Turning now to minimal strategies, there is a very satisfying character-
ization of the amount of visibility needed in the case where the visibility
graph V is transitive.

Theorem 4.2.2. Suppose V is an undirected graph on ω and we consider
the hat problem with one-way visibility given by V . Assume also that V is
transitive. Then the following are equivalent:

1. The graph V contains an infinite path x0V x1V x2V · · · .

2. The graph V contains an infinite complete subgraph.

3. There exists a minimal predictor for any set K of colors.

4. There exists a minimal predictor for 2 colors.

Proof. The fact that (1) implies (2) is immediate, because V is transitive,
and (2) implies (3) because we can use the µ-predictor on the agents in the
complete subgraph (and simply ignore all other agents). As (3) implies (4)
is also trivial, it suffices to prove that (4) implies (1).

Assume that V contains no infinite path and let P be any predictor for
2 colors. We will use Proposition 1.4.2 to produce a coloring that makes
everyone guess wrong, and for this it suffices to show that B(ω) = ω. To
see this, suppose not and note that if x /∈ B(ω), then V (x) * B(ω). Using
this we can immediately construct an infinite path x0V x1V x2V · · · , which
we are assuming does not exist.

Theorems 4.2.1 and 4.2.2 are generalized to the context of ideals in Sec-
tion 5.3.

4.3 Characterizing graphs yielding finite-error pre-
dictors

We now generalize Theorem 4.2.1 to the case of graphs on ω that are not
necessarily transitive. This result is due to the first author and can be found
in [H10].
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Theorem 4.3.1. Suppose V is an undirected graph on ω and we consider
the hat problem with one-way visibility given by V . Then the following are
equivalent:

1. The graph V contains no infinite independent subgraph.

2. There exists a finite-error predictor for any set K of colors.

3. There exists a finite-error predictor for 2 colors.

Proof. To prove that (1) implies (2), we will inductively throw edges in the
graph V away until we arrive at an induced subgraph V ′ (still with vertex
set ω) that is transitive. Moreover, we will do this in such a way that V ′

still contains no infinite independent set. At this point the proof that (1)
implies (2) follows immediately from Theorem 4.2.1, because we can just
ignore visibilities corresponding to the edges that we throw out in arriving
at V ′.

At stage n, the only edges that will be deleted from V will have right
endpoint n. Stage n itself will consist of n steps, where at step j we make a
decision as to whether V ′ will have an edge from j to n. If there is no edge
from j to n in V , then there will certainly be no edge from j to n in V ′,
as we want V ′ to be an induced subgraph of V . However, if we have jV n
in V , then we will delete this edge if there is some i < j such that, in the
induced subgraph so far constructed, we have iV jV n but i not adjacent to
n. If there is no such i < n, we leave the edge from j to n in and move on
to step j + 1.

Claim 1. V ′ is transitive.
Proof. Suppose that we have i < j < n and, in V ′, iV jV n. Then we

must also have iV n or else at step j of stage n we’d have thrown out the
edge from j to n.

Claim 2. V ′ contains no infinite independent set.
Proof. Assume that V ′ contains an infinite independent set. We first

construct from this assumption what might be called a “leftmost” infinite
independent set, and then we’ll use this to show that there must have already
existed an infinite independent set in V .

Choose an infinite independent set with smallest possible first element,
and call this element x0. Now, among all infinite independent sets with
first element x0, choose one with smallest possible second element and call
this element x1. Continuing this yields the independent set we want as
{x0, x1, . . .}.
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We now claim that each xj is adjacent to only finitely many xn in the
original graph V ; this will give us our desired contradiction as it immediately
yields an infinite independent set in V .

So suppose for contradiction that we have xj adjacent to infinitely many
xn in V . Then, in passing to V ′, all these edges had to be thrown away.
Each such deleted edge was based on some i < xj , and so there must be a
single such i corresponding to infinitely many of the xn. In particular, this
means that iV xj (so i 6= xp for any p < n) and i is independent from xn for
infinitely many n.

We can’t have i < x0 because i, together with the infinitely many xn
that it is independent from would contradict our choice of x0. Let xp be the
largest of the original xns that is less than i. Then xp, i, and the xns that
are independent from i contradict our choice of xp+1.

This completes the proof that (1) implies (2). The proofs that (2) implies
(3) and (3) implies (1) are exactly as in Theorem 4.2.1.

In the next section we show that the result for minimal predictors in the
transitive setting does not hold in the non-transitive setting.

4.4 ZFC results for the parity relation

For some kinds of hat problems, the results in the transitive case carry over
to the nontransitive case, but are just (apparently) harder to prove. For
example, in the transitive case with 2 or more colors, a finite-error predictor
exists iff there is no sequence xn of players such that xi cannot see xj for
i ≤ j, and the proof is fairly succinct; in the nontransitive case, the same
holds when there are countably many players (the uncountable case is open),
but the proof, as seen in the last section, is more elaborate. So, it would be
natural to speculate that the situation with minimal predictors is similar,
and that Theorem 4.2.2 holds in the nontransitive case, but with a more
complicated proof. However, it turns out that the nontransitive case is
very unlike the transitive case here, and that minimal predictors can exist
without having an infinite chain of visibility. Moreover, the existence of
minimal predictors can now depend on the number of colors, in some cases
yielding independence results.

To exhibit these phenomena that distinguish the nontransitive case from
the transitive case, we consider in this section and the next two the visibility
graph on ω in which evens see higher-numbered odds and odds see higher-
numbered evens; we call this the parity relation, and denote the graph by
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EO. This directed graph is (essentially) isomorphic to the one on A = 2×ω
where (i,m) sees (j, n) iff i 6= j and m < n. In what follows, we will freely
switch back and forth between ω and 2× ω.

The parity relation is notable for having many infinite paths but being
highly nontransitive in the sense that when xEOy and yEOz we never have
xEOz.

Notationally, we will use A0 for both the set of evens and for {0}×ω and
A1 for both the set of odds and for {1}×ω. Similarly, we will often think of
a hat assignment f as a pair (f0, f1) where f i specifies the hat assignment
for Ai, and a predictor P as a pair (P 0, P 1) where P i tells us how the agents
in Ai guess (as a function of f1−i).

Our starting point for discussing EO is the following theorem; the n = 2
case appeared in [HT10] and the general case was obtained by D. J. Velleman
[Vel11]. The proof relies on Theorem 2.2.3.

Theorem 4.4.1. If there are finitely many colors, then there is a minimal
predictor for the parity relation EO.

Proof. Assume there are k > 1 colors, and let n be the number of agents in
team 1 in the proof of Theorem 2.2.3. Split the odd players into infinitely
many teams of size n, and the even players into infinitely many teams of
size k − 1. Pair each even team of size k − 1 with an odd team of size
n with higher numbers. Each even team will proceed as in the proof of
Theorem 2.2.3 with the odd team it has been paired with. Since the odd
team has higher numbers, the even team can see their hats, so they can play
the strategy from Theorem 2.2.3. Unfortunately, the odd team can’t see
the hats of the even team. So they will guess the colors of the hats of the
even team and then play according to this guess. If any odd team guesses
correctly, then someone will guess his hat color correctly.

Since there are infinitely many teams of size k− 1 among the even play-
ers, there is at least one i such that infinitely many even teams have hat
assignment hi. Let i0 be the least such i. Since each odd player can see
all but finitely many of the even hat colors, the odd players all know i0.
They all guess that their opposing team has hat assignment hi0 and play
accordingly. Then for each of the infinitely many even teams that has hat
assignment hi0 , the odd team that they are paired with correctly guesses
their hat assignment and therefore plays correctly according to the strat-
egy in the proof of Theorem 2.2.3. Therefore someone guesses his hat color
correctly.

At the other extreme (in terms of number of colors) we have the following.
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Theorem 4.4.2. If there are ω2 colors, then there is no minimal predictor
for the parity relation EO.

Proof. Fix any predictor P = (P 0, P 1). For any ordinal α, let cα be the
function on ω that is constantly α. We intend to color A0 with cβ for some
β ∈ ω1, and color A1 with cγ for some γ ∈ ω2.

Since ω2 is regular, we can choose γ ∈ ω2 such that γ > P 1(cα)(n) for
every α ∈ ω1 and n ∈ ω. Now choose β ∈ ω1 such that β > P 0(cγ)(n) for
every n ∈ ω such that P 0(cγ)(n) ∈ ω1. Then, under the hat assignment
(cβ, cγ), everyone guesses incorrectly.

What is really going on in the above argument is that given functions
S0 : ω2 → ω1 and S1 : ω1 → ω2, there is a pair (β, γ) such that β > S0(γ)
and γ > S1(β): just choose γ above the supremum of S1, and β above S0(γ).

4.5 Independence results for the parity relation

Somewhat surprisingly, there seems to be a close connection between the
existence of minimal predictors for the parity relation EO and properties
of the ideal of meager sets of real numbers. In fact, our consistency results
make use of two prominent cardinal invariants; these and several others all lie
between ℵ1 and 2ℵ0 , and the relationships between them are well understood;
a summary can be found in [Jec03, pp. 532–533] while [BJ95, Bar10, Mil81]
provide detailed accounts. We say that functions f and g infinitely agree if
f ∩ g is infinite, and only finitely agree if f ∩ g is finite.

Definition 4.5.1. With M denoting the ideal of meager subsets of R,

(a) cov(M) is the least cardinality of a subset of M whose union is R;

(b) non(M) is the least cardinality of a nonmeager set.

Lemma 4.5.2 ([BJ95, pp. 54–59]).

(a) cov(M) is the smallest size of a family F ⊆ ωω such that (∀g ∈ ωω)(∃f ∈
F ) f and g only finitely agree.

(b) non(M) is the smallest size of a family F ⊆ ωω such that (∀g ∈
ωω)(∃f ∈ F ) f and g infinitely agree.

The following definition and lemma are key to the positive results for
the parity relation EO.
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Definition 4.5.3. A family G is agreeable if for any F ⊆ G with |F | < |G|,
there is a g ∈ G such that for each f ∈ F , the functions g and f infinitely
agree.

Lemma 4.5.4. If ων is agreeable, then then there is a minimal predictor
for the parity relation EO.

Proof. Let λ = |ων| and fix a well-ordering � of ων of order type λ. For
any f ∈ ων, let f̂ be �-minimal such that f̂ and f eventually agree. The
agents’ strategies will be that for a hat assignment (f0, f1), the agents in

P i will assume f̂ i � f̂1−i and guess according to a function that infinitely
agrees with each g � f̂1−i; at least one of those assumptions will turn out
to be correct, yielding a minimal predictor.

We define A : ων → ων as follows. For any f ∈ ων we have |{g ∈ ων : g �
f̂}| < λ, so by the agreeability of ων, we can choose A(f) to infinitely agree
with each g � f̂ . Note that for a hat assignment (f0, f1), an agent in P i

can only see the values of f1−i on a tail of ω, but this is enough information
to determine f̂1−i and hence A(f1−i). The predictor P is defined by letting
agents in P i guess according to A(f1−i).

For any hat assignment (f0, f1), we have f̂0 � f̂1 or f̂1 � f̂0. Suppose
the former. Then A(f1) infinitely agrees with f̂0, and since f̂0 and f0

eventually agree, A(f1) also infinitely agrees with f0, so infinitely many
agents in P 0 guess correctly. Similarly, if f̂1 � f̂0, infinitely many agents in
P 1 guess correctly.

An immediate consequence of Lemma 4.5.4 is the following.

Theorem 4.5.5. If CH holds and there are ω1 colors, then there is a min-
imal predictor for the parity relation EO.

Proof. It suffices to show that ωω1 is agreeable. Note that under CH, |ωω1| =
ℵ1. Take any F ⊆ ωω1, |F | < ℵ1. Since F is countable, we can produce a
sequence of functions f0, f1, . . . ∈ ωω1 in which each f ∈ F appears infinitely
often. The function g(n) = fn(n) infinitely agrees with every f ∈ F .

In fact, in models of ZFC + non(M) = 2ℵ0 = ℵ2, the existence of a min-
imal strategy with ω colors is equivalent to a number of natural conditions,
as the following theorem shows.

Theorem 4.5.6. Assume non(M) = 2ℵ0 = ℵ2. Then the following are
equivalent:
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1. cov(M) = ℵ2.

2. MAℵ1(countable).

3. ωω is agreeable.

4. There is a minimal predictor for the parity relation EO with ω colors.

Proof. (1)⇔(2) can be found in [BJ95, p. 138].
(1)⇒(3) is an easy consequence of Lemma 4.5.2(a), but we offer a direct

argument of (2)⇒(3) for the sake of making the connection intuitively clear.
Let Q be the partial order of finite partial functions from ω to ω, ordered by
reverse inclusion, and note that Q is countable. Take any F ⊆ ωω with |F | <
|ωω| = ℵ2. For f ∈ F and n ∈ ω, let Df,n = { q ∈ Q : n ∈ dom(q) & (∃k ≥
n) q(k) = f(k) }, which is dense in Q. Let D = {Df,n : f ∈ F, n ∈ ω }. We
have |D| ≤ ℵ1, so by MAℵ1(countable), there is a D-generic filter G ⊆ Q.
Letting g = ∪Q ∈ ωω, g infinitely agrees with each f ∈ F . Therefore, ωω is
agreeable.

(3)⇒(4) is immediate from Lemma 4.5.4.
(4)⇒(1): Supposing cov(M) = ℵ1, we will show that there is no minimal

strategy for ω colors. Let F be as in Lemma 4.5.2(a), with |F | = ℵ1. Take
any predictor P = (P 0, P 1). We intend to color A0 with some f0 ∈ F . Let
F ′ = {P 1(f) : f ∈ F }. Since |F ′| ≤ ℵ1 < non(M), Lemma 4.5.2(b) gives us
f1 ∈ ωω such that (∀f ∈ F ′) f and f1 only finitely agree. By our choice of
F , there exists f0 ∈ F such that f0 only finitely agrees with P 0(f1). Then
P has only finitely many correct guesses under hat assignment f = (f0, f1),
so there is no predictor ensuring infinitely many correct guesses and thus no
minimal predictor.

The above theorem establishes the independence of the existence of a
minimal strategy for the parity relations with ω colors from ZFC+non(M) =
2ℵ0 = ℵ2: adding ℵ2 random reals to a model of CH yields a model in which
cov(M) = ℵ1 + non(M) = 2ℵ0 = ℵ2 [Mil81, p. 109], and it is well known
that models of MA + 2ℵ0 = ℵ2 have cov(M) = non(M) = 2ℵ0 = ℵ2.

4.6 The role of P-point and Ramsey ultrafilters

In this section we consider the situation in which we have an ideal I on ω
and we ask how much visibility is needed for an I-measure one predictor
(which we refer to as an I∗-predictor); this material is taken from [T12].
The following theorem gives a natural sufficient condition and a natural
necessary condition.
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Theorem 4.6.1. Suppose V is an arbitrary visibility graph on ω and con-
sider the hat problem with one-way visibility given by V . Assume that I is
an ideal on ω.

1. For there to exist an I∗-predictor, it is sufficient to have V ∈ I∗ × I∗.

2. For there to exist an I*-predictor, it is necessary to have no indepen-
dent set in I+.

Proof. For (1), we have V ∈ I∗ × I∗ iff {n ∈ ω : V (n) ∈ I∗ } ∈ I∗. It’s
now immediate that the proof of the Gabay-O’Connor theorem goes through
with any ideal in place of [ω]<ω. The proof of (2) consists of the observation
that we can always make everyone in an independent set guess wrong by
Corollary 1.4.3.

At this point, two questions suggest themselves. For which ideals is the
obvious sufficient condition from (1) also necessary? And for which ideals is
the obvious necessary condition from (2) also sufficient? We introduce some
terminology for such ideals.

Definition 4.6.2. An SIN ideal I on ω is one for which the obvious sufficient
condition for the existence of an I∗-predictor (V ∈ I∗×I∗) is also necessary.

An NIS ideal I on ω is one for which the obvious necessary condition for
the existence of an I∗-predictor (no independent set of positive I-measure)
is also sufficient.

“SIN” stands for “sufficient is necessary” and “NIS” stands for “neces-
sary is sufficient.” We read each of these prefixes letter-by-letter (“S-I-N”
instead of “sin”) and thus use the article “an” as opposed to “a.”

In Section 4.3 we showed that the ideal I = [ω]<ω is an NIS-ideal (that is,
for every graph on ω with no infinite independent set, there is a finite-error
predictor). On the other hand, it is not hard to see (as we now demonstrate)
that if I is an SIN-ideal then I∗ is an ultrafilter. To see this, suppose that
I∗ is not an ultrafilter and let X ⊆ ω be such that both X and ω−X are of
positive I-measure. Consider the graph V in which there is an edge from x
to y iff they are distinct points in X or distinct points in ω −X. Then, for
every n, we have V (n) /∈ I∗ but the agents in X have a finite-error predictor
among themselves as do the agents in ω − X. Thus, there is a finite-error
predictor and hence an I∗-predictor, showing that the sufficient condition is
not necessary.

In part because of this observation, we restrict attention in this section
to the question of when an ultrafilter U on ω is an SIN-ultrafilter and when
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it is an NIS-ultrafilter. Rather surprisingly, the answers turn out to involve
two well-known and oft-studied classes.

Definition 4.6.3. An ultrafilter U on ω is a P -point ultrafilter if every
function defined on a set in U is either constant on a set in U or finite-to-one
on a set in U . It is a Ramsey ultrafilter if every function defined on a set in
U is either constant on a set in U or one-to-one on a set in U .

It is known that CH (or MA) implies there are both Ramsey ultrafilters
and P-point ultrafilters that are not Ramsey, but it is also consistent with
ZFC that even P-point ultrafilters don’t exist [Wim82]. Ramsey ultrafilters
get their name from the fact that they are precisely the ones for which
every graph on ω has either a complete subgraph in the ultrafilter or an
independent subgraph in the ultrafilter. But our use for these classes is in
the two upcoming theorems.

Theorem 4.6.4. An ultrafilter on ω is an SIN-ultrafilter iff it is a P-point
ultrafilter.

Proof. Suppose first that U is not a P-point and choose f : X → ω such
that X ∈ U and f is neither constant on a set in U nor finite-to-one on a
set in U . Let V be the graph on ω in which n is adjacent to m iff n 6= m
and f(n) = f(m). No agent sees a set in U . However, for each k ∈ ω,
the agents in f−1({k}) have a finite-error predictor among themselves, and
the combined use of these predictors will ensure that the set of errors is a
set upon which the function f is finite-to-one, and thus not in U . Hence,
we have a U-predictor even though each agent sees only a set of agents of
U-measure zero.

Now suppose that U is a P-point and V is a graph on ω for which
{n ∈ ω : V (n) ∈ U } /∈ U . Thus, the set Y = {n ∈ ω : V (n) /∈ U } ∈ U . Let
〈Sn : n ∈ ω〉 be any predictor. We will produce a coloring for which a set in
U of agents guesses incorrectly.

Let X = {n ∈ Y : ∃k ∈ Y, {k, n} ∈ V }. If X /∈ U then Y − X is an
independent set in U and we can easily produce a coloring making everyone
in this set guess incorrectly. If X ∈ U , then consider the function f defined
on X that maps n to the least k < n such that k ∈ Y and {k, n} ∈ V .
Because U is a P-point, there is a set Z ∈ U such that f is either constant
or finite-to-one on Z. If f(Z) = {k}, then k ∈ Y and V (k) ∈ U , contrary to
the definition of Y . Thus, f is finite-to-one on Z.

Notice that each agent in Z sees only finitely many other agents in Z.
It now follows from Proposition 1.4.7 that there is a coloring that makes
everyone in Z guess incorrectly, and thus completes the proof.
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Theorem 4.6.5. An ultrafilter on ω is an NIS-ultrafilter iff it is a Ramsey
ultrafilter.

Proof. Suppose first that U is a Ramsey ultrafilter and that V is a graph
on ω having no independent subgraph with vertex set in U . Because U is
Ramsey it follows that there is a complete subgraph with vertex set X ∈ U .
But now we know that the agents in X have a finite-error strategy among
themselves and this ensures correct guesses by a set of agents in U as desired.

Suppose now that U is not a Ramsey ultrafilter, and choose f defined on
X ∈ U such that f is not constant on any set in U and f is not one-to-one
on any set in U . We consider two cases:

Case 1: There exists a set Y ∈ U such that f is finite-to-one on Y .
Let V be the graph on ω in which n is adjacent to m iff n 6= m and

f(n) = f(m). If Z is an independent set in V , then f |Z is one-to-one,
and so Z /∈ U . Now as in the proof of the previous theorem, we have that
each agent in Y sees only finitely many other agents in Y , and so for any
predictor, Proposition 1.4.7 yields a hat coloring for which every agent in Y
guesses incorrectly. This shows the necessary condition is not sufficient.

Case 2: f is not finite-to-one on any set in U .
Let V be the graph on ω in which n is adjacent to m iff n < m and

f(n) > f(m) (or vice-versa). Suppose Z ∈ U ; we’ll show that Z is not
an independent set in V . We know that f is not finite-to-one on Z so
we can choose p such that infinitely many points of Z map to p. But
{x ∈ Z : f(x) ≤ p } /∈ U and so we can choose n ∈ Z such that f(n) > p.
But now if we choose m ∈ Z such that m > n and f(m) = p, then m,n ∈ Z,
n < m, and f(n) > f(m) so we have an edge from V in Z. But for any
predictor, we make everyone in the set X guess incorrectly by Proposition
1.4.2. This completes the proof.

We conclude this section with one more question whose answer turns out
to involve P-point ultrafilters. Our starting point is the observation that for
every ultrafilter U on ω and every graph V on ω, either V or V c provides
enough visibility for a U-predictor, where V c is the graph whose edge set is
the complement of V ’s edge set. Is there an ultrafilter U for which there is
a graph so that both it and its complement provide enough visibility for a
U-predictor? Are there other ultrafilters for which it is always exactly one
of V and V c that provides enough visibility? The following answers both of
these questions.

Theorem 4.6.6. For any ultrafilter U on ω, the following are equivalent:
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1. U is a P-point ultrafilter.

2. U is an SIN-ultrafilter.

3. The collection of graphs yielding a U-predictor is closed under finite
intersections.

4. There is no graph V for which V and V c both yield a U-predictor.

5. For every graph V , exactly one of V and V c yields a U-predictor.

Proof. We know that (1) and (2) are equivalent. For (2) implies (3), notice
that if V1, . . . , Vn are graphs yielding U-predictors and Xk = {x : Vk(x) ∈
U }, then Xk ∈ U for each k. But then X = X1 ∩ · · · ∩ Xk ∈ U and for
any x ∈ X we have V1(x) ∩ · · · ∩ Vn(x) ∈ U . This is sufficient to yield a
U-predictor for the intersection of the graphs. Now (3) implies (4) is trivial,
as is (4) implies (5). Finally, for (5) implies (2), suppose that U is not an
SIN-ultrafilter. Then there exists a graph V such that {n : V (n) ∈ U } /∈ U ,
but for which there is a U-predictor. But now V c satisfies the sufficient
condition for a U-predictor, so we have both a graph and its complement
yielding a U-predictor.

4.7 U-predictors

We begin this section with a finer analysis of the relationship between an
ultrafilter U on ω and an undirected graph V on ω. Our starting point is
with an obvious implication that holds for every ultrafilter U on ω and every
graph V on ω.

For some X ∈ U , V |X is complete.

⇓

For all X ∈ U , V |X is not independent.

An ultrafilter U is a Ramsey ultrafilter iff for every graph V there is a
set X ∈ U such that either V |X is complete or V |X is independent. Thus,
for a (fixed) ultrafilter U , the implication above reverses (for every V ) iff
the ultrafilter is a Ramsey ultrafilter. We will denote this unique reversal
for Ramsey ultrafilters with an implication sign (as above) followed by an
“R” for “Ramsey” and an exclamation point for the uniqueness (i.e., the
non-reversal for non-Ramsey ultrafilters). Our picture now becomes:
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For some X ∈ U , V |X is complete.

⇓ ⇑ R!

For all X ∈ U , V |X is not independent.

For a first pass at a finer analysis of this relationship between ultrafilters
and graphs, recall that U is a P-point if every function defined on a set in U is
either constant on a set in U or finite-to-one on a set in U . In a similar vein,
and ultrafilter U is called a Q-point if every finite-to-one function defined
on a set in U is one-to-one on a set in U . It follows immediately from the
definition of a Ramsey ultrafilter that U is Ramsey iff U is both a P-point
and a Q-point.

If V is a graph on ω and X ⊆ ω, then we’ll say that V |X is complete
(mod [ω]<ω) if X − V (x) is finite for every x ∈ X. Similarly, we’ll say that
V |X is independent (mod [ω]<ω) if X ∩ V (x) is finite for every x ∈ X. Our
picture now becomes the following.

For some X ∈ U , V |X is complete.

⇓ ⇑ Q!

For some X ∈ U , V |X is complete (mod [ω]<ω).

⇓ ⇑ P !

For all X ∈ U , V |X is not independent (mod [ω]<ω).

⇓ ⇑ Q!

For all X ∈ U , V |X is not independent.

As we’ve said, U is a Ramsey ultrafilter iff for every graph V there exists
a set X ∈ U such that either V |X is complete or V c|X is complete. The
reversal of the implication for P-points is the assertion that U is a P-point iff
for every graph V there exists a set X ∈ U such that either V |X is complete
(mod [ω]<ω) or V c|X is complete (mod [ω]<ω). There appear to be two
reversals for Q-points, but one is just the contrapositive of the other applied
to the complement of the graph. The underlying assertion is that U is a
Q-point iff for every graph V , if there exists a set X ∈ U such that V |X
is complete (mod [ω]<ω), then there exists a set Y ∈ U such that V |Y is
complete.
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Turning now to U-predictors, we also embellish our diagram of implica-
tions with a few more boxes, and these require some notation and terminol-
ogy.

Definition 4.7.1. If V is a graph on ω, then a set X ⊆ ω will be called
V -scattered if every non-empty subset Y of X contains a point y such that
V (y) ∩ Y = ∅.

The following definition is a slight modification of Definition 1.4.1.

Definition 4.7.2. If V is a graph on ω andX ⊆ ω, then we define a sequence
〈Bα(X) : α < ω1〉 by setting B0(X) = X and, for α > 0, y ∈ Bα(X) iff
V (y) ⊆ ∪{Bβ(X) : β < α }. We let B(X) = ∪〈Bα(X) : α < ω1〉.

Definition 4.7.3. A predictor P is robust if it disregards finite differences;
that is, if f∆g is finite, then P (f) = P (g). A predictor P is U-robust if,
whenever f∆g /∈ U , P (f) = P (g).

Our diagram now becomes the following:

1. For some X ∈ U , V |X is complete.

⇓ ⇑ Q!

2. For some X ∈ U , V |X is complete (mod [ω]<ω).

⇓ ⇑ P !

3. V ∈ U × U .

m

4. V c /∈ U × U .

m

5. There exists a U-robust U-predictor for V .

⇓ ⇑ P !

6. There exists a robust U-predictor for V .

⇓ ⇑ P
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7. There exists a U-predictor for V .

⇓ ⇑ P

8. If X /∈ U , then B(X) /∈ U .

m

9. For all X ∈ U , X is not V -scattered.

m

10. For all X ∈ U , V |X has an infinite path.

⇓ ⇑ P !

11. For all X ∈ U , V |X is not independent (mod [ω]<ω).

⇓ ⇑ Q!

12. For all X ∈ U , V |X is not independent.

Theorem 4.7.4. The implications indicated in the above diagram are all
valid.

Proof. We begin with the proofs of the eleven implications from the top of
the diagram to the bottom.

1 ⇒ 2. If V |X is complete, then V |X is complete (mod [ω]<ω).
2 ⇒ 3. If V |X is complete (mod [ω]<ω), then V (x) is cofinite in X for

each x ∈ X, and thus V (x) ∈ U for each x ∈ X. Hence, V ∈ U × U .
3 ⇔ 4. U × U is an ultrafilter, so V ∈ U × U iff V c /∈ U × U .
4 ⇒ 5. Because V c /∈ U × U , we know V ∈ U × U . We can now modify

the proof of the Gabay-O’Connor theorem to get a robust U-predictor as
follows. For h, g ∈ ωK, say h ≈ g if { a ∈ ω : h(a) = g(a) } ∈ U ; this is an
equivalence relation on ωK. By the axiom of choice, there exists a function
Φ : ωK → ωK such that Φ(h) ≈ h and if h ≈ g, then Φ(h) = Φ(g). Thus,
Φ is choosing a representative from each equivalence class. Notice that for
each coloring h, each agent a knows the equivalence class [h], and thus Φ(h),
because the agent can see the hats of a set of agents in U . The strategies
are then to have the agents guess their hat colors according to the chosen
representative of the equivalence class of the coloring; more formally, we are
letting Sa(h) = Φ(h)(a). For any coloring h, since this representative Φ(h)
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only differs from h in a set not in U , the set of agents guessing correctly will
be in U . We can also observe that this predictor is U-robust, based on the
nature of ≈.

5 ⇒ 6 ⇒ 7 are trivial.
7 ⇒ 8. Assume that B(X) ∈ U for some X /∈ U . Then, for any pre-

dictor, we can produce a hat assignment for which all the agents in B(X)
guess incorrectly. To do this, we begin by placing hats on the agents in X
arbitrarily and then proceed inductively on the sets Bα(X).

8 ⇒ 9. Suppose we have a set Y ∈ U that is V -scattered. Let X = Y c.
Then X /∈ U , but we claim that B(X) = ω, and is thus in U . To see
this, assume that ω − B(X) 6= ∅, and note that ω − B(X) ⊆ Y . Choose
y ∈ ω−B(X) such that V (y)∩ (ω−B(X)) = ∅, and thus V (y) ⊆ B(X). It
now follow that y ∈ B(X), and this is a contradiction.

9 ⇒ 10. Assume X ∈ U . Then X is not V -scattered so there exists a
non-empty Y ⊆ X such that for every y ∈ Y , we have V (y) ∩ Y 6= ∅. Thus
having chosen y0, . . . , yn ∈ Y , we can choose yn+1 ∈ V (yn) ∩ Y . This yields
the desired infinite path in X.

10 ⇒ 11. Assume there exists a set X ∈ U that is independent (mod
[ω]<ω). We define a sequence 〈Bn : n ∈ ω〉 of consecutive blocks of integers in
X by choosing Bn+1 long enough so that if x ∈ Bn, then V (x) ⊆ Bn∪Bn+1.
Then either the union of the even-indexed blocks is in U or the union of the
odd-indexed blocks is in U . Either way yields a set in U with no infinite
path.

11 ⇒ 12. If V |X is independent, then V |X is independent (mod [ω]<ω).
We will now prove the ten reversals going from the bottom of the diagram

to the top. After this, we prove the uniqueness assertions (i.e., the non-
reversals for ultrafilters that arre not of the type indicated).

12 ⇒ 11 for Q-points. Suppose V |X is independent (mod [ω]<ω) for
some set X ∈ U . Consider the sequence 〈Bn : n ∈ ω〉 of consecutive blocks
of integers in X used in the proof of 9 ⇒ 10 above. Again, either the union
of the even-indexed blocks is in U or the union of the odd-indexed blocks is
in U . And because U is a Q-point, there exists a set Y ∈ U consisting of one
point from each of the blocks. this yields the desired independent set in U .

11 ⇒ 2 for P-points. We show that for every V there exists a set X ∈ U
such that V |X is complete (mod [ω]<ω) or V |X is independent (mod [ω]<ω).
Actually, a much stronger result was announced in [BT78]. If V ∈ U × U
then, because U is a P-point, we can find a set X ∈ U such that for every
x ∈ X we have X ⊆ V (x) (mod [ω]<ω). In this case, V |X is complete (mod
[ω]<ω). Similarly, if if V c ∈ U ×U , then V c|X is complete (mod [ω]<ω), and
so V |X is independent (mod [ω]<ω).
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10 ⇒ 9. Assume X ∈ U and let Y be the infinite path in X. Then for
every y ∈ Y we have V (y) ∩ Y 6= ∅. Thus X is not V -scattered.

9⇒ 8. Assume that B(X) ∈ U but X /∈ U . We’ll show that B(X)−X is
scattered. Assume that Y is a nonempty subset of B(X)−X. Chose y ∈ Y
such that y ∈ Bα(X) and α is minimal. Then α > 0, and so V (y) ∩ Y = ∅.

5 ⇒ 4. If V /∈ U ×U , then {x : V (x) /∈ U } ∈ U (that is, a measure 1 set
of agents have null visibility). If S is a U-robust predictor, then any agent
whose visibility is null is effectively blind, and it is easy to make all such
agents guess incorrectly. So there is no U-robust U-predictor.

4 ⇒ 3. This was done in the proof of 3 ⇒ 4.
We now conclude with proofs of the non-implications.
12 ; 11 for non-Q-points. Suppose that f shows that U is not a Q-point,

and let V be the graph where x and y are adjacent if they are distinct points
with f(x) = f(y). Then for all X ∈ U , V |X is not independent, but V itself
is independent (mod [ω]<ω).

11 ; 10 for non-P-points. Suppose that f shows that U is not a P-point
and let V be the graph where for x < y we have an edge between them if
f(x) > f(y). Then for every X ∈ U , V |X is not independent (mod [ω]<ω),
but there is no infinite path in the graph V .

6 ; 3 for non-P-points. Suppose that f shows that U is not a P-point
and let V be the graph where for x < y we have an edge between them
if f(x) = f(y). Then V /∈ U × U , but there is a U-predictor obtained
as follows. For each n, we let the agents in f−1(n) use a robust finite-
error strategy among themselves, ignoring all other agents. Then, for any
coloring, the function f is finite-to-one on the set of errors and so this set is
not in U .

3 ; 2 for non-P-points. Suppose that f shows that U is not a P-point
and let V be the graph where for x < y we have an edge between them if
f(x) < f(y). Then V ∈ U × U , but for every X ∈ U , some agent x fails to
see infinitely many other agents in the set (namely those in f−1({f(x)})).

2 ; 1 for non-Q-points. Suppose that f shows that U is not a Q-point
and let V be the graph where for x < y we have an edge between them
if f(x) = f(y). Then V itself is complete (mod [ω]<ω), but V |X is not
complete for any X ∈ U .

4.8 Blass’s evasion and prediction setting

Let Zℵ0 denote the direct product of denumerably many copies of the group
(Z,+) and, for each n ∈ ω, let en be the characteristic function of the set
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{n}. Ernst Specker [S50] proved that any homomorphism from Zℵ0 to Z
maps en to 0 for all but finitely many n. He also showed that many of the
subgroups of Zℵ0 with cardinality 2ℵ0 share this property. This raises the
question of whether or not such a subgroup must have cardinality 2ℵ0 , and
this was answered by K. Eda [E83] who showed that the existence of such a
subgroup of size ℵ1 is independent of ZFC + 2ℵ0 = ℵ2.

The connection between these algebraic investigations of Specker and
Eda and the kind of predictors that we are interested in here dates from the
1994 work of Andreas Blass [Bla94] and some initial results he obtained that
relate the minimal size of a subgroup of Zℵ0 satisfying Specker’s theorem
to several of the standard cardinal characteristics of the continuum such
as those that occurred in Section 4.5. The fourth section of Blass’s paper
was entitled “Predicting and Evading,” and this is the area that we wish to
preview here.

Throughout this chapter, “one-way visibility on ω” has meant that agents
never see the hats worn by smaller-numbered agents—that is, “visibility to
the right (or up).” We never speak of “visibility to the left (or down)” on ω
because we know that with finite visibility, there is no minimal predictor.

Blass, however, was led to precisely the situation in which the set of
agents (and the set of colors) is ω and agent n sees the hats worn by agents
0 through n − 1. The assertion that there is no minimal predictor here
implies that for every predictor P , there is a “counterexample” h ∈ ωω
showing that P is not a minimal predictor, and thus that infinitely many
agents in X guess incorrectly for h for every X ∈ [ω]ω. But how large a
“pool” of potential counterexamples from ωω do we need to ensure that for
each predictor we have at least one one such counterexample? This question
leads to the following (extracted from [Bla94]).

Definition 4.8.1. A family E ⊆ ωω is an evading family if for every pre-
dictor P for the hat problem with ω colors, ω agents, and full visibility to
the left, and for every X ∈ [ω]ω, there exists a coloring h ∈ E for which
infinitely many agents in X guess incorrectly. The evasion number e is the
smallest possibility cardinality of an evading family.

Blass obtained a number of results relating e to some of the known
characteristics of the continuum, as well as to some of those arising from his
original algebraic setting. This work led to a series of papers by a number of
other authors, and while all of these results are interesting and important,
they carry us a bit far afield of our present considerations. Nevertheless,
for the sake of the reader who wants to pursue this line, we collect together
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here, in chronological order, a number of these contributions by title and
author.

• 1994: Cardinal characteristics and the product of countably many
infinite cyclic groups, Blass [Bla94].

• 1995: Evasion and prediction - the Specker phenomenon and Gross
spaces, Brendle [Bre95].

• 1996: Evasion and prediction II, Brendle and Shelah [BS96].

• 1998: The Baire category theorem and the evasion number, Kada
[Kad98].

• 2000: Cardinal invariants associated with predictors, Kamo [Kam00].

• 2001: Cardinal invariants associated with predictors II, Kamo [Kam01].

• 2003: Evasion and prediction III: Constant prediction and dominating
reals, Brendle [Bre03].

• 2003: Evasion and prediction IV: Strong forms of constant prediction,
Brendle and Shelah [BS03].

4.9 Open questions

The problem of characterizing the amount of one-way visibility needed for
an optimal predictor on ω and for a minimal predictor on ω was completely
solved for transitive graphs in Section 4.2. For non-transitive graphs on
ω, the characterization problem for optimal predictors on ω was solved in
Section 4.3. But the corresponding result for minimal predictors on ω is
notably absent, and it seems that the number of colors may play a prominent
role here.

For the case where we seek enough one-way visibility to get a minimal
predictor on ω for an arbitrarily large set of colors, we begin with the obser-
vation that an infinite complete subgraph certainly suffices. That is, these
agents then have a finite-error predictor among themselves and this ensures
infinitely many correct guesses.

Question 4.9.1. Suppose V is a graph on ω providing enough visibility for
the existence of a minimal predictor for an arbitrarily large set of colors.
Must V contain an infinite complete subgraph?
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For questions with regard to the parity relation EO, we begin with a
piece of terminology and an observation.

Definition 4.9.2. Say that 〈fα : α < ω1〉 ⊆ ων is a strongly agreeable family
if (∀f ∈ ων)(∃α ∈ ω1)(∀β > α) the functions f and g agree infinitely.

Theorem 4.9.3. The following are equivalent:

1. There exists a strongly agreeable family in ωω1.

2. There is a minimal predictor for the parity relation EO with ω1 colors.

Proof. (1)⇒(2): Fix a strongly agreeable family 〈 fα : α < ω1 〉 in ωω1. The
predictor is as follows. For a hat assignment h = (h0, h1), the agents in
Ai choose αi such that (∀β ≥ αi) h1−i and fβ agree infinitely, and guess
according to fαi .

We must have α0 ≤ α1 or α1 ≤ α0. If α1−i ≤ αi, then since hi agrees
infinitely with fβ for β ≥ α1−i, hi agrees infinitely with fαi , so infinitely
many agent in P i guess correctly.

(2)⇒(1): Suppose there is no strongly agreeable family in ωω1. Fix any
predictor P = (P 0, P 1). Let cα be as in the proof of Theorem 4.4.2. Let
fα = S1(cα). Since 〈 fα : α < ω1 〉 is not a strongly agreeable family, we
can choose g ∈ ωω1 such that (∀α ∈ ω1)(∃β > α) g only finitely agrees with
fβ. In particular, there exists β > supP 0(g) such that g only finitely agrees
with fβ. Then, under the hat assignment (cβ, g), no agent in A0 guesses
correctly since β > supP 0(g), and only finitely many agents in A1 guess
correctly since g only finitely agrees with fβ = P 1(cβ). This establishes that
there is no predictor ensuring infinitely many correct guesses,and so there is
no minimal predictor.

Theorem 4.9.3 might be of use in settling the following.

Question 4.9.4. Does the existence of a minimal predictor for the parity
relation EO with ω1 colors imply CH?

Finally, how much visibility is needed for a minimal predictor to exist?
Of course, this depends on the model, so we could ask two questions: how
much visibility is needed for a minimal predictor to exist under CH? How
much is needed in the model where we’ve added ℵ2 random reals?

Turning now to ideals and ultrafilters, we have several questions. First,
as pointed out in Section 1, if I is an SIN-ideal, then I∗ is an ultrafilter.
But this is not true for NIS-ideals, and we have no characterization of NIS
ideals. However, it can be shown that every NIS-ideal is weakly selective:
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every function defined on a set of positive I-measure is either constant on a
set of positive I-measure or one to one on a set of positive I-measure. Thus
we ask the following.

Question 4.9.5. Is every weakly selective ideal on ω an NIS-ideal?

From the section on U-predictors, the following remains unresolved.

Question 4.9.6. Is it true that for every non-P-point U , there exists a
graph V on ω such that for all X ∈ U , V |X has an infinite path, but there
exists no U-predictor for V ?

We conclude with the following;

Question 4.9.7.

Is it true that that for every graph V on ω and every ideal I on ω, either
there is an I∗-predictor for V or an I+-predictor for V c?



Chapter 5

Dual Hat Problems and the
Uncountable

5.1 Background

There are a number of notions of “dual” in mathematics; some of these
fit nicely into the framework provided by category theory while others do
not. The notion of dual that we are interested in here is of the latter type,
although its naturality is quite compelling and perhaps most evident in the
following formulation:

1. A function f : B → C is injective iff for every set A and every pair of
functions g, h : A→ B, if f ◦ g = f ◦ h, then g = h.

2. A function f : A → B is surjective iff for every set C and every pair
of functions g, h : B → C, if g ◦ f = h ◦ f , then g = h.

There is also a natural identification between subsets of A and injective
functions mapping an ordinal to A (although different injective functions
correspond to the same subset), and between partitions of A and surjec-
tive functions mapping A to an ordinal (with the same caveat). With this
identification in mind, we are interested in the notion of dual that links in-
jective functions and surjective functions or, equivalently, links subsets and
partitions.

Known results seem to suggest that theorems pertaining to injections or
subsets tend to be “weaker” than the corresponding theorems in the context
of surjections or partitions. We will give two examples to illustrate this, one
in the context of injections and surjections and one in the context of subsets

53
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and partitions. We do this to set the stage for Section 5.2 where we consider
duals in the context of hat problems.

For our first example, recall that the Schroeder-Bernstein theorem as-
serts that for any two sets X and Y , if there are injections from X to Y and
from Y to X, then |X| = |Y |. Moreover this is a theorem of ZF. The so-
called dual Schroeder-Bernstein theorem asserts that for any two sets X and
Y , if there are surjections from X to Y and from Y to X, then |X| = |Y |.
While this is a theorem of ZFC, it is not a theorem of ZF + DC; see [BM90].

For our second example, we start with the finite version of Ramsey’s
theorem in the form asserting that for any two positive integers k and r
there exists a positive integer n = R(k, r) such that for every r-coloring c of
the subsets of n, there exists a subset H of n of size k that is homogeneous
for c in the sense that the color of any subset of H depends only on its size.
The dual Ramsey theorem, originally obtained by Ronald Graham and Bruce
Rothschild [GR71], replaces “subset (of size k)” with “partition (consisting
of k sets)” and “subset of the subset H of n” with “coarser partition than
the partition H of n.” The dual Ramsey theorem is quite powerful, yielding
both Ramsey’s theorem itself and the celebrated theorem of van der Waerden
on arithmetic progressions. There are also infinite versions of duals; e.g., see
[CS84] for a discussion of what they call the “dual Ellentuck theorem.”

After dealing with dual hat problems in Section 5.2, we consider extend-
ing some of the results in Chapter 4 to the uncountable, and we do this in
Section 5.3 in the context of ideals on a cardinal. This leads to the role
played by non-regular ultrafilters in Section 5.4 and a hat problem whose
solution is equivalent to the GCH in Section 5.5.

5.2 Dual hat problems

In Chapter 1, we described a “reasonably general framework” for hat prob-
lems as being made up of a set A of agents, a set K of colors, a set C of
colorings (each mapping A to K), and a collection {≡a: a ∈ A } of equiv-
alence relations on C with the interpretation being that f ≡a g indicates
that agent a cannot distinguish between the colorings f and g. In all of our
applications so far, the equivalence relations have corresponded (at least
metaphorically) to myopia (near-sightedness). That is, we’ve typically had
f ≡a g because { b ∈ A : f(b) 6= g(b) } is the set of agents not seen (or at
least not clearly seen) by agent a.

In the case of a visibility graph, we can explicitly define the corresponding
equivalence relation in terms of injections as follows: There exists, for each
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a ∈ A, an ordinal αa and an injection ha : αa → A so that for f, g ∈ C,
we have f ≡a g iff f ◦ ha = g ◦ ha. Intuitively, the dual of the situation
αa → A → K with the first map injective would be A → K → αa with
the second map surjective. Thus, the mathematical notion of a dual would
suggest looking at equivalence relations ≡a on C derived from surjections
ha : K → αa by f ≡a g iff ha ◦ f = ha ◦ g.

Interestingly, this notion of indistinguishable colorings makes sense in the
metaphorical context. The issue is no longer having other players beyond
the range of agent a’s vision, but that agent a cannot distinguish between
(or among) certain colors. For example, he may be red-green colorblind!

It turns out that the µ-predictor has something to say in the dual hat
problem as well. To see this, suppose that A and K are arbitrary, C = AK
and we have a collection {ha : a ∈ A } where ha is a surjection from K to
some ordinal αa. Define ≡a on C by f ≡a g iff ha ◦ f = ha ◦ g. We want a
guessing strategy Ga : C → C such that Ga(f) = Ga(g) whenever f ≡a g.

The µ-predictor in this situation again begins with a well ordering ≺ of
C and we again set Ga(f) to be the ≺-least g such that f ≡a g. Notice that
we have agent a guessing the whole coloring and not just his own hat color.
How successful is this predictor?

The µ-predictor’s success in the earlier contexts was, at least in part,
tied to an underlying transitivity of the visibility relation. And one way
to phrase transitivity, at least in the case where the set A of agents is an
ordinal, is to say that α < β implies that agent α’s knowledge of a coloring
is a superset of agent β’s knowledge of the coloring. This guarantees that if
we have an ω-sequence α0 < α1 < . . . of agents using the µ-strategy, then
〈f〉α0 � 〈f〉α1 � · · · . Because ≺ is a well ordering it follows that for some n
we have 〈f〉αn = 〈f〉αn+1 = · · · .

Now, still in the earlier context, if agent αn sees agent αn+1 and agent
αn+1 is trying to guess his own hat color, then αn+1 is trying to guess
something that agent αn already knows. One way to say that is to define
agent β’s guess to be acceptable if there exists some γ < β such that agent
β’s guess is consistent with what agent γ knows. With this definition, our
discussion yields a proof of the following.

Theorem 5.2.1. Suppose that the set A of agents is an ordinal α, the set
K of colorings is arbitrary, C = AK, and we have a collection {hβ : β ∈ A }
where hβ is a surjection from K to some ordinal and such that if γ < β and
hγ(k1) = hγ(k2) then hβ(k1) = hβ(k2). Consider the hat problem in which
f ≡β g iff hβ ◦ f = hβ ◦ g and for which Gβ(f) is acceptable if there exists
some γ < β such that f ≡γ Gβ(f). Then for any coloring, the µ-predictor
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guarantees unacceptable guesses from only finitely many agents.

Dual hat problems represent an area largely unexplored. Nevertheless,
we leave them now and turn to a consideration of ideals on uncountable
cardinals.

5.3 Hat problems and ideals

In Section 4.2 we considered the problem of characterizing those transitive
visibility graphs on ω that yield a finite-error predictor and those that yield
a minimal predictor, and Theorems 4.2.1 and 4.2.2 solved these problems.
In this section we generalize those results to the context of ideals on un-
countable cardinals. As in Section 4.2 we only consider one-way visibility in
this section.

If I is an ideal on κ, then the notation I+ → (I+, ω)2 denotes the
assertion that for every set X ∈ I+ and every function f : [X]2 → 2, there
exists a set Y ⊆ X such that either Y ∈ I+ and f([Y ]2) = 0 or |Y | = ω and
f([Y ]2) = 1. Ramsey’s theorem asserts that I+ → (I+, ω)2 when I = [ω]<ω,
the Dushnik-Miller-Erdős theorem [EHMR84] asserts that I+ → (I+, ω)2

when I = [κ]<κ for any (infinite) cardinal κ, and it is well-known that if κ is
regular, then NS+

κ → (NS+
κ , ω)2, where NSκ is the ideal of nonstationary

subsets of κ.
Theorems 4.2.1 and 4.2.2 showed that if I = [ω]<ω and V is a transitive

graph on ω, then there exists a positive I-measure predictor iff V contains
an infinite complete subgraph, and there exists an I-measure one predictor
iff V contains no infinite independent subgraph. The following generalizes
this to transitive graphs and arbitrary ideals on an uncountable cardinal.

Theorem 5.3.1. Suppose that I is an ideal on κ and V is an undirected
transitive graph on κ. Consider the hat problem with one-way visibility given
by V . Then (1) and (2) are equivalent, (3) implies (4), and, if I+ →
(I+, ω)2, then (4) implies (3) and so they too are equivalent.

1. There exists a positive I-measure predictor for two colors.

2. Every set of I-measure one contains an infinite complete subgraph.

3. There exists an I-measure one predictor for two colors.

4. There is no independent set of positive I-measure.
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Proof. (1)⇒(2): Assume (2) fails and let X ⊆ κ be a set of positive I-
measure with no infinite complete subgraph. Because V is transitive, this
means that X contains no infinite path. Thus, if P is a predictor, then
we can produce a 2-coloring f : κ → 2 for which every agent in X guesses
incorrectly exactly as in the proof of Theorem 4.2.2.

(2)⇒(1). We use the µ-predictor. Suppose for contradiction that X ∈ I∗
and everyone in X guesses incorrectly for some coloring. By (2) we can
choose an infinite complete subgraph in X. But this now yields, as usual,
an infinite descending chain in the well-ordering of the colorings.

(3)⇒(4). If (4) fails and X ⊆ κ is an independent set of positive I-
measure, then for every predictor we know, by Corollary 1.4.3, that there is
a 2-coloring f : κ→ 2 for which every agent in X guesses incorrectly.

(4)⇒(3) assuming I+ → (I+, ω)2: We use the µ-predictor. Suppose for
contradiction that X ∈ I+ and everyone in X guesses incorrectly for some
coloring. Define h : [X]2 → 2 by h(γ, β) = 0 iff neither γ nor β can see the
other. Because I+ → (I+, ω)2, we get a subset Y of X such that either Y is
an independent set of positive I-measure or an infinite complete subgraph.
The former is ruled out by (4) and the latter yields, as usual, an infinite
descending chain in the well-ordering of the colorings.

Corollary 5.3.2. Suppose that V is an undirected transitive graph on κ,
and consider the hat problem with two colors and one-way visibility given
by V . Then there exist a <κ-error predictor iff there is no independent set
of size κ. If κ is regular, then there exists a predictor ensuring the set or
errors is nonstationary iff there is no stationary independent set.

5.4 The role of non-regular ultrafilters

In the absence of transitivity, Theorem 4.3.1 nevertheless characterizes those
visibility graphs on ω that are adequate to yield finite-error predictors: they
are precisely the ones containing no infinite independent subgraph. The
proof of this result proceeded by inductively throwing away edges until one
arrives at a transitive graph, and doing this in a way that guarantees that
no infinite independent subgraph is created in the process. It turns out,
however, that this approach will not generalize to all larger cardinals, as it
was shown in [H10] that there is a graph on 2ℵ0 with no infinite independent
subgraph, but all of whose induced transitive subgraphs contain an infinite
independent subgraph.

Theorem 4.3.1 also does not generalize in the obvious way to count-
ably infinite directed graphs. For example, the directed graph on ω where
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there is an edge from each number to each smaller number has no infinite
independent subgraph but no predictor can ensure even one correct guess.

However, if we begin with an undirected graph V on a countable ordinal
α and consider the hat problem with one-way visibility given by V , then
Theorem 4.3.1 does extend in the obvious way. That is, letting f : ω → α be
a bijection, we consider the corresponding graph V ′ on ω that is isomorphic
to V via f . Visibility on ω is then given by n sees m iff n < m, f(n) < f(m),
and there is an edge in V between f(n) and f(m). It now follows that V ′

has no infinite independent set X because we could then partition the pairs
from X according to whether the orderings from ω and α agree on the pair
or not. An infinite set homogeneous for disagreement would yield an infinite
descending chain in α, and an infinite set homogeneous for agreement would
yield an infinite independent set in the graph V . Hence, we can now invoke
Theorem 4.3.1 to get a finite-error predictor for V ′ and this immediately
yields a finite-error predictor on α with visibility given by V .

The observation in the preceding paragraph suggests an approach for
obtaining a reasonably successful predictor on ω1 from a visibility graph
with no large independent sets. That is, if V is a graph on ω1 with no
infinite independent subgraph, then for every α < ω1 we can consider the
restriction Vα of V to α and get a finite-error predictor Pα that equips
each agent β < α with a strategy. Now to get a predictor for ω1, we want
to amalgamate these predictors in some way. Perhaps the most natural
amalgamation is to use an ultrafilter U on ω1 and have agent β guess red iff
{α > β : Pα has agent β guess red } ∈ U .

It seems, however, that to get any traction from this approach requires
a rather special—but well known—kind of ultrafilter on ω1.

Definition 5.4.1. A uniform ultrafilter on ω1 is non-regular if for every
collection of uncountably many sets from the ultrafilter, some infinite sub-
collection has non-empty intersection.

While one cannot prove in ZFC that non-regular ultrafilters on ω1 exist,
it is known that relative to the existence of a sufficiently large cardinal, it is
consistent that they exist. Their use in our context is the following.

Theorem 5.4.2. Assume there exists a non-regular ultrafilter on ω1. Sup-
pose that V is an undirected graph on ω1 with no infinite independent sub-
graph, and consider the hat problem with finitely many colors and one-way
visibility given by V . Then there exists a predictor ensuring at most count-
ably many incorrect guesses.
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Proof. If U is the postulated non-regular ultrafilter, then we use the amal-
gamation described above to arrive at our predictor. Suppose, for contra-
diction, that f is a coloring and uncountably many agents guess incorrectly
for f . Each such agent β guessed based on a set Xβ ∈ U . Non-regularity
now yields β0 < β1 < · · · < α and α ∈ Xβi for each i < ω. Thus Pα has
agent βi guessing the same as the predictor on ω1 so Pα has infinitely many
incorrect guesses, a contradiction.

5.5 A hat problem equivalent to the GCH

We consider here the hat problem in which each agent tries to guess the
whole coloring. So here, a guessing strategy Ga for an agent will be a
function from colorings to colorings, and the guess will be deemed correct
only if Ga(f) = f . That is, we are interested in how many agents can guess
the whole coloring based on what they see. Of course, if every agent could
see every other agent, this would be the same as asking them to guess their
own hat color. But we are working with undirected graphs, so it is only
one-way visibility with no agent seeing the hats worn by smaller-numbered
agents.

Can we find a predictor ensuring that infinitely many agents guess the
whole coloring correctly? Or maybe a cofinite set of agents? And does the
number of colors make any difference? The following theorem answers all of
these questions for the case where the the set of agents is denumerable.

Theorem 5.5.1. Consider the hat problem on ω in which an agent a’s guess
is a coloring and this guess is considered correct only if Ga(f) = f . Then:

1. With a countable set of colors there is a predictor ensuring that in-
finitely many agents guess correctly, as long as there is no infinite
independent set in the visibility graph.

2. With an uncountable set of colors there is no predictor ensuring that
one agent will guess correctly, even with full visibility to the right.

3. With two colors and full visibility to the right, there is no predictor
that will ensure a cofinite set of correct guesses. In fact, any predictor
ensuring at least one correct guess for every coloring will also have
infinitely many incorrect guesses for every coloring.

Proof. Assume A = ω, K = ω, and C = ωω. Let 〈sn : n ∈ ω〉 enumerate
the set of all functions mapping some finite subset of ω to ω such that
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each function occurs infinitely often. For each n ∈ ω, our guessing strategy
Ga : C → C will be the following modification of the µ-strategy: Gn(f)(k) =
sn(k) if k is in the domain of sn, and Gn(f)(k) = 〈f〉n(k) otherwise.

Given f , let p be the smallest natural number such that 〈f〉p = 〈f〉p+1 =
· · · . Such a p must exist or we’d have an infinite descending chain in our
well ordering of C. Let s = f |(p+ 1). For any k we can choose n > k such
that sn = s. We claim that Gn(f) = f . First, if t ≤ p then t is in the
domain of s and thus the domain of sn, so Gn(f)(t) = sn(t) = f(t). If t > p,
then Gn(f)(t) = 〈f〉n(t) = 〈f〉p(t) = f(t). This proves (1).

Now assume that the set of colors is uncountable, and P is some predic-
tor. Let f(k) = 0 for all k and choose a color γ such that for every n ∈ ω,
Gn(f)(0) 6= γ. Let g be the coloring that agrees with f everywhere except
that g(0) = γ. Then no one guesses g correctly. This proves (2).

Finally, suppose there are two colors, P is a predictor and f ∈ ω2 is such
that Gn(f) = f for all n ≥ m, and m is the smallest natural number for
which this is true. Let g(k) = f(k) for k 6= m and g(m) 6= f(m). Then
Gn(g) 6= g for any n ≥ m. So now we can start at m− 1 and work our way
down to 0, changing hats so that each of these agents guesses incorrectly.

When we consider the same question in the context of the uncountable,
we find that the solution rests on the GCH.

It is well known that the GCH is equivalent to the assertion that ω<κ = κ
for every infinite cardinal κ. To see this, note that the GCH immediately
implies that for any λ < κ, ωλ = λ+ ≤ κ, so ω<κ ≤ κ. It is elementary that
ω<κ ≥ κ, so ω<κ = κ. On the other hand, if the GCH fails, we can fix some
λ with 2λ > λ+ and let κ = λ+. Then ω<κ = 2λ > κ.

Theorem 5.5.2. For any infinite cardinal κ, the following are equivalent.

1. There exists a predictor for the hat problem with denumerably many
colors, κ agents, and full visibility to the right that guarantees κ-many
agents guess the whole coloring correctly.

2. There exists a predictor for the hat problem with two colors, κ agents,
and full visibility to the right that guarantees κ-many agents guess the
whole coloring correctly.

3. ω<κ = κ

Proof. 1⇒ 2 is trivial.
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For 2⇒ 3, let sα be a κ-sequence in which each element of <κω appears
κ-many times. We let player α guess that the coloring is the function

g(β) =

{
sα(β) if β ∈ d(sα),

〈f〉α(β) otherwise.

It is straightforward to verify that κ-many players guess the whole coloring
correctly under this predictor.

For 3⇒ 1, note that 2<κ = ω<κ ≥ ω and suppose 2<κ > κ. Let P be any
predictor for the hat problem of condition 2. Since 2<κ = supλ<κ 2λ > κ,
there is some infinite cardinal λ < κ with 2λ > κ. We define the coloring
f as follows. Let f be arbitrary on [λ, κ). Then the guesses of all agents
α ≥ λ are determined, and since 2λ > κ, we can define f |λ in a way that
makes every α ≥ λ guess incorrectly.

Corollary 5.5.3. The GCH holds iff for every infinite cardinal κ there exists
a predictor ensuring that κ agents correctly guess the whole coloring in the
hat problem with either two colors or ω colors and full visibility of larger
agents.

As a final comment with regard to guessing the whole coloring, consider
the hat problem with two colors on ω1. The combinatorial principle ♦ω1 is
the assertion that there is a sequence 〈Aα : α ∈ ω1〉 such that Aα ⊆ α and
for every X ⊆ ω1, we have that {α : X ∩α = Aα} is a stationary set. If ♦ω1

holds and each agent α ∈ ω1 sees a closed unbound set of larger agents, then
the Gabay-O’Connor predictor can be modified by having agent α guess
that the coloring of hats worn by smaller players is given by Aα. With this,
we are ensured of having a stationary set of agents guess the whole coloring
correctly. This observation essentially originated with Gabay and O’Connor.



Chapter 6

Galvin’s Setting: Neutral
and Anonymous Predictors

6.1 Background

The result of Galvin that underlies the considerations of the present chapter
first appeared in 1965 in the problem section of the American Mathemat-
ical Monthly (see [Gal65] and [Tho67]). It reappears in [GP76] as Lemma
1, where it is shown to have important consequences in infinitary combina-
torics, set theory, and logic. We restate it here as a hat problem.

Theorem 6.1.1 (Galvin). Consider the situation in which the set A of
agents is the set of natural numbers, the set K of colors is arbitrary, and ev-
ery agent sees the hats of higher numbered agents but—and this is important—
the agent doesn’t know where in line he stands. Then there exists a finite-
error predictor.

More precisely, Galvin’s theorem asserts the existence, for an arbitrary
set K, of a function P : ωK → K such that xn = P (〈xn+1, xn+2, . . .〉) for all
but finitely many n. In particular, each strategy depends only on the tail
segment being viewed, and does not depend on which agent is viewing it.

It turns out that, in some respects, the µ-predictor has its roots in a 40-
year old failed attempt to prove Galvin’s theorem. D. L. Silverman [Sil66]
proposed the following strategy: Well-order the hat assignments, and for
a given sequence s ∈ ωK find the first hat assignment 〈x1, x2, . . .〉 in the
ordering of which s is a proper end segment 〈xn+1, xn+2, . . .〉. Set P (s) = xn.

The failure of this proof was pointed out by B. L. D. Thorp [Tho67]:
If 〈1, 1, 0, 1, 0, 1, 0, . . .〉 is the first hat assignment in the well-ordering, then

62
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the sequence s = 〈1, 0, 1, 0, 1, 0, . . .〉 will elicit a guess of 1 and be wrong
infinitely often.

Nevertheless, the µ-predictor can be made to work in this context in a
couple of different ways. The first way is to handle the case of eventually
periodic hat assignments separately; this is easy and doesn’t require the
axiom of choice. The µ-predictor can then be invoked on the remaining
class of hat assignments. The second way is to choose a well ordering of hat
assignments in which the periodic assignments come first.

If the set of agents is the set of natural numbers, then Galvin’s theorem
is stronger than the Gabay-O’Connor theorem. But the Gabay-O’Connor
theorem generalizes in ways that Galvin’s theorem appears not to. For
example, we showed in Chapter 4 that if the agent set is an ordinal α and
each agent sees the hats of all higher-numbered agents, then—in the Gabay-
O’Connor context in which each agent knows where in “line” he stands—
there is a finite-error predictor. In Galvin’s context, however, this turns out
to work, as we now show, iff α < ω2.

Theorem 6.1.2. Assume that the set A of agents is an ordinal α and that
each agent can see the hats of all the higher-numbered agents, but that the
agents don’t know where in line they are standing. Then, for every set of
two or more colors, there is a finite-error predictor iff α < ω2.

Proof. If α < ω2, then, for any set K of colors, the agents in each of the
finitely many ω-blocks can use the strategy from Galvin’s theorem among
themselves. If α = ω2, then consider the hat assignment in which the
successor ordinals have red hats and the limit ordinals have blue hats. Note
that each agent sees the same tail, and so any predictor of Galvin’s type
immediately yields infinitely many incorrect guesses. But even if a predictor
is not of this type, as long as infinitely many guess red when they see this
tail and infinitely many guess blue when they see this tail, we can just
order the players so that the blue-guessers go on successor ordinals and the
red-guessers go on limit ordinals.

6.2 Applications to logic and set theory

Galvin’s original interest in Theorem 6.1.1 was inspired by some model-
theoretic considerations that we now describe. Leon Henkin had introduced
in [Hen59] formulas with non-well-ordered quantifiers. In particular, he
considered sentences such as

· · · ∃y1∀x1∃y0∀x0[x0 = y0 ∨ x1 = y1 ∨ · · · ] (6.1)
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which is, by definition, equivalent to the second-order sentence

∃f0f1f2 · · · ∀x0x1x2 · · · [x0 = f0(x1, x2, . . .)∨x1 = f1(x2, x3, . . .)∨· · · ]. (6.2)

Theorem 6.1.1 shows that this sentence is true in every domain K and
that, in fact, the functions f0, f1, · · · can all be taken to be the finite-error
predictor in Theorem 6.1.1.

However, the “formal negation” of 6.1 is the sentence

· · · ∀y1∃x1∀y0∃x0[x0 6= y0 ∧ x1 6= y1 ∧ · · · ] (6.3)

which is, again by definition, equivalent to the second-order sentence

∃f0f1f2 · · · ∀y0y1y2 · · · [f0(y0, y1, . . .) 6= y0 ∧ f1(y1, y2, . . .) 6= y1 ∧ · · · ] (6.4)

and this sentence is true in any domain K with two or more elements.
As pointed out in [GP76], this paradoxical behavior of Henkin quanti-

fiers was first shown by Jerome Malitz with a more complicated example in
[Mal66].

More than a decade after Galvin first established Theorem 6.1.1, he
and Karel Prikry produced a number of applications in [GP76] to Jonsson
algebras and partition relations. To describe the former, we need a few
definitions. An ω-ary algebra is a pair (K,P ) where K is a set and P is a
partial function from ωK to K. If (K,P ) is an ω-ary algebra and J ⊆ K,
then P ∗(J) = {P (x) : x ∈ domain(P )∩ ωJ}, and J is a subalgebra of (K,P )
if P ∗(J) ⊆ J . A Jonsson algebra of cardinality λ is an ω-ary algebra of
cardinality λ with no proper subalgebra of cardinality λ.

Kenneth Kunen’s proof [Kun71] of the inconsistency of a non-trivial
elementary embedding of the universe into itself made use of the existence
of a Jonsson algebra of cardinality λ for cardinals such that 2λ = λℵ0 . The
existence of these algebras is a consequence of the following theorem of Paul
Erdős and Andras Hajnal [EH66].

Theorem 6.2.1. For every infinite cardinal λ, there is a Jonsson algebra
of cardinality λ.

Galvin and Prikry observed that a relatively easy argument (that we now
give) shows that if P is the predictor given by Theorem 6.1.1 for K = λ,
then some subalgebra A of (K,P ) is a Jonsson algebra of cardinality λ.
Their first observation was that for every infinite sequence A0 ⊇ A1 ⊇ · · ·
of subsets of λ, there is some n for which An ⊆ An+1 ∪ P ∗(An+1). If not,
we could choose xn ∈ An − (An+1 ∪ P ∗(An+1)), and lose no generality in
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assuming the xn’s are increasing. But then there is some k such that xk =
P (〈xk+1, xk+2, . . .〉) ∈ Ak+1 ⊆ Ak, a contradiction. Given this observation,
we can now choose A ∈ [λ]λ such that A ⊆ X ∪ P ∗(X) for every X ∈ [A]λ.
But, in fact, for each such X we actually have that X ⊆ P ∗(X), because for
each a ∈ A we have A ⊆ (X −{a})∪P ∗(X −{a}). It now follows that A is
the desired subalgebra.

It is also worth noting that the above argument shows that for every
infinite cardinal λ, we have that the relation λ → [λ]ωλ fails. Much more
along these same lines can be found in [GP76].

6.3 Neutral and anonymous predictors

Throughout this section, we are concerned with the special case of one-way
visibility on ω and (unless otherwise specified) finitely many colors. Consider
the predictor in which an agent guesses the least color seen infinitely often.
This predictor lacks a certain symmetry with respect to color: if we permute
the colors, the guesses are not necessarily permuted likewise. On the other
hand, it does have some symmetry with respect to agents: each agent turns
what they see into a guess in the same way. We say that this predictor is
not neutral, but it is anonymous. We make these notions precise below, and
consider the existence of neutral and anonymous predictors.

Definition 6.3.1. A predictor P for a hat problem with κ colors is neutral
if, for every coloring f and permutation σ : κ → κ, P (σ ◦ f) = σ ◦ (P (f)).
I.e., if the colors are permuted, then all the guesses are permuted likewise.

Given f ∈ ωκ and n ∈ ω, define f↓n ∈ ωκ by (f↓n)(j) = f(n + 1 + j).
(Equivalently, f↓n = f ◦ tn+1 where t is the successor function.) Note that
f↓n captures what agent n sees under coloring f ; we call f↓n the observation
of agent n under f .

With one-way visibility on ω and κ colors, a predictor P is anonymous
if there is a function s : ωκ→ κ such that for every f ∈ ωκ and every n ∈ ω,
P (f)(n) = s(f↓n). (So, each agent is using the same function s to map
observations to guesses.) We call s the common strategy of P .

Certainly, the existence of a non-principal ultrafilter on ω is sufficient
to get a neutral minimal predictor for any finite set of colors: the agents
guess the color that they see occurring on a measure one set. However,
the existence of such an ultrafilter is not provable in ZF (and the predictor
just described is not anonymous), so the following theorem requires a more
subtle argument.
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Theorem 6.3.2 (ZF). With full visibility to the right on ω and finitely
many colors, there exists a neutral and anonymous minimal predictor.

Assume there are k colors. The key idea in the proof below is that we
assign types to agents based on the order in which colors first appear to
them. Agents then focus their attention on higher-numbered agents of the
same type when producing their guesses.

Definition 6.3.3. For a given f : ω → k, define τf ∈ <ωk by letting
τf (0) = f(0) be the first value occurring in f , τf (1) be the next distinct
value occurring in f , and so on. We call τf the color type of f . A color
type τ induces an ordering ≤τ of its entries in the obvious way; formally,
a ≤τ b ⇐⇒ τ−1(a) ≤ τ−1(b). We assign color types to agents according
to what they see: for an agent n, under coloring f , the color type of n
(under f) is τf↓n. The canonization of f is bfc = τ−1f ◦ f (which is well-
defined since τf is one-to-one with range containing the range of f). For
example, with k = 3, if f = (c, c, a, b, c, . . .), we have τf = (c, a, b), and
bfc = (0, 0, 1, 2, 0, . . .).

Proof of Theorem 6.3.2. We define our neutral, anonymous predictor P in
terms of its common strategy s : ωk → k. Given f ∈ ωk, let τ = τf ,
M = {m ∈ ω : τf↓m = τ }, and let s(f) be the <τ -least color occurring
infinitely often in f |M . Informally, each agent determines his own type τ ,
and guesses the <τ -least color that occurs infinitely often among agents of
the same type. Note that P is anonymous and neutral.

To verify that P is a minimal predictor, take any f ∈ ωk. Since there are
only finitely many possible types, some type τ must occur infinitely often
among τf↓0, τf↓1, . . .. Letting c be the <τ -least color occuring infinitely often
among agents of this type, all agents of this type guess c and infinitely many
will be correct.

Assuming the consistency of a large cardinal, Theorem 3.5.3 shows that
we cannot prove in ZF + DC that a minimal predictor exists for ω colors.
If neutrality is required, we can go further and prove the nonexistence of a
minimal predictor for ω colors.

Theorem 6.3.4 (ZF). With full visibility to the right on ω and ω colors,
there is no neutral minimal predictor.

Proof. Observe that, under a neutral predictor, if there are two or more
colors that an agent n does not see, then n must guess a color among those
visible to n: if agent n guesses some color k not visible to n, we can let σ
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be a permutation that fixes the colors visible to n while swapping k with
another color, and σ would contradict the predictor’s neutrality.

Let P be any neutral predictor for ω colors. Define f : ω → ω by f(n) =
2n. Then, by the above observation, every agent must guess incorrectly,
since no agent’s color is among the colors visible to that agent.

6.4 Neutralizing predictors

We now look at a way to produce a neutral predictor from a given predictor.
Given a predictor P , we define the basic neutralization B of P by1

B(f)(n) = τf↓n(P (τ−1f↓n ◦ f)(n)).

In the special case where P is anonymous with common strategy s, this can
be expressed more succinctly by B(f)(n) = τf↓n(s(bf↓nc)). In either case,
to produce n’s guess, we canonize (from n’s perspective), apply the original
predictor, and then apply the inverse of the permutation used to canonize.
Note that, unlike the proof of Theorem 6.3.2, we do not restrict our atten-
tion to agents of the same type (but that would also work in Theorem 6.4.2
below, provided P is anonymous; the relevance of anonymity when restrict-
ing attention to agents of the same type is that, since agents do not know
how many agents before them share the same type, they are unsure of their
position among agents of the same type).

Proposition 6.4.1. The basic neutralization B of a predictor P is neutral.
Furthermore, if P is anonymous then so is B.

The basic neutralization of a minimal predictor is not necessarily a mini-
mal predictor. For example, if P is the predictor that guesses the least color
seen infinitely often, then B will guess incorrectly everywhere under color-
ing (0, 1, 0, 1, . . .). The basic neutralization is better suited for I∗-predictors
(in particular, for finite-error predictors and U-predictors), as the following
theorem shows.

Theorem 6.4.2. Suppose I is an ideal on ω and that P is an I∗-predictor
for k colors. Let B be the basic neutralization of P . Then B is a neutral
I∗-predictor.

1There is a slight abuse of notation here: τ−1
f↓n ◦ f might not be defined for k ≤ n,

since color f(k) might not occur in f↓n; however, that is not a significant issue, since a
predictor’s guess at n must ignore colors of agents k ≤ n anyhow.
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Proof. Take any coloring f ∈ ωk. Let T = { τf↓n : n ∈ ω }, the set of color
types of agents under f ; note that T is finite. For τ ∈ T , let Aτ = {n ∈ ω :
τf↓n = τ }.

Take any τ ∈ T . P (τ−1 ◦ f)∆(τ−1 ◦ f) ∈ I, so (τ ◦ P (τ−1 ◦ f))∆(τ ◦
τ−1 ◦ f) ∈ I, so

(τ ◦ P (τ−1 ◦ f))∆f ∈ I. (6.5)

(Again, there is a slight abuse of notation here, since τ−1 ◦ f might not be
total, but this is not a significant issue.) The behavior of B for agents in Aτ
is to guess according to τ ◦ P (τ−1 ◦ f), so by (6.5), the set of agents in Aτ
who guess incorrectly under predictor B and coloring f is in I. Since there
are only finitely many color types τ , it follows that the set of agents who
guess incorrectly under predictor B and coloring f is in I.

6.5 Combining with robustness

Recall that a robust predictor is one which respects =∗ (that is, agents ignore
finite differences). The basic neutralization above typically breaks robust-
ness, since color types can change when a single agent’s color is changed.
However, if we have a non-principal ultrafilter U on ω, we can neutralize a
predictor P in a different way that does preserve robustness (but which can
break anonymity): where agents used their own color types above, we in-
stead have every agent use the unique color type that is shared by a measure
one set of agents.

In ZFC, we can get robust anonymous neutral finite-error predictors for
k colors.

Theorem 6.5.1. For any finite k, there exists a robust anonymous neutral
finite-error predictor for k colors.

Proof. Say a coloring f is tail-like if any color occurring at all in f occurs
cofinally often; note that periodic colorings are tail-like. Let � be any well-
ordering of the colorings in which the periodic colorings appear first, followed
by the other tail-like colorings, followed by the remaining colorings. Each
agent n guesses as follows under coloring f . Let gn be �-minimal such that
there exist mn and color type τn such that f↓i =∗ τn ◦ gn↓mn; fix a minimal
such mn, and the unique τn for gn and mn that involves no more colors than
needed. Note that gn is always tail-like because of the use of =∗ and our
choice of �. Let P (f)(n) = τ(gn(m)).

Note that P is anonymous, neutral, and robust. It remains to be shown
that P is a finite-error predictor. Take any coloring f . Fix N such that gN
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is �-minimal among { gn : n ∈ ω }, and let g = gN . Then gk = g for all
n ≥ N . If f is eventually periodic, then g will be periodic, the agents will
guess according to the periodic pattern, and all of them will be correct in
the tail where f is periodic.

If f is not eventually periodic, we claim that g has the following non-self-
similarity: there do not exist distinct m,m′ with types τ, τ ′ (not necessarily
distinct) such that τ ◦ g↓m =∗ τ ′ ◦ g↓m′. Suppose for a contradiction that
such m,m′, τ, τ ′ exist, and assume without loss of generality that m < m′;
let q = m′ −m. By enlarging m and m′ as necessary, we can also assume
without loss of generality that τ ◦ g↓m = τ ′ ◦ g↓m′. Let σ = τ−1 ◦ τ ′. Let
h = g↓m = g ◦ tm+1 where t is the successor function. Then

σ ◦ h ◦ tq = τ−1 ◦ τ ′ ◦ g ◦ tm+1 ◦ tq

= τ−1 ◦ τ ′ ◦ g ◦ tm′+1

= τ−1 ◦ τ ′ ◦ g↓m′

= τ−1 ◦ τ ◦ g↓m
= g↓m = h.

In particular, letting o = o(σ) (the order of σ as a permutation of the colors
appearing in g), h = σo ◦ h ◦ (tq)o = h ◦ tqo, so h is periodic. It follows that
g and f are eventually periodic, a contradiction.

With this lack of self-similarity in g, the agents n ≥ N guess according
to g in a consistent way: if n, n′ ≥ N , then mn′−mn = n′−n, and τn′ = τn.
It follows that all but finitely many of them guess correctly.

If we omit neutrality in the above result, we can make it work for an
arbitrary set of colors, yielding the result below. (Theorem 6.3.4 tells us
that the loss of neutrality is necessary.)

Theorem 6.5.2. For any cardinal κ, there exists a robust anonymous finite-
error predictor for κ colors.

Proof. The proof is the same as for the previous theorem, except that we
disregard the notion of tail-like, and remove the apparatus for neutrality
(that is, replace τ, τ ′, τn, σ with the identity).

6.6 Robust neutral predictors and the axiom of
choice

Combining robustness and neutrality is “hard” in the sense that ZF + DC
cannot prove the existence of a robust neutral predictor for 2 colors (even
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if we do not require any correct guesses). Our approach here has much in
common with Section 3.4, in that we use the existence of such a predictor
to contradict the assumption—denoted BP in Section 3.4—that all sets of
reals have the property of Baire.

Lemma 6.6.1 (ZF). Suppose there exists a function s : ω2→ 2 such that s
respects =∗ (robustness) and if τ is a permutation of 2, (τ ◦ s)(x) = s(τ ◦x)
for all x ∈ ω2 (neutrality). Then ¬BP.

Proof. Let C = ω2, treated as the Cantor set (with the usual topology). For
i = 0, 1, let Ai = {x ∈ C : s(x) = i }. Then A0 and A1 form a partition of C.
Define c : C → C by c(x)(i) = 1− x(i) (considering C as a subset of [0, 1] in
the usual way, this happens to be the same as c(x) = 1− x). The function
c is an automorphism of C that maps A0, A1 to each other. In particular, if
Ai is meager (as a subset of C), then so is A1−i, making C = A0∪A1 meager,
a contradiction; so, neither Ai is meager.

Suppose for a contradiction that A0 has the property of Baire. Then
there is an open set U0 such that A0∆U0 is meager. Since A0 is not meager,
U0 6= ∅, so there is some α ∈ <ω2 such that [α] ⊆ U0 (where [α] = { f ∈
C : α is a prefix of f } is the basic open set given by α). In particular,
[α]−A0 is meager. Let β be the complement of α (e.g., if α = (0, 0, 1), then
β = (1, 1, 0)). Let U1 = c[U0]; we have that A1∆U1 is meager, and [β] ⊆ U1,
so [β] − A1 is meager. Let n = |α| = |β|, and let t : C → C be the function
that toggles the first n bits of a real (that is, t(x)(i) = 1 − x(i) for i < n,
and t(x)(i) = x(i) for i ≥ n). Then t is an automorphism of C that sends
[α] and [β] to each other. However, by the robustness of s, τ does not alter
membership in A0 (or A1). In particular, τ [[α]−A0] = [β]−A0 is meager.

Since [β] = ([β] − A0) ∪ ([β] − A1), a union of two meager sets, [β] is
meager, a contradiction. So, A0 does not have the property of Baire.

Theorem 6.6.2. Assuming ZF is consistent, ZF + DC cannot prove the
existence of a robust neutral predictor for 2 colors on ω.

Proof. For such a predictor P , applying the previous lemma to the individual
strategy s of agent 0 (s(f) = (P (f))(0)) yields ¬BP. However, ¬BP is not
provable from ZF + DC (assuming ZF is consistent).



Chapter 7

The Topological Setting

7.1 Background

A topological space is T0 if for every two distinct points in the space, there
is a neighborhood of one not containing the other. Equivalently, it is T0
if distinct points have distinct neighborhood systems. A space is T1 if for
every pair of distinct points each has a neighborhood not containing the
other. And although of little relevance for what is to follow, a space is T2
or Hausdorff if every pair of distinct points have neighborhoods that are
disjoint.

Among the topological spaces that we will be interested in are the ones
arising from a partial ordering by either declaring a set to be open if it is
closed upward in the ordering (the upward topology) or closed downward in
the ordering (the downward topology). For example, the interval (−∞, 0]
is open in the downward topology on the reals. These topologies are not
typically T1, but they are always T0.

We will be asserting that certain things happen except on a set that
is “topologically small,” and we want to do so in a way that generalizes a
couple of particular results. Thus, on the real line R with the downward
topology, we want these small sets to be the well-ordered subsets of R, and
for the upward topology on an ordinal, we want these small sets to be the
finite sets. The following well-known notions achieve both.

Definition 7.1.1. A set S in a topological space X is weakly scattered if for
every non-empty T ⊆ S there exists some x ∈ T and some neighborhood N
of x such that N∩T is finite. We call such points weakly isolated points of T.
The set S is scattered if the conclusion can be strengthened to N ∩T = {x},
in which case these are called isolated points of T.

71
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What we are calling “weakly scattered” is called “separated” by Mor-
gan [Mor90]; he attributes the definition to Cantor. Every scattered set is
weakly scattered, and it is straightforward to show that the two notions are
equivalent in T0 spaces. The concept of a weakly scattered set is a smallness
notion in the sense that this class is closed under the formation of subsets
and finite unions.

There is a game-theoretic characterization of weakly scattered sets in
[HT09], special cases of which occured in [Fre90], that goes as follows. Given
a space X and set S ⊆ X, Players I and II take turns, with Player I choosing
elements of S and Player II choosing open sets. Player I must choose his
point in the last open set chosen by Player II and Player II must choose his
open set to be a neighborhood of Player I’s last chosen point. Player I wins
iff all his choices are distinct. The set S is weakly scattered iff Player II
has a winning strategy, and not weakly scattered iff Player I has a winning
strategy. This characterization generalizes the fact that a set is well ordered
iff it has no infinite descending chains.

With the downward topology on any partial order, the scattered sets are
the well-founded subsets (so with the upward topology, the scattered sets
are the co-well-founded subsets). In particular, with the downward topology
on R, the scattered sets are the well-ordered subsets, and with the upward
topology on any ordinal, the scattered sets are the finite subsets. The usual
topology of the reals is not of much interest to us here, but the scattered
sets there are countable and nowhere dense; in fact, they are precisely the
countable Gδs. This observation goes back to the early 20th century, but
for a readily accessible proof, see [DG76].

If S is a scattered set in a space X, then S gives rise to what we call
the canonical decomposition 〈Aα : α < λ〉 of X associated with S. In this
decomposition, A0 = X − S and, for α > 0, Aα is the set of isolated points
of X − ∪{Aβ : β < α }. This decomposition is directly related to the
Cantor-Bendixson derivative.

7.2 The scattered sets result

In what follows we fix a topological space X, and we assume Y is a set with
two or more elements. Intuitively, X is the set of agents and Y is the set of
colors.

Definition 7.2.1. For each x ∈ X we define an equivalence relation ≈x on
XY by f ≈x g iff f and g agree on a deleted neighborhood N − {x} of x.
We let [f ]x denote the equivalence class of f under ≈x.
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We will be trying to guess f(x) from the values of f near, but not at,
x. The equivalence class [f ]x precisely describes how much information we
have about f when we produce this guess. That is, our guess must be based
only on [f ]x; if we could use f directly when guessing, we could cheat and
use f(x) as our guess. If P is a predictor, then a set E ⊆ X is an error set
for P if there exists a function f : X → Y such that P guesses incorrectly
for f at x for every x ∈ E. Error sets are small in the sense that singleton
sets are always error sets and the class of error sets is (by definition) closed
under subset formation.

The following variant of the µ-predictor will be of particular interest. We
actually find it convenient to throw away a certain amount of information,
by disregarding finite differences.

Definition 7.2.2. For f, g : X → Y and V ⊆ X, we say that f and g differ
only finitely on N if {x ∈ N : f(x) 6= g(x) } is finite. For x ∈ X, we define
the equivalence relation ≈∗x on XY by f ≈∗x g iff f and g differ only finitely
on some neighborhood N of x. Let [f ]∗x denote the equivalence class of f
under ≈∗x. Fix a well-ordering � of XY . The µ∗-predictor is the predictor
µ∗ = {µ∗x : x ∈ X } defined by letting µ∗x([f ]x) = 〈f〉x(x), where 〈f〉x is the
�-least element of [f ]∗x.

In other words, at any point x, the µ∗-predictor guesses according to the
�-least element of XY that, overlooking finite differences, is consistent with
the information available.

Our main results are the following. The first shows that the µ∗-predictor
guesses correctly except on weakly scattered sets of points, and the second
shows that one cannot improve on this for T0 spaces.

Theorem 7.2.3. For every f : X → Y , the µ∗-predictor guesses incorrectly
for f only at a set of points that is weakly scattered. If X is T0, then this
error set is scattered.

Proof. Take any f : X → Y and let S be the set of points where the µ∗-
predictor guesses incorrectly for f . Suppose T ⊆ S is nonempty. We will
exhibit x ∈ T and a neighborhood N of x such that N ∩ T is finite. Choose
x ∈ T such that 〈f〉x is the �-least element of { 〈f〉y : y ∈ T }, and let N
be a neighborhood of x such that { y ∈ N : f(y) 6= 〈f〉x(y) } is finite. Take
any y ∈ N ∩ T . Since N is a neighborhood of y, we have 〈f〉x ≈∗y f , so
〈f〉y � 〈f〉x. Then 〈f〉y = 〈f〉x, by the minimality of 〈f〉x. Since y ∈ S,
f(y) 6= 〈f〉y(y) = 〈f〉x(y). Therefore, f(y) 6= 〈f〉x(y) for all y ∈ N ∩ T .
It follows that N ∩ T is finite, since { y ∈ N : f(y) 6= 〈f〉x(y) } is finite.
Therefore S is weakly scattered.
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When X is T0, the notions of scattered and weakly scattered coincide,
so S is scattered.

Corollary 7.2.4. For any space X of agents and set Y of colors, there
exists a weakly scattered–error predictor.

The following theorem is the analogue of Proposition 1.4.2 in the topo-
logical context.

Theorem 7.2.5. For every predictor P and every scattered set S ⊆ X,
there exists some f : X → Y such that P guesses incorrectly for f at every
x ∈ S.

Proof. Suppose that P = 〈Gx : x ∈ X〉 is a predictor and that S ⊆ X is
scattered. Let 〈Aα : α < λ〉 be the canonical decomposition of X associated
with S. So A0 = X−S and for α > 0 and x ∈ Aα there exists a neighborhood
N of x such that N ∩ ∪{Aβ : β ≥ α } = {x}. Let f be defined arbitrarily
on A0. For α > 0, assuming f has been defined on Aβ for each β < α, we
define f on Aα as follows. Given x ∈ Aα, let N be a neighborhood of x
such that N ∩ ∪{Aβ : β ≥ α } = {x}. Then f has already been defined on
N −{x}, so [f ]x has been determined. We can now define f(x) ∈ Y so that
f(x) 6= Gx([f ]x), ensuring that P guesses incorrectly for f at x.

There is a version of Theorem 7.2.5 for the case in which the space is
not T0. However, it turns out to be somewhat of a disjoint union of what
we have done here and the finite case in [HT10].

In fact, the µ-predictor works unmodified in T0 spaces, as we now show,
but the proof is significantly longer. Essentially, the µ∗-predictor, by ignor-
ing finite sets, is voluntarily refining the topology to be T1, and this stronger
separation makes the proof go more smoothly. In fact, if we stated the fol-
lowing theorem for T1 spaces instead of T0 spaces, the proof would be more
akin to the proof of Theorem 7.2.3.

Theorem 7.2.6. If X is T0, then for every f : X → Y , the µ-predictor
guesses incorrectly for f only at a set of points that is scattered.

Proof. Take any f : X → Y and let S be the set of points where the µ-
predictor (denoted just µ in what follows) guesses incorrectly for f . Define
≤ on X by x ≤ y if every neighborhood of y is also a neighborhood of x. We
claim that for x, y ∈ S, x < y ⇒ 〈f〉x ≺ 〈f〉y. Suppose x, y ∈ S with x < y.
Let V be a neighborhood of y (and hence also of x) witnessing f ≈y 〈f〉y.
Since x 6≥ y, x has a neighborhood U with y /∈ U . Then f and 〈f〉y agree
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on U ∩ V , witnessing f ≈x 〈f〉y, so 〈f〉x � 〈f〉y. However, 〈f〉y(x) = f(x)
(since x ∈ V − {y}) and f(x) 6= 〈f〉x(x) (since x ∈ S), so 〈f〉x 6= 〈f〉y. We
now have 〈f〉x ≺ 〈f〉y, establishing the claim.

By the claim, it follows that S is well-founded in ≤; otherwise, it would
induce an infinite descending chain in �.

Suppose for a contradiction that S is not scattered. Then, since X is
T0, S is not weakly scattered, so there exists a nonempty S′ ⊆ S with no
weakly isolated points. Note that any nonempty intersection of an open set
with S′ is infinite with no weakly isolated points.

Let x ∈ S′ be such that 〈f〉x is �-minimal among { 〈f〉y : y ∈ S′ }, and
let V be a neighborhood of x witnessing f ≈x 〈f〉x. Let S′′ = S′ ∩ V − {x}.
Then S′′ is infinite.

Take any y ∈ S′′ and suppose y 6≥ x. Then y has a neighborhood U
excluding x. Then f ≈y 〈f〉x, since 〈f〉x and f agree on V − {x} ⊇ V ∩ U .
It follows that 〈f〉y � 〈f〉x, and hence 〈f〉y = 〈f〉x by the minimality of 〈f〉x.
It follows that µ guesses correctly at y, since 〈f〉x and f agree on V − {x},
a contradiction. So, for all y ∈ S′′, y > x.

Let Z be the set of ≤-minimal elements of S′′. Since ≤ is well founded
on S, every y ∈ S′′ has a z ∈ Z with z ≤ y. Note that Z forms an antichain
in ≤.

Take any neighborhood V ′ of x. We claim that V ′ ∩Z is infinite. If not,
let V ′ ∩ Z = {z1, . . . , zn}. For 1 ≤ i ≤ n, we have x < zi, so there is a
neighborhood Vi of x that excludes zi. Then the set T = (∩iVi)∩V ∩V ′ is a
neighborhood of x disjoint from Z. Since the complement of T is closed and
hence closed upwards under≤, T is in fact disjoint from S′′. So, T∩S′ = {x},
contradicting the fact that S′ has no weakly isolated points. Therefore, every
neighborhood of x has infinite intersection with Z.

For any z ∈ Z and a neighborhood U of z, U is a neighborhood of x
(since x < z), so U intersects Z infinitely as shown above. So Z has no
weakly isolated points.

Take z0 ∈ Z such that 〈f〉z0 is �-minimal among { 〈f〉z : z ∈ Z }. Let U0

be a neighborhood of z0 witnessing f ≈z 〈f〉z0 . Take any z1 ∈ Z∩U0−{z0}.
Since Z is an antichain in ≤, z0 6≤ z1, so z1 has a neighborhood U1 excluding
z0. Then f and 〈f〉z0 agree on U0∩U1, so f ≈z1 〈f〉z0 , yielding 〈f〉z1 � 〈f〉z0 .
It follows that 〈f〉z1 = 〈f〉z0 by the minimality of 〈f〉z0 . So, since f and 〈f〉z0
agree on U0 − {z0}, µ guesses correctly at z1, a contradiction.



CHAPTER 7. THE TOPOLOGICAL SETTING 76

7.3 Corollaries

The easy generalization of the Gabay-O’Connor theorem to the context of
ideals that is described at the beginning of Section 4.6 follows from Theo-
rem 7.2.6 by considering the topology on A in which each set of I-measure
one containing x is a basic neighborhood of x. This topology is T0 because
singletons are in I. It is easy to see that the scattered sets are precisely the
sets of I-measure zero, and thus the result follows.

The second result we derive concerns the extent to which “the present
can be predicted based on the past.” Here, the exact characterization of the
error sets occurs in Theorems 3.1 and 3.5 in [HT08b].

Theorem 7.3.1. There exists a predictor that will, for each function f :
R→ Y , correctly guess the value of f(x) from the values of f on (−∞, x),
for all x except those in a well-ordered subset of R.

The derivation of this from our main result uses the downward topology
on R in which, as we mentioned, the scattered sets are the well-ordered
subsets of the reals.

In point of fact, if we are trying to guess the value of f(x) for some
function f : R → Y , we don’t need to know the function values on all of
(−∞, x). Metaphorically speaking, the following asserts that the present
can predicted from an “infinitesimal” piece of the past.

Theorem 7.3.2. There exists a predictor that will, for each function f :
R→ Y , correctly guess the value of f(x)—based on the equivalence relation
f ≈x g if f and g agree on (w, x) for some w < x—for all x except those in
a countable, nowhere dense subset of R.

The derivation of this uses the topology on R in which the basic open
sets are half-open intervals (w, x] (so f ≈x g if f and g agree on (w, x) for
some w < x). It is known that the scattered sets here are countable and
nowhere dense. The exact characterization of the error sets in this example
(as scattered sets) was absent in [HT08b].

The next result is from Section 7 of [HT08b]. It is the following.

Theorem 7.3.3. Consider the hat problem in which the set of agents is an
ordinal α, and each agent sees the hats of all higher-numbered agents. Then
there exists a predictor ensuring that the set of agents incorrectly guessing
their hat color is finite.

The derivation of this from Theorem 7.2.3 uses the upward topology on
α in which, as we mentioned, the scattered sets are the finite subsets of α.
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Finally, suppose that we have a graph on ω that is transitive and consider
the topology on ω in which the only basic neighborhood of k is the set
Nk = {k} ∪ {m : k < m and k is adjacent to m }. Treating this as a hat
problem, each agent k can see the hats of agents in Nk − {k}. In this
context we showed in Chapter 4 that there exists a finite-error predictor iff
the graph contains no infinite independent set. But what if the graph does
contain an infinite independent set? It is easy to see that the scattered sets
in this topology (which is T0) are precisely the ones that contain no infinite
complete subgraph, so our main results give us the following.

Theorem 7.3.4. Consider the hat problem on ω in which each agent sees
some of the hats to his right and the visibility relation is transitive. Then
there is a predictor in which the error set E will never contain an infinite
subset W such that, for all m,n ∈ W with m < n, m can see n. Further-
more, for any predictor and any set E containing no infinite W as above,
there is a way to color the hats so that the error set contains E.

7.4 Guessing the future

In the contexts of Theorems 7.3.1 and 7.3.2, we could make the agents’ job
harder by asking that they not just guess the “present,” but also a bit of
the “future.” That is, agent t must provide a guess not just for f(t), but
for f |[t,∞), and we will call that guess correct if there is a u > t such that
the guess is accurate on [t, u). (So t must guess the present and a bit of
the future.) In point of fact, this strengthening of Theorem 7.3.2 appears in
[HT08b], but it can be generalized to our topological framework as follows.

Consider the situation in which we have two different topologies, T and
T ′, on X. The topology T , as previously, is our notion of visibility : agent
x’s guess must be a function of the equivalence class with respect to T of f
at x. The topology T ′ (our notion of correctness) describes what the agents
must guess: agent x must produce a guess for the equivalence class with
respect to T ′ of f at x.

For example, for Theorem 7.3.1, we would let T be the downward topol-
ogy on R, and for Theorem 7.3.2, we would let T be the topology whose
basic open sets are (w, x]. If we want agents to have to guess a bit of the
future, we can let T ′ be the topology whose basic open sets are [x, y). (Or,
though it would defeat the purpose of introducing T ′ in the first place, to
ask that x just guesses f(x) correctly, we can take T ′ to be the discrete
topology.)
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Theorem 7.4.1. Let T , T ′ be topologies on the set X of players, such that
for every T -neighborhood A of x, there is a subneighbhorhood A′ such that
for all y ∈ A′ − {x}, there is a T ′-neighborhood of y contained in A− {x}.
Then, using T as our notion of visibility and T ′ as our notion of correctness,
the set of wrong players under the µ∗-strategy is weakly scattered with respect
to T .

Proof. Suppose there is a nonempty set W of wrong players with no points
that are weakly isolated with respect to T . We will get a contradiction.
Let x ∈ W be such that gx is �-minimal. Let A be a T -neighborhood of x
such that A− {x} ⊆∗ { y : gx(y) = v(y) }, where v is the true coloring. Let
A′ ⊆ A be as in the statement of the theorem. Since x is not weakly isolated
with respect to T , there are infinitely many y ∈ A′ ∩W ; infinitely many
of them must also be in { y : gx(y) = v(y) }. Take any one of them. Then
gx ≈∗y v, so gy � gx, and by minimality of gx, gy = gx. Then, since gx agrees
with v on a T ′-neighborhood of y, y guesses correctly, a contradiction.

For example, consider the case where agents see the recent past and are
asked to guess the present and near future: we let T be the topology on
X = R with basic open sets (w, x] and V be the topology with basic open
sets [x, y). We can verify that these two topologies satisfy the hypotheses of
Theorem 7.4.1, so the agents will be correct except on a set that is weakly
scattered in T ; these sets are known to be countable and nowhere dense.

7.5 The philosophical problem of induction

There have been two articles published by philosophers that have dealt with
the implications of Theorem 7.3.1 to the problem of induction that is typ-
ically identified with the philosopher David Hume (1711–1776). One of
these was by Alexander George [Geo07] and the other by Alexander Paseau
[Pas08]; we quote extensively from the former in what follows.

Hume argued that inductive inference cannot be justified, and his argu-
ment consisted of two halves, described by George [Geo07] as follows:

In the first half, he [Hume] argues that no demonstration—which
is to say, no mathematical or logical proof—can justify extrapola-
tions from past observations to unobserved cases. In the second,
he argues that no reasoning from experience can provide such a
justification.
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Philosophers have addressed the second half of Hume’s argument for
centuries, but little attention has been paid to the first half. George explains
the reason thusly:

This [lack of attention to the first half] is partly because Hume
there offers an argument in terms of conceivability that leaves
many readers unimpressed; and partly because, notwithstanding
his argument’s weaknesses, its conclusion, that no demonstrative
proof can justify induction, appears so obviously correct in the
first place.

George, however, sees Theorem 7.3.2 as something that “presents a chal-
lenge to these appearances.” We will not recapitulate here all that George
brings out in his discussion. But it is worth noting that he is completely
familiar with the result (a complete proof of which he presents in his arti-
cle) and the role of the axiom of choice. His conclusion is also a measured
response that maintains what is, in our opinion, the proper perspective.

Thus, if our only concern was to establish that our inductive in-
ferences are by and large correct, then the present proof will not
help. But what if what one wanted, in the first instance, to show
that the past has some rational bearing on the future (where its
having precisely the bearing we think it has is of subsequent con-
cern)? What if, moreover, in a spirit of resurgent rationalism,
one wanted to establish the existence of such a bearing through
a priori reasoning? That is, what if one wanted to know whether
it is conceptually incoherent to imagine the future’s being rad-
ically unpredictable given information about the past? On one
interpretation of this question we now have an answer, and a
surprising one.

7.6 Proximity schemes

The reader may have observed that much the material in this chapter can be
carried out in a context somewhat more general than topological spaces: it is
not open sets that we are concerned with, so much as neighborhoods, and the
definition of topological space puts restrictions on what can be considered
a neighborhood that, for our purposes, are unnecessary. We use topological
spaces in that chapter not only because they are widely familiar, but also
because when we develop some theory for these more general structures, we
find that the “nice” cases are in fact instances of topological spaces.
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Definition 7.6.1. A proximity scheme V on X assigns to each x ∈ X a
filter Vx on X. Here, a filter does not have to be proper or non-principal. A
set U ∈ Vx is called a proximity of x.

(If we allowed Vx to be an arbitrary subset of P(X) above, we would
have the notion of neighborhood frame sometimes used in the semantics of
modal logic.)

Given a set X of agents and Y a set of colors, a proximity scheme V
can be used to describe visibility in the following way: given f, g ∈ XY and
x ∈ X, we say f ≈x g iff f u g ∈ Vx, where f u g = {x : f(x) = g(x)}. The
fact that Vx is a filter guarantees this will be an equivalence relation.

Example 7.6.2. A topology T on X can induce a proximity scheme V
in two natural ways. The first, denoted V = Rt T , is to let Vx be the
set of neighborhoods of x. The second, of more interest to us and denoted
V = It T , is to let Vx be the filter of sets that contain a deleted neighborhood
of x; when we do this, the proximity scheme captures topological visibility
as it was understood in the previous chapter.

Example 7.6.3. A binary relation R on X also induces a proximity scheme
V in a natural way: for any x, we let Vx be the principal filter generated by
R(x) (that is, the set of sets containing R(x)). If R is a visibility relation,
then the resulting proximity scheme gives the same notion of visibility.

As proximity schemes are a generalization of binary relations, we can
extend familiar notions for binary relations to proximity schemes. In the
special case where a proximity scheme is induced by a binary relation (that
is, each Vx is principal), the following notions all agree with the correspond-
ing notions for binary relations.

Definition 7.6.4. Let V be a proximity scheme on X.

• V is reflexive if ∀x ∈ X (X − {x} /∈ Vx). Equivalently, ∀x ∈ X ∀U ∈
Vx x ∈ U .

• V is irreflexive if ∀x ∈ X (X −{x} ∈ Vx). Equivalently, ∀x ∈ X ∃U ∈
Vx x /∈ U .

• V is transitive if ∀x ∈ X ∀C ∈ Vx ∃A ∈ Vx ∀y ∈ A C ∈ Vy.

Transitivity is the property of a proximity scheme that makes the proof
of Theorem 4.2.1 carry over. Note that It T is always irreflexive, while Rt T
is always reflexive.
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Definition 7.6.5. Let V , W be proximity schemes on X.

• V ≤W if ∀x ∈ X (Vx ⊇Wx).

• The proximity scheme U = V ∨W is defined by Ux = Vx ∩Wx.

• The proximity scheme U = V ∧W is defined by Ux = {A ∩ B : A ∈
Vx∧B ∈Wx }. (Equivalently, Ux is the closure of Vx∪Wx under finite
intersection.)

• The composition of W with V is the proximity scheme U = W ◦ V
defined by letting C ∈ Ux iff ∃A ∈ Vx ∀y ∈ A C ∈ Wy; equivalently,
there exists A ∈ Vx and sets By ∈ Wy for each y ∈ A such that⋃
y∈ABy ⊆ C.

• The empty proximity scheme 0 on X is the proximity scheme induced
by the empty relation.

• The identity proximity scheme I on X is the proximity scheme induced
by the identity relation.

Proposition 7.6.6. The set of all proximity schemes on X, under the or-
dering ≤, forms a distributive lattice with operations ∨ and ∧.

(We can actually extend ∨ and ∧ to give arbitrary joins and meets,
yielding a completely distributive lattice.)

Many algebraic characterizations of properties of binary relations carry
over to proximity schemes, as the following proposition shows.

Proposition 7.6.7. Let V be a proximity scheme on X.

(i) V is reflexive iff I ≤ V .

(ii) V is irreflexive iff I ∧ V = 0.

(iii) V is transitive iff V ◦ V ≤ V .

We now examine the relationship between proximity schemes and topo-
logical spaces, culminating in Theorem 7.6.17, which shows that any tran-
sitive irreflexive proximity scheme is induced by a topology.

Definition 7.6.8. Given a proximity scheme V on X, a set U ⊆ X is open
(with respect to V ) if ∀x ∈ U U ∈ Vx (equivalently, every x ∈ U has a
proximity contained in U). We use TpV to denote the resulting topology
on X.
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It is easily verified that this indeed gives a topology on X. Furthermore,
if V was induced by a topology T on X (either by taking neighborhoods or
deleted neighborhoods), then the above topology coincides with T .

Proposition 7.6.9. For any topology U on X, T = Tp It T = Tp Rt T .

Proof. If U ∈ T , it is easy to get U ∈ Tp It T and U ∈ Tp Rt T .
If U /∈ T , let x ∈ U such that no open neighborhood of x is contained

in T ; it follows that no deleted neighborhood of x is contained in T either.
So, whether we consider Rt T or It T , no proximity of x is contained in U ,
so U is not open in Tp It T or Tp Rt T .

Definition 7.6.10. Say that a topology on X is locally T1 if every x ∈ X
has an open neighborhood U such that U − {x} is open.

Proposition 7.6.11. Being locally T1 is a separation condition that lies
strictly between being T0 and being T1. That is, the class of T1 spaces is
properly contained in the class of locally T1 spaces, which is properly con-
tained in the class of T0 spaces.

Proposition 7.6.12. For any topology T , Rt T is transitive.

Proposition 7.6.13. For any topology T on X, if T is locally T1, then It T
is transitive.

Proof. Suppose T is locally T1 and let V = It T . Take any x ∈ X and
C ∈ Vx. Then {x}∪C ∈ T , so there exists some open neighborhood U ′ ∈ T
of x such that C ′ − {x} ∈ T . Then C ′ − {x} is open with respect to V , so
every y ∈ C ′ − {x} has a proximity contained in C ′ − {x} ⊆ U . Therefore,
V is transitive.

We see below in Theorem 7.6.17 that the converse also holds. Its proof
is elementary once one focuses on the notion of interior.

Definition 7.6.14. Given a proximity scheme V on X and a set C ⊆ X,
we define the V -interior of C to be C(V ) = {x ∈ C : C ∈ Vx }.

Lemma 7.6.15. Suppose V is a transitive proximity scheme on X, x ∈ X,
and C ∈ Vx. Then C(V ) ∈ Vx.

Proof. Since V is transitive and C ∈ Vx, ∃A ∈ Vx ∀y ∈ A C ∈ Vy. Without
loss of generality, A ⊆ C; together with ∀y ∈ A C ∈ Vy, this gives A ⊆ C(V ),
so C(V ) ∈ Vx.
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Lemma 7.6.16. Suppose V is transitive and C ⊆ X. Then C(V ) is open.
Also, for any x ∈ X such that C ∈ Vx, C(V ) ∪ {x} is also open.

Proof. Take any x ∈ C(V ). Then C ∈ Vx, so by the previous lemma, C(V ) ∈
Vx. Therefore, C(V ) is open.

If x ∈ X such that C ∈ Vx, then C(V ) ∈ Vx. We already have C(V ) ∈ Vy
for all y ∈ C(V ). It easily follows that ∀y ∈ C(V ) ∪ {x} (C(V ) ∪ {x} ∈ Vy),
so C(V ) ∪ {x} is open.

Theorem 7.6.17. Let V be an irreflexive transitive proximity scheme on
X. Then TpV is locally T1 and V = It TpV .

The intuition behind the proof is that, since the open elements of Vx are
dense in Vx, we can recover Vx from topological information.

Proof. Let T = TpV . Take any x ∈ X. Then X − {x} ∈ Vx (since V is
irreflexive). Let U = (X−{x})(V ). Then U ∈ Vx and is open by the previous
lemmas. Let U ′ = U ∪ {x} (so U = U ′ − {x}, since x /∈ U). Since U ′ ∈ Vx
and U ′ ∈ Vy for all y ∈ U , U ′ is also open. So, x has an open neighborhood
U ′ such that U ′ − {x} is also open. Therefore, TpV is locally T1.

Now let V ′ = It TpV . We will show V = V ′. Take any x ∈ X and
suppose C ∈ Vx. Then C − {x} ∈ Vx since V is irreflexive, and, letting
C ′ = (C − {x})(V ), we have that C ′ is open and C ′ ∈ Vx by the previous
lemmas. We also have that C ′ ∪ {x} is open (that is, C ′ ∪ {x} ∈ TpV ), so
C ′ = (C ′ ∪ {x}) − {x} ∈ V ′x; from C ′ ⊆ C, we have C ∈ V ′x. For the other
direction, suppose D ∈ V ′x. Then there is some U ∈ TpV such that x ∈ U
and U − {x} ⊆ D. Now, U ∈ Vx by the definition of TpV , so U − {x} ∈ Vx
since V is irreflexive, so D ∈ Vx since U − {x} ⊆ D. Therefore V = V ′.

7.7 Open questions

The following may be an easier version of Question 3.6.1.

Question 7.7.1. Does Corollary 7.2.4, quantified over all X and Y , imply
AC over ZF?



Chapter 8

Universality of the
µ-Predictor

8.1 Background

Assume X is a topological space and Y is an arbitrary set. Then for every
well-ordering � of XY , we let M� denote the µ-predictor 〈µx : x ∈ X〉.
That is, µx(f) = 〈f〉x where 〈f〉x is the �-least element of the equivalence
class [f ]x of f with respect to ≈x, and f ≈x g iff f and g agree on a deleted
neighborhood of x.

Theorem 7.2.6 showed that ifX is a T0 space, then for every well-ordering
� of XY , the µ-predictor M� is a scattered-error predictor. Here, we show
that every scattered-error predictor in a T0 space is an instance of the µ-
predictor. This chapter is largely taken from [H11].

Theorem 8.1.1. Suppose X is T0 and P is a scattered-error predictor for
XY . Then P = M� for some well-ordering � of XY .

We actually prove something slightly stronger, that involves a more gen-
eralized kind of visibility to allow finer control over the information available
to predictors; this generality is used in Sections 8.5 and 8.6.

Definition 8.1.2. A notion of indistinguishability ≡ assigns to each x ∈ X
an equivalence relation ≡x on XY . A function P : XY → XY respects ≡ if
P (f) = P (g) whenever f ≡x g for every x ∈ X. In this case, we call P a
predictor under ≡.

Most notably, the relations ≈x above give a notion of indistinguishability
≈, which we take as our default if no other notion is specified.

84
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In any notation defined in terms of ≈, we add a superscript to indicate
the use of ≡ in place of ≈; for example, [f ]≡x is the equivalence class of
f under ≡x, and M≡� f(x) = 〈f〉≡x (x). Naturally, we say that ≡ refines
(coarsens) ≡′ if ≡x refines (coarsens) ≡′x for each x ∈ X. Note that if ≡
refines ≡′, then any predictor under ≡′ is also a predictor under ≡. We can
now state the stronger version of Theorem 8.1.1.

Theorem 8.1.3. Suppose X is T0 and P is a scattered-error predictor for
XY . Then there exists a well-ordering � of XY such that for any notion of
indistinguishability ≡ that coarsens ≈ and which P respects, P = M≡� .

In addition to characterizing the scattered-error predictors for T0 spaces,
the above results suggest a certain naturality to the µ-predictor. They also
give some progress toward determining the strength of Corollary 7.2.4; in
particular, does it imply AC over ZF? Our proofs of Theorems 8.1.1 and
8.1.3 are carried out in ZFC, but we examine what can be done in ZF in
Section 8.7.

To prove these results, we first need to take a closer look at scattered
sets.

8.2 Scattered sets

Definition 8.2.1. For A ⊆ X, let

limA = {x ∈ X : every deleted neighborhood of x intersects A }.

Define A• = A ∩ limA, and define A(α) for ordinals α by

A(0) = A

A(α+1) =
(
A(α)

)•
A(λ) =

⋂
α<λ

A(α) (λ a limit ordinal).

The rank of A is the least ordinal ρ(A) such that A(ρ(A)+1) = A(ρ(A)); we
call A(ρ(A)) the kernel of A.

This is very similar to Cantor-Bendixson derivatives and rank, except
that we have A• = A∩ limA, while the Cantor-Bendixson derivative of A is
limA.

Proposition 8.2.2. A set is scattered iff its kernel is ∅.
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Proposition 8.2.3. In the downward (upward) topology on a partial order,
the scattered sets are the well-founded (co-well-founded) sets.

Proposition 8.2.4. If sets Ui ⊆ X, i ∈ I, are open and Σ ⊆ ∪iUi, then Σ
is (weakly) scattered iff Σ ∩ Ui is (weakly) scattered for each i ∈ I.

Proposition 8.2.5. The family I of weakly scattered subsets of X forms an
ideal; i.e., ∅ ∈ I, (A ∈ I & B ⊆ A)⇒ B ∈ I, and A,B ∈ I ⇒ A ∪B ∈ I.

(In T0 spaces, this ideal is the same as the family of scattered sets. In
non-T0 spaces, the latter is not an ideal: If x0 and x1 witness that X is not
T0, then {x0} and {x1} are scattered but {x0, x1} is not.)

We define the relation =† on XY by f =† g iff f∆g is weakly scattered.
In light of the above proposition, this is an equivalence relation, and we

use [f ]† to denote the equivalence class of f under =†.
If X is a topological space and x ∈ X, we let x denote the set of all

y ∈ X such that every neighborhood of x contains y.

Lemma 8.2.6. If X is T0, Σ ⊆ X is scattered and x ∈ X, then x has a
neighborhood V such that V ∩ Σ ∩ x− {x} = ∅.

Proof. Let Σ′ = Σ ∩ x − {x}. If Σ′ = ∅, then we can let V be any neigh-
borhood of x. Otherwise, there exists y ∈ Σ′ with neighborhood W such
that W ∩ Σ′ = {y}. Since x ≤ y, every neighborhood of y contains x;
in particular, W is a neighborhood of x, and since X is T0 and x 6= y, x
has a neighborhood U such that y /∈ U . Let V = W ∩ U . Then V is a
neighborhood of x disjoint from Σ′, so V ∩ Σ ∩ x− {x} = ∅.

8.3 Dynamics of scattered-error predictors

Throughout this section, we assume X is T0.

Proposition 8.3.1. If U is open and f |U = f ′|U , then P (f)|U = P (f ′)|U
for any predictor P .

Lemma 8.3.2. Suppose x ∈ X and f, f ′ ∈ XY such that f∆f ′ ⊆ {x}.
Then for any scattered-error predictor P , x has a neighborhood V such that
(P (f)∆P (f ′)) ∩ V = ∅.

Proof. Let Σ = P (f)∆P (f ′), which is scattered since P (f) =† f =† f ′ =†

P (f ′). By Lemma 8.2.6, let V be a neighborhood of x such that V ∩ Σ ∩
x − {x} = ∅. We claim that Σ ∩ V = ∅; for this, it suffices to show that
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Σ ⊆ x−{x}. If y /∈ x, then y has a neighborhood U with x /∈ U ; U witnesses
f ≈y f ′, so P (f)(y) = P (f ′)(y) and hence y /∈ Σ. Also, f ≈x f ′, so x /∈ Σ.
This establishes the claim and we now have (P (f)∆P (f ′)) ∩ V = Σ ∩ V =
∅.

Lemma 8.3.3. If P is a scattered-error predictor, then every equivalence
class of =† contains exactly one fixed point of P .

Proof. Let h ∈ XY . We first show that P has at most one fixed point in [h]†.
Suppose f, f ′ ∈ [h]† are distinct fixed points. Then, f∆f ′ is nonempty but
scattered. Let x ∈ f∆f ′ with neighborhood V such that (f∆f ′)∩V = {x}.
Then f ≈x f ′, so f(x) = P (f)(x) = P (f ′)(x) = f ′(x), a contradiction. So
P has at most one fixed point in [h]†. It remains to be shown that a fixed
point of P in [h]† exists.

Let

A = {U ⊆ X : U is open and ∃f ∈ [h]† P (f)|U = f |U }.

We first show that no proper subset of X is a maximal element of A, and
then show that A is closed under arbitrary unions.

Take any U ∈ A, and let f ∈ [h]† be such that P (f)|U = f |U . Assume
P (f)∆f 6= ∅ (otherwise, f is a fixed point and we are done). Since P (f)∆f
is scattered, there exists x ∈ P (f)∆f with neighborhood V such that
(P (f)∆f)∩V = {x}. Let f ′ = f [P (f)(x)/x], where f ′ = f [b/a] is defined by
f ′(x) = b if x = a, and f ′(x) = f(x) otherwise. By Lemma 8.3.2, shrinking
V if necessary, we can assume without loss of generality that (P (f ′)∆P (f))∩
V = ∅. For z ∈ V − {x}, we have P (f ′)(z) = P (f)(z) = f(z) = f ′(z), and
we have P (f ′)(x) = P (f)(x) = f ′(x); this yields P (f ′)|V = f ′|V .

For z ∈ U , Proposition 8.3.1 gives us P (f ′)(z) = P (f)(z) = f(z) = f ′(z),
so P (f ′)|U = f ′|U . We now have P (f ′)|(U∪V ) = f ′|(U∪V ), so f ′ witnesses
that (U ∪V ) ∈ A. Note that U is a proper subset of U ∪V , since x ∈ V −U .
So, no proper subset of X is maximal in A.

We now show that A is closed under arbitrary unions. Suppose we have
sets Ui ∈ A with associated functions fi ∈ [h]†, for i in some index set I.
We first show that the partial functions fi|Ui are compatible. If not, then
there are j, k ∈ I such that, letting V = Uj ∩ Uk, the set Σ = (fj∆fk) ∩ V
is nonempty. Since Σ is scattered, there exists x ∈ Σ with neighborhood V
such that Σ ∩ V = {x}. Then fj ≈x fk, so Sfj(x) = Sfk(x), so fj(x) =
Sfj(x) = Sfk(x) = fk(x), a contradiction.

Let U =
⋃
i∈I Ui. Since the partial functions fi|Ui are compatible, their

union is a function f : U → Y . Extend f to a function f : X → Y by letting
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f |(X −U) = h|(X −U). Take any x ∈ U , and let i ∈ I be such that x ∈ Ui;
noting that f ≈x fi, we have P (f)(x) = P (fi)(x) = fi(x) = f(x). It follows
that P (f)|U = f |U , so f witnesses that U ∈ A, provided f =† h, which
follows from Proposition 8.2.4. This establishes the claim that A is closed
under arbitrary unions.

Since A is closed under arbitrary unions, and no proper subset of X is
maximal in A, it follows that that X ∈ A. The f witnessing X ∈ A is a
fixed point of P .

Lemma 8.3.4. Given any f : X → Y and D ⊆ X, there exists f ′ : X → Y
such that f ′|D = f |D and P (f ′)∆f ′ ⊆ D.

The idea in the following proof is that fixing f |D induces a scattered-
error predictor for (X−D)Y to which we can apply the above lemma.

Proof. Let X0 = X − D with the subspace topology. For any function
h : X0 → Y , define ĥ : X → Y by ĥ|X0 = h, ĥ|D = f |D. Define the
predictor P0 for X0Y by P0(g) = P (ĝ)|X0. It follows from the fact that P
is scattered-error predictor (for XY ) that P0 is a scattered-error predictor
(for X0Y ), so by the previous lemma, there is a function h : X0 → Y such
that h =† f |X0 and P0(h) = h. Then P (ĥ)|X0 = P0(h) = h = ĥ|X0, so
P (ĥ∆ĥ) ⊆ D, and ĥ|D = f |D.

8.4 Getting an ordering from a predictor

Throughout this section, we assume X is T0.
Fix a scattered-error predictor P , and let � be any well-ordering of

XY such that ρ(P (f)∆f) < ρ(P (f ′)∆f ′) ⇒ f ≺ f ′. We will show that
the resulting M� coincides with P (and, more generally, M≡� = P for ap-
propriate ≡). To get some intuition for why this will work, if we have
P (〈f〉x)(x) = 〈f〉x(x), then it will follow that P (f)(x) = P (〈f〉x)(x) =
〈f〉x(x) = M�(f)(x), which we want. In order to favor functions g where
P (g) and g agree at x, but without making specific reference to x (since we
have one ordering � that is used at all points), we simply favor functions g
where P (g) and g agree often. One way to say that P (g) and g agree often is
to say that ρ(P (g)∆g) is small. By placing functions g with small values of
ρ(P (g)∆g) early in the ordering, we will tend to get P (〈f〉x)(x) = 〈f〉x(x).
That this is not just a tendency, but always happens, is worked out in the
details that follow.

Suppose ≡ is a notion of indistinguishability that coarsens ≈ but which
is still respected by P in the sense that f ≡x g ⇒ P (f)(x) = P (g)(x).
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Lemma 8.4.1. Take any f ∈ XY and x ∈ X, and let g = 〈f〉≡x . Then for
any neighborhood V of x, ρ((P (g)∆g) ∩ V − {x}) = ρ(P (g)∆g).

Proof. It is immediate that ρ((P (g)∆g) ∩ V − {x}) ≤ ρ(P (g)∆g). Suppose
for a contradiction that ρ((P (g)∆g) ∩ V − {x}) < ρ(P (g)∆g). Let g′ =
g[P (g)(x)/x]. By Lemma 8.3.2, let V ′ be a neighborhood of x such that

(P (g)∆P (g′)) ∩ V ′ = ∅. (8.1)

Without loss of generality, V ′ ⊆ V . By Lemma 8.3.4, there is a g′′ ∈ XY such
that g′|V ′ = g′′|V ′ and P (g′′)∆g′′ ⊆ V ′. Note that P (g)|V ′ = P (g′)|V ′ =
P (g′′)|V ′ by (8.1) and Proposition 8.3.1.

We claim that P (g′′)∆g′′ ⊆ (P (g)∆g)∩V −{x}. Take any z ∈ P (g′′)∆g′′.
Then z ∈ V ′ ⊆ V , since P (g′′)∆g′′ ⊆ V ′. Note that g ≈x g′ ≈x g′′ (the
former because g∆g′ = {x}, the latter because g′|V ′ = g′′|V ′, so P (g′′)(x) =
P (g)(x) = g′(x) = g′′(x), so x /∈ P (g′′)∆g′′, so z 6= x. Also, P (g)(z) =
P (g′′)(z) 6= g′′(z) = g′(z) = g(z), so z ∈ P (g)∆g. We now have z ∈
(P (g)∆g) ∩ V − {x}. This establishes the claim.

It follows that ρ(P (g′′)∆g′′) ≤ ρ((P (g)∆g) ∩ V − {x}) < ρ(P (g)∆g), so
g′′ ≺ g. Note, however, that g′′ ≈x g ≡x f , so g′′ ≡x f , so g is not the
�-least element of [f ]≡x , a contradiction.

Lemma 8.4.2. Let Σ be a scattered set and suppose x ∈ X such that ρ(Σ∩
V − {x}) = ρ(Σ) for every neighborhood V of x. Then x /∈ Σ.

Proof. Let σ = ρ(Σ). Let γ be minimal such that x /∈ Σ(γ). Note that γ ≤ σ
since Σ(σ) = ∅. Note also that γ cannot be a limit ordinal (since, for any
limit ordinal λ, any point absent from Σ(λ) is already absent from Σ(α) for
some α < λ).

Suppose for a contradiction x ∈ Σ. Then γ 6= 0, so γ = β+1 for some β.
Then, x ∈ Σ(β) and x has a neighborhood V such that Σ(β) ∩ V − {x} = ∅.
Then (Σ ∩ V − {x})(β) = ∅, so ρ(Σ ∩ V − {x}) ≤ β < σ = ρ(Σ ∩ V − {x}),
a contradiction. Therefore, x /∈ Σ.

Lemma 8.4.3. Take any f ∈ XY and x ∈ X, and let g = 〈f〉≡x . Then
P (g)(x) = g(x).

Proof. Let Σ = P (g)∆g, a scattered set. By Lemma 8.4.1, for any neigh-
borhood V of x, ρ(Σ ∩ V − {x}) = ρ(Σ). By Lemma 8.4.2, x /∈ Σ, so
P (g)(x) = g(x).
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Proof of Theorem 8.1.3. With P , �, and ≡ as above, take any f ∈ XY and
x ∈ X. Let g = 〈f〉≡x . By the previous lemma, P (g)(x) = g(x). Since
g ≡x f , we have P (g)(x) = P (f)(x). Then M≡� f(x) = g(x) = P (g)(x) =
P (f)(x). Therefore, P = M≡� .

Theorem 8.1.1 follows as the special case where ≡ is ≈.

8.5 Visibility relations

If V is a visibility relation on X given by a transitive graph and we put
the upward topology on X derived from the partial ordering where x < y
if x can see y, then ∼ and ≈ coincide. In short, transitive visibility is a
special case of the topological context. Recalling that the scattered sets in
the upward topology on a partial order are the co-well-founded sets, the role
played by scattered sets in previous sections is played by co-well-founded
sets below.

What we are able to show is that when V is acyclic, “good” predictors
(when they exist at all) are all special cases of the µ-predictor.

Theorem 8.5.1. Let V be an acyclic visibility relation on X, and suppose
that P is a predictor for V such that P (f)∆f is co-well-founded in V + for
all f ∈ XY . Then P = M� for some well-ordering � of XY . (Now, of
course, M� refers to M∼� , not M≈� .)

Proof. As V is acyclic, V + is a strict partial order of X. Consider X as
a topological space under the upward topology induced by V +, and let ≈
be the resulting notion of indistinguishability. Note that ≈ refines ∼, so P
respects ≈. Also, as noted above, the scattered sets coincide with the sets
co-well-founded in V +. So, we can consider P as a scattered-error predictor
under ≈. Applying Theorem 8.1.3, let � be a well-ordering of XY such that
P = M≡� for any ≡ that coarsens ≈ and which P respects. In particular,
this applies when ≡ is ∼, so P = M∼� .

A case of particular interest is finite-error predictors. The question of
which relations V admit a finite-error predictor is an ongoing one; specifi-
cally, we would like to know whether or not the following are equivalent for
|Y | ≥ 2:

(i) V admits a finite-error predictor;

(ii) there is no sequence of distinct x0, x1, . . . ∈ X such that xiV xj fails
for every i ≤ j.
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The direction (i)⇒(ii) always holds, and (ii)⇒(i) is known to hold when X
is countable or V is transitive [H10]. Also, if (ii)⇒(i) holds for acyclic V ,
then it holds for all V (since intersecting V with a well-ordering of X makes
V acyclic while preserving (ii)). The following corollary tells us that, in the
acyclic case, we can restrict our attention to instances of the µ-predictor
when seeking a finite-error predictor.

Corollary 8.5.2. Suppose V is an acyclic visibility relation on X and that
P is a finite-error predictor for V . Then P = M� for some well-ordering �
of XY .

Proof. Finite sets are necessarily co-well-founded in any partial order, so
Theorem 8.5.1 applies.

There is no hope of extending this to visibility relations that contain
cycles (except in degenerate cases where there are no such S to begin with,
or |Y | ≤ 1), as the following proposition shows. Say that two predictors P
and P ′ are almost the same if P (f)∆P ′(f) is finite for all f ∈ XY . Note
that if P and P ′ are almost the same and I is a non-principal ideal, then P
is an I∗-predictor iff P ′ is an I∗-predictor.

Theorem 8.5.3. Suppose V has a cycle, P is a predictor for V , and |Y | ≥ 2.
Then there exists a predictor P ′ that is almost the same as P and is not a
special case of the µ-strategy.

Proof. We will use the cycle to construct P ′ in a way that guarantees at
least one error. Such a predictor cannot be a special case of the µ-predictor,
because there is always at least one function that makes the µ-predictor
correct everywhere: for any well-ordering � of XY , if f0 is the first function
in the ordering, M�(f0) = f0.

Let x0V x1V · · ·V xk−1V x0 be a cycle of V . Let d : Y → Y be such that
d(y) 6= y for all y ∈ Y . For f ∈ XY , we define

P ′(f)(x) =


f(xi+1) if x = xi, i < k − 1,

d(f(x0)) if x = xk−1,

P (f)(x) otherwise.

Informally, in P ′, all agents in the cycle other than xk−1 assume their hat
color is the same as the color of the next agent in the cycle, while xk−1
assumes it is not; everywhere else, P ′ agrees with P (so P ′ is almost the same
as P ). This guarantees at least one error: if P ′ were correct at every point
in the cycle, we would have f(x0) = f(x1) = · · · = f(xk−1) = d(f(x0)) 6=
f(x0), a contradiction.
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8.6 Variations on the µ-predictor

In this section we consider modified versions of the µ-predictor such as the
µ∗-predictor (which ignores finite differences) from Chapter 7. One virtue of
the µ∗-predictor is that while the proof of Theorem 7.2.6 is about one page,
the proof of the analogous result for the µ∗-predictor is 11 lines [HT09];
that gives the µ∗-predictor, perhaps, a greater claim to being the “right”
approach. Another virtue of the µ∗-predictor is that its willingness to over-
look certain minor differences makes it work in some contexts where the
µ-predictor can fail. For example, if one lets V be the complement of the
identity relation on a set X, then the µ∗-predictor will always be finite-
error, but the µ-predictor will typically not be; also, as noted below, the
µ∗-predictor is weakly scattered–error even in non-T0 spaces.

Taking this idea further, we can consider the µ†-predictor, which ignores
weakly scattered sets of differences. (This only makes sense in the topological
context. Though we can make sense of the µ∗-predictor when working with
visibility relations, we only consider the topological case below.)

Formally, under a given notion of indistinguishability ≈, let ≈∗ be the
finest coarsening of ≈ in which each ≈∗x respects =∗; define ≈† similarly. For
a given well-ordering � of XY , the µ∗-predictor under ≈ is M≈

∗
� , while the

µ†-predictor under ≈ is M≈
†
� .

Given a scattered-error predictor P that respects =∗ (or =†), we already
know (provided X is T0) that P must be a special case of the µ-predictor.
By Theorem 8.1.3, we can also say that P must be a special case of the
µ∗-predictor (or, respectively, the µ†-predictor).

Much else of what we already know about the µ-predictor also carries
immediately over to the µ∗- and µ†-predictors. As detailed below, the µ∗-
and µ†-predictors can be obtained as special cases of the µ-predictor under
a finer topology. Our only concern is that, when we refine the topology,
we might introduce new weakly scattered sets, so that while the µ∗- or
µ†-predictor is weakly scattered–error with respect to the finer topology,
perhaps it is not weakly scattered–error with respect to the original topology.
We show below that, for the refinements under consideration, no new weakly
scattered sets are introduced.

Definition 8.6.1. Given a topology T on X, let S(T ) denote the ideal of
sets that are weakly scattered with respect to T , let T ∗ be the coarsest
refinement of T containing all cofinite sets (equivalently, the coarsest T1
refinement of T ), and let T † be the coarsest refinement of T containing the
complements of sets in S(T ).
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Observe that the µ∗-predictor, under T , is realized as the µ-predictor
under T ∗; likewise for the µ†-predictor and T †. Note that T ∗ and T † are
always T1, even if T is not T0 (this, once the theorem below is proved, shows
that the µ∗-predictor and the µ†-predictor are weakly scattered–error in any
space).

Proposition 8.6.2. T ⊆ T ∗ ⊆ T † = {U −K : U ∈ T & K ∈ S(T ) }.

Theorem 8.6.3. S(T ) = S(T ∗) = S(T †).

Proof. By T ⊆ T ∗ ⊆ T †, the inclusions S(T ) ⊆ S(T ∗) ⊆ S(T †) are triv-
ial, so we must show S(T †) ⊆ S(T ). Suppose Σ ∈ S(T †), and take any
nonempty Σ′ ⊆ Σ. We must show that Σ′ has a point that is weakly iso-
lated with respect to T . Let x ∈ Σ′ with neighborhood V ∈ T † such that
Σ′ ∩ V is finite. Then V = U −K for some U ∈ T and K ∈ S(T ). With-
out loss of generality, K ⊆ U (so U = V ∪ K). If Σ′ ∩ U is finite, we are
done. Otherwise, Σ′ ∩ K must be infinite; in particular, it is a nonempty
subset of K ∈ S(T ), so there exists some y ∈ Σ′ ∩ K with neighborhood
W ∈ T such that W ∩Σ′ ∩K is finite. One can now verify that U ∩W ∈ T
is a neighborhood of y ∈ Σ′ that weakly isolates y from Σ′. Therefore,
Σ ∈ S(T ).

8.7 Results without the axiom of choice

We would like to know whether Corollary 7.2.4 (quantified over all X and Y )
implies AC over ZF. For this purpose, the main results are not immediately
of any use, since they are theorems of ZFC. Though all of Section 8.2 can
be carried out in ZF, we appeal to AC at the beginning of Section 8.4 when
extending � to a well-ordering. What happens if we skip that step?

Suppose that, at the beginning of Section 8.2, we had chosen to let f ≺
f ′ ⇔ ρ(P (f)∆f) < ρ(P (f ′)∆f ′), without extending to a well-ordering. This
would be a well-founded partial order of XY ; it would not be total (except in
degenerate cases), but it would be total enough (when X is T0, at least) to
uniquely determine M≡� : roughly speaking, if it did not uniquely determine
M≡� , then our proof Theorem 8.1.1 would not work, since it uses an arbitrary
extension of the above ordering to �. A more rigorous justification follows.

Rather than letting 〈f〉≡x be the �-least element of [f ]≡x , we now define
〈f〉≡x to be the set of �-minimal elements of [f ]≡x . Fix some y0 ∈ Y (the case
Y = ∅ is uninteresting). We define M = M≡� as follows: if every g ∈ 〈f〉≡x
agrees on the value of g(x), we take this to be M(f)(x); otherwise, we let
M(f)(x) = y0. (This latter case will never occur, but we cannot assume
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that yet.) In the statements of Lemmas 8.4.1 and 8.4.3 and the proof of
Theorem 8.1.3, g = 〈f〉≡x becomes g ∈ 〈f〉≡x . At the end of the proof of
Lemma 8.4.1, the contradiction is now that g is not�-minimal in [f ]≡x , rather
than “g is not the �-least element of [f ]≡x .” With these modifications, we
still reach the conclusion P = M≡� in the proof of Theorem 8.1.3. (Also note
that, with the modified version of Lemma 8.4.3, every g ∈ 〈f〉≡x agrees on the
value of g(x): for g, g′ ∈ [f ]≡x , we have g(x) = P (g)(x) = P (g′)(x) = g′(x);
so, the y0 case above never occurs.)

8.8 Open questions

We have seen that, in the context of T0 spaces, every scattered-error predic-
tor is an instance of the µ-predictor, and that every instance of µ-predictor is
scattered-error. Transitive visibility relations can be seen as a special case of
this. However, nontransitive visibility relations are not as well understood.
What we have shown is that, for an acyclic visibility relation V , every good
predictor (that is, one guaranteeing that the set of errors is co-well-founded
in V +) is an instance of the µ-predictor; it is not always the case, though,
that every well-ordering �makes M� a good predictor. First, some relations
admit no good predictor at all (for example, with V the successor relation
on X = ω and |Y | ≥ 2, no predictor can guarantee even a single correct
guess); second, even when good predictors exist, M� will be good for some
choices of �, but typically not all when V is nontransitive.

So, two questions arise:

Question 8.8.1. Which visibility relations admit good predictors?

Question 8.8.2. When a visibility relation admits at least one good pre-
dictor, which well-orderings � make M� a good predictor?

Even if we cannot answer the latter question fully, can we at least find
a way to construct � such that, if there is any good predictor at all, then
M� is good?

Currently, the only known technique for producing good predictors based
on the µ-predictor for nontransitive visibility relations is to voluntarily
coarsen the notion of indistinguishability to one that is more cooperative,
without coarsening it too much. For example, given a nontransitive visibil-
ity relation V , we can often find a transitive T ⊆ V that is “close” to V
in some sense, and use the µ-predictor with T as our notion of visibility;
see [H10] for details. In that same paper, an example is given for which
that approach cannot be made to work; specifically, a nontransitive V is
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constructed that holds some promise for admitting a finite-error strategy,
but for which no transitive subrelation admits a finite-error strategy. Yet we
know from Corollary 8.5.2 that if any finite-error strategy exists, it can be
realized as a special case of the µ-predictor. This is some of our motivation
for the above questions: in situations where restricting to a transitive sub-
relation is not an option, we would like a way of constructing orderings �
that make the µ-predictor perform well even in the absence of transitivity.

In the case of visibility relations with a cycle, we saw in Theorem 8.5.3
how predictors can fail to be special cases of the µ-predictor. Nevertheless,
we ask the following:

Question 8.8.3. Can we identify the circumstances under which, given a
predictor P , there exists an instance of the µ-predictor that is “as good”
as P? For example, is it the case that if I is an ideal and ≡ is a notion of
indistinguishability that admits an I∗-predictor, then there is an instance of
the µ-predictor that is an I∗-predictor?



Chapter 9

Generalizations and
Galois-Tukey Connections

9.1 Background

It is possible to see the parity relation EO as actually being a two-agent
hat problem, though we must first consider a more general type of hat
problem; in doing so, we uncover a close relationship with so-called Galois-
Tukey connections, which arise in the study of cardinal invariants. Rather
than requiring agents to guess their hat colors exactly, we can have a more
flexible notion of when a guess is acceptable. We might, say, have R as the
set of hat colors, and require an agent’s guess fall within a certain radius
of the actual color; or the agent might be allowed to guess any meager set
of reals, with the guess considered acceptable when the actual color is in
that set. More generally, we can use any binary relation between two sets to
specify when guesses are acceptable. Much of our notation and terminology
below follows [Bar10].

Here, we require any binary relation R to have distinguished domain R−
and codomain R+, so R ⊆ R− × R+. It will often be convenient to specify
such a relation with a triple (R−, R+, R), as in (R,M,∈) whereM denotes
the collection of meager sets of reals. A relational hat problem is much like
an ordinary hat problem, except that rather than having a single set of
hat colors, we assign to each agent x a relation Rx; a coloring assigns to
each agent x an element of Rx−; each agent x, rather than guessing a color,
guesses an element of Rx+ (so a predictor is now a function P :

∏
x∈X R

x
− →∏

x∈X R
x
+); for a color c ∈ Rx− and guess d ∈ Rx+, we consider the guess

correct if cRxd. While we still refer to elements of Rx− as colors, we refer to

96
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elements of Rx+ as co-colors, so each agent is assigned a color (and sees the
colors of visible agents) but guesses a co-color. We refer to the relations Rx

as acceptability relations, and we refer to them collectively as R, which we
call an acceptability notion for X.

Definition 9.1.1. For a relation R, R⊥ is the complement of the converse
of R. For example, (R,M,∈)⊥ = (M,R, 63).

R is serial if ∀c ∈ R− ∃d ∈ R+ cRd; equivalently (under AC), there is
a function f : R− → R+ with f ⊆ R. We say R is decent (not standard
terminology) if both R and R⊥ are serial.

In terms of hat problems, the two conditions for R being decent tell us,
respectively, that there is no color that can make every guess wrong, and no
guess that is correct for every color.

An important observation to make is that the main positive and negative
results for the topological case (that is, the results of Section 7.2) still work
in the context of relational hat problems, provided we are using decent
acceptability relations. For a trivial diagonalization as in Theorem 7.2.5,
the proof carries over unchanged: once an agent’s guess is determined, we
can assign a color that makes the guess wrong. The positive results carry
over easily as corollaries, since guessing one’s hat color exactly is always at
least as hard as coming up with an acceptable guess under a given decent
relation. More precisely, we do the following. Given decent relations Rx

for x ∈ X, we fix a well-ordering of
∏
x∈X R

x
− and, for each x ∈ X, fix a

function gx : Rx− → Rx+ such that cRxgx(c) for all c ∈ Rx−; the resulting
variant M of the µ-predictor is defined by M(f)(x) = gx(〈f〉x(x)).

With visibility specified by a T0 space (which includes transitive visibil-
ity relations as a special case), those results were already sharp—we can get
scattered-error predictors but nothing better—so the increased generality
of relational hat problems provides nothing of interest there: just as the
number of colors (provided it is at least 2) is not relevant in ordinary hat
problems for this kind of visibilility, the combinatorics of the acceptability
relations (provided they are decent) is not relevant in relational hat prob-
lems. For nontransitive visibility, however, the number of colors matters,
and accordingly, the combinatorics of the acceptability relations is relevant.
Furthermore, with the acceptability relations themselves of significant im-
portance, one can get rich hat problems even with very simple visibility
relations; we see in Section 9.3, for instance, that in the case of two agents
who see each other, the existence of a minimal predictor is equivalent to the
existence of a Galois-Tukey connection between two particular relations.
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9.2 Galois-Tukey connections

Our starting point in this section is the following from [V93].

Definition 9.2.1. For relations A,B, a morphism (or Galois-Tukey con-
nection) m : A→ B is a pair m = (f, g) where f : A− → B−, g : B+ → A+

such that for all a ∈ A−, b ∈ B+, if f(a)Bb, then aAg(b). When such a
morphism exists, we write A � B and say that B is harder than A (and
that A is easier than B).

We can express this in more algebraic terms.

Proposition 9.2.2. (f, g) : A→ B iff g ◦B ◦ f ⊆ A.

Proof. Suppose (f, g) : A→ B and x(g ◦B ◦ f)z. Then there exists y ∈ B+

s.t. x(B ◦ f)y and y(g)z (i.e., f(x)By and g(y) = z). Then, since f(x)By,
we have xAg(y), so xAz. Therefore, g ◦B ◦ f ⊆ A.

Suppose g ◦ B ◦ f ⊆ A. Suppose x ∈ A−, y ∈ B+ such that f(x)By.
Then x(B ◦ f)y, so x(g ◦B ◦ f)z where z = f(y), so xAf(y).

Proposition 9.2.3. (f, g) : A→ B iff (g, f) : B⊥ → A⊥.

Note that if A ⊆ A′ are relations (with the same domain and same
codomain), then A′ � A via the morphism (idA− , idA+). So the definition
of � might at first seem “backwards”; however, � is more closely related to
dominating sets (see Definition 9.4.1), which get smaller as edges are added
to a relation.

We now justify our use of the terms “harder” and “easier.” Informally,
the following theorem says that if a relational hat problem admits a “good”
predictor and you replace the acceptability relations with easier relations,
then the new problem also admits a good predictor.

Theorem 9.2.4. Suppose X is a set of agents with visibility relation (or
proximity scheme) V ; I ⊆ P(X) is closed under formation of subsets; Q
and R are acceptability notions for X; for all x ∈ X, Qx � Rx, witnessed
by morphism (fx, gx); and P :

∏
x∈X R

x
− →

∏
x∈X R

x
+ is a predictor (under

R) guaranteeing that the set of wrong guesses is in I. Then there exists a
predictor P ′ :

∏
x∈X Q

x
− →

∏
x∈X Q

x
+ (under Q) guaranteeing that the set of

wrong guesses is in I.

Though the notation gets a bit messy, the basic idea behind the following
proof is simple: we produce P ′ by placing P inside a wrapper that uses the
fx to transform what the agents see, and the gx to transform what they
guess in response.
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Proof. Define f :
∏
x∈X Q

x
− →

∏
x∈X R

x
− by f(h)(x) = fx(h(x)) (i.e., f

takes a coloring under Q and applies the functions fx in the natural way to
yield a coloring under R). Similarly, define g :

∏
x∈X R

x
+ →

∏
x∈X Q

x
+ by

g(h)(x) = gx(h(x)). Let P ′ = g ◦ P ◦ f .
Given x ∈ X and h, h′

∏
x∈X Q

x
− such that h ≈x h′, it easily follows that

f(h) ≈h f(h′), since f acts coordinatewise, so P (f(h))(x) = P (f(h′))(x), so
P ′(h)(x) = gx(P (f(h))(x)) = gx(P (f(h′))(x)) = P ′(h′)(x). This establishes
that P ′ respects our visibility.

Now, take any h ∈
∏
x∈X Q

x
−. We will show that the set of incor-

rect guesses under the coloring h and the predictor P ′ is contained in
the set of incorrect guesses under the coloring f(h) and the predictor P ,
a set which we know must be in I. Suppose x guesses incorrectly under
the coloring h and the predictor P ′; that is, ¬h(x)Qx(P ′(h)(x)). Then
¬h(x)Qx(gx(P (f(h))(x))). By the definition (fx, gx) : Qx → Rx being a
morphism, it follows that ¬fx(h(x))Rx(P (f(h))(x)); noting that fx(h(x)) =
f(h)(x), this means that x guesses incorrectly under the coloring f(h) and
the predictor P .

9.3 Two-agent problems and morphisms

In our present context, two-agent problems are an important special case.
Given relations Q,R, we use the pair (Q,R) to denote the two-agent (re-
lational) hat problem in which agent 0 is assigned Q, agent 1 is assigned
R, the agents see each other, and we require at least one correct guess. If
(Q,R) admits a winning predictor, we call (Q,R) a winning pair.

Example 9.3.1. Given functions f, g, write f ∼ g if f and g agree infinitely
often. Let R = (ωω, ωω,∼). Then the two-agent problem (R,R) is essen-
tially the parity relation with ω colors: we think of the evens, collectively, as
forming agent 0, while the odds, collectively, form agent 1. Technically, this
captures the variant of the parity relation in which every even sees every
odd and vice versa. We can come closer to capturing the parity relation as
presented above by using R = (ωω/=∗, ωω/=∗,∼), where ωω/=∗ is the set
of equivalence classes of ωω under =∗; note that ∼ is still well-defined here.

We now exhibit the connection between winning predictors in two-agent
hat problems and morphisms between relations.

Theorem 9.3.2. (A,B) is a winning pair iff A � B⊥ iff B � A⊥. More
precisely, P = (S0, S1) is a winning predictor for (A,B) iff (S1, S0) : A →
B⊥ iff (S0, S1) : B → A⊥.
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So, our results about minimal predictors for the parity relation can be
seen as results about morphisms between various relations.

Proof. Given S0 : B− → A+ and S1 : A− → B+,

(S0, S1) is a winning predictor for (A,B)

⇐⇒ ∀a ∈ A− ∀b ∈ B− (aAS0(b) ∨ bBS1(a))

⇐⇒ ∀a ∈ A− ∀b ∈ B− (¬bBS1(a)→ aAS0(b))

⇐⇒ ∀a ∈ A− ∀b ∈ B− (S1(a)B⊥b→ aAS0(b))

⇐⇒ (S1, S0) : A→ B⊥.

This establishes the first equivalence. The equivalence (S1, S0) : A → B⊥

iff (S0, S1) : B → A⊥ follows from the previous proposition.

To help visualize what is happening above, note that the diagrams that
you might draw for a predictor (S0, S1) for (A,B) and a morphism (S1, S0) :
A→ B⊥ are the same except for a half-twist:

A+ B+ A+ B−
S0

oo

A−

S1 77ppppppppppppp
B−

S0ggNNNNNNNNNNNNN
A−

S1
// B+

Corollary 9.3.3. A � B iff (A,B⊥) is a winning pair.

Corollary 9.3.4. (A,A⊥) is always a winning pair.

Corollary 9.3.5. (A,A) is a winning pair iff A � A⊥.

Proposition 9.3.6.

(a) If A is not serial, then B � A for any relation B (provided B+ 6= ∅).

(b) If A⊥ is not serial, then A � B for any relation B (provided B− 6= ∅).

Proof. For (a), fix k ∈ A− such that ¬kAy for all y ∈ A+; then (x 7→ k, g)
is a morphism from A to B for any g : A+ → B+. Dualizing yields (b).

Theorem 9.3.7. If A ◦ A ◦ A ⊆ A (in particular, if A is transitive), then
the following are equivalent.

1. A⊥ is serial.
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2. A⊥ � A.

Proof. Though we must have A− = A+ to form A ◦A, we will nevertheless
write one or the other depending on which fits better logically.

For (1) ⇒ (2), suppose A⊥ is serial. Interestingly, we apparently must
break into cases depending on whether or not A is serial.

Case 1: A is serial (so A is decent). Then there exist functions f :
A− → A+ and g : A+ → A− such that f ⊆ A and g ⊆ A⊥. We claim
that (f, g) : A⊥ → A. Take any x ∈ A+ = A⊥− and y ∈ A+, and suppose
for a contradiction that f(x)Ay but ¬xA⊥g(y). Then g(y)Ax. Noting that
xAf(x) (since f ⊆ A) and f(x)Ay, we have g(y)(A ◦A ◦A)y, so g(y)Ay by
our assumption on A. Then ¬yA⊥g(y), contradicting g ⊆ A⊥.

Case 2: A is not serial. Then A⊥ � A is immediate from an earlier
proposition. (A minor point: if A is not serial, then A− 6= ∅, so (A⊥)+ 6= ∅.)

For (2)⇒(1), suppose A⊥ is not serial. Fix x ∈ A+ such that yAx for all
y. Then for any proposed morphism (f, g), we have f(x)Ax, but ¬xA⊥f(x),
so (f, g) is not a morphism

Corollary 9.3.8. If A is decent and transitive, then (A⊥, A⊥) is a winning
pair.

9.4 Norms

Definition 9.4.1. Let A be a relation. A dominating set for A is a D ⊆ A+

such that ∀x ∈ A− ∃y ∈ DxAy, and an indominable set for A is an I ⊆ A−
such that ∀y ∈ A+ ∃x ∈ I ¬xAy; note that the indominable sets for A are
the dominating sets for A⊥. The norm ‖A‖ of A is the least cardinality
of a dominating set for A, so ‖A⊥‖ is of course the least cardinality of an
indominable set for A. (If A has no dominating set, we write ‖A‖ =∞.)

Note that A is decent iff A+ is a dominating set for A and A− is an
indominable set for A. So, when A is decent, we have ‖A‖ ≤ |A+|, ‖A⊥‖ ≤
|A−|.

Lemma 9.4.2. If A � B, then ‖A‖ ≤ ‖B‖.

Proof. Given (f, g) : A→ B, if D is a dominating set for B, then g[D] is a
dominating set for A.

The implication (4)⇒ (1) in the proof of Theorem 4.5.6 is essentially a
special case of the following.
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Corollary 9.4.3. If ‖A‖ > ‖B⊥‖, then (A,B) is not a winning pair.

Proof. Apply Theorem 9.3.2 and the above lemma.

9.5 Applications of the metaphor

An immediate payoff of viewing morphisms in terms of hat problems is that
the different point of view sometimes lends itself to intuitive proofs. We
offer two examples.

Theorem 9.5.1. If A is transitive, then ‖A‖ ≤ ‖A⊥‖ iff A � A⊥.

Proof. Lemma 9.4.2 gives us the right-to-left direction immediately.
Suppose A is transitive and ‖A‖ ≤ ‖A⊥‖. We establish A � A⊥ by

showing that (A,A) is a winning pair. Let κ = ‖A‖ and let D = { dα :
α < κ } be a dominating set for A (with dα 6= dβ for α 6= β). Define
r : A− → κ by letting r(x) be minimal such that xAdr(x). Informally, our
predictor works as follows: under coloring (x0, x1), agent i produces a guess
that, under the assumption r(xi) ≤ r(x1−i), would be correct; this will be
a minimal predictor because at least one of these two assumptions must be
true. Specifically, define f : A− → A+ such that for all x ∈ A−, we have
dαAf(x) for all α ≤ r(x); we can do this because r(x) < ‖A‖ ≤ ‖A⊥‖, so the
set { dα : α ≤ r(x) } is not indominable. Our predictor is S = (f, f). Given
any coloring (x0, x1), let i be such that agent i’s assumption r(xi) ≤ r(x1−i)
is correct. Then xiAdr(xi)Af(x1−i), so xiAf(x1−i) by the transitivity of
A, making agent i’s guess correct. Therefore, (A,A) is a winning pair, so
A � A⊥.

Our second theorem is a result from [Yip94] that was considered some-
what surprising when it first was established.

Theorem 9.5.2. If ‖A‖ = |A+| = ‖B⊥‖ = |B−|, then there is a morphism
from B to A. 1 2

Proof. It suffices to show that (A⊥, B) is a winning pair. Let κ = ‖A‖ =
|A+| = ‖B⊥‖ = |B−| and assume without loss of generality that A+ = B− =
κ, ordered by ≤.

[Finish this. In a coloring (x0, x1), player i assumes xi � x1−i, and at
least one of these assumptions will be correct.]

1Write B � A in place of “there is a morphism from B to A”?
2Swap A and B? (That might make smoother reading, since the definition of morphism

was in terms of morphisms from A to B.)
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Proof. Let κ = ‖A‖ = |A+| = ‖B⊥‖ = |B−| and fix bijections ρ : A+ → κ,
ρ′ : B− → κ.

For any a ∈ A+, define Da = { b ∈ B− : ρ′(b) ≤ ρ(a) }. Noting that
|Da| < κ = ‖B⊥‖, we can let g(a) ∈ B+ such that bBg(a) for all b ∈ Da.
Similarly, for b ∈ B−, define Eb = { a ∈ A+ : ρ(a) ≤ ρ′(b) }; |Eb| < κ = ‖A‖,
so we can let f(b) ∈ A− such that ¬f(b)Aa for all a ∈ Eb.

Take any b ∈ B−, a ∈ A+; if f(b)Aa, then a /∈ Eb, so ρ′(b) < ρ(a), so
b ∈ Da, so bBg(a). Therefore, (f, g) : B → A.

A potential but as yet unrealized payoff is that the present point of view
offers a way in which morphisms are a special case of a more general no-
tion (predictors), which invites us to take known facts (or questions) about
morphisms that have proven to be of value and consider their analogs in the
more general context of predictors. For example, in terms of hat problems,
the Cichoń diagram gives us a certain set of winning pairs (for instance,
(R,M,∈) � (N ,R, 63) gives us that ((R,M,∈), (R,N ,∈)) is a winning
pair). We can consider the ternary analog of this: with agents 0, 1, 2 and
visibility forming a cycle, we can call a triple (R0, R1, R2) of acceptability
relations a winning triple if it admits a minimal predictor; the set of win-
ning triples where the Ri are drawn from (R,M,∈), (M,M,⊆), (R,N ,∈),
(N ,N ,⊆) and their duals is then a ternary analog of the Cichoń diagram.
We get another analog if we let each of the three agents see both other
agents. Perhaps one or both of these analogs is of interest?

9.6 Scattered-error predictors

Here, we show that there always exist decent notions of acceptability that
are sufficiently easy to make a scattered-error predictor exist.

For a proximity scheme V on X, say that Σ ⊆ X is scattered if every
nonempty Σ′ ⊆ Σ has an x with proximity V such that V ∩ Σ′ = ∅. When
V is induced by a topology by letting Vx be the filter of sets containing
a deleted neighborhood of x, this coincides with the existing definition of
scattered.

Theorem 9.6.1. For every proximity scheme, there exists a decent accept-
ability notion that admits a scattered-error predictor.

In contrast to results based on the µ-predictor, we can prove this in ZF,
and the predictor is constructed quite directly.
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Proof. Let λ be a limit ordinal such that every x has a proximity whose
cardinality is strictly less than cf(λ). (For infinite X, λ = |X|+ always
works. For finite X, λ = ω works.) Let A = (λ, λ,≤). Define the predictor
P by letting P (f)(x) be any α such that x has a proximity U with α ≥ f(y)
for all y ∈ U . (For instance, we could take the least such α. We don’t want
to give the impression that using the least α is important, though.) We can
verify that this respects ≈x.

Let f be any coloring, and let W be the resulting set of wrong guesses.
We claim that W is scattered. Take any nonempty W ′ ⊆ W . Let x ∈ W ′
be such that P (f)(x) is minimal among {P (f)(y) : y ∈ W ′ }. Let U be a
proximity of x such that P (f)(x) ≥ f(y) for all y ∈ U . We claim that U
isolates x from W ′. If y ∈ W ′ ∩ U , then P (f)(y) ≥ P (f)(x) ≥ f(y), so y
guesses correctly, a contradiction. Therefore W ′ ∩ U = ∅, establishing that
W is scattered.

Say that a visibility relation V is thick if it has no infinite independent
set (and thin if it does). While we still do not know whether the thick
visibility relations are exactly those that admit finite-error predictors for
any set of colors, we can at least conclude the following.

Corollary 9.6.2. Let V be a visibility relation on X. Then the following
are equivalent.

1. V is thick.

2. V admits a finite-error predictor for some decent notion of acceptabil-
ity.

Proof. It is straightforward to show that V is thick iff every scattered set is
finite.

Corollary 9.6.3. V has an infinite path (or cycle) iff there is a decent A
such that, assigning A to each agent, there is a minimal predictor.

Proof. It is straightforward to show that V has an infinite path or a cycle
iff the set of all agents is not scattered.

Corollary 9.6.4. In any topological space, not necessarily T0, there is a
decent A that yields a scattered-error predictor.

Proof. Trivial.

Corollary 9.6.5. With complete visibility, there is a decent A that yields a
predictor guaranteeing at most one error.
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Proof. With complete visibility, scattered sets have at most one point.

This special case is obvious when you consider what the predictor is
doing: guess something at least as big as everything you see. The only way
to fail is if your color is strictly greater than everyone else’s, and that can
only happen to one player.

9.7 Pseudo-scattered sets

Let V be a proximity scheme on X. We know there exist decent relations
that admit scattered-error predictors. So now we can turn to the question,
Which ones? Or at least, what sufficient condition can we find? We do not
have satisfying answers to either question, but we can at least make some
headway if we switch to pseudo-scattered sets, which often coincide with
scattered sets.

Definition 9.7.1. Given a relation V on X, a set Σ ⊆ X is pseudo-scattered
if it contains no infinite V -chain.

Proposition 9.7.2. The pseudo-scattered subsets of X form an ideal (and
this ideal contains all singletons).

Proposition 9.7.3. If V is transitive, the pseudo-scattered sets are exactly
the co-well-founded sets (which are the scattered sets when one takes the
upward topology).

Definition 9.7.4. Say that the transitivity width of a binary relation V is
the smallest size of a family T of transitive subrelations of V such that every
(infinite) chain C ⊆ V contains an infinite C ′ such that C ′ is a chain in some
element of T .

Example 9.7.5. If V is transitive, we can use T = {V }, making the tran-
sitivity width ≤ 1. Similarly, if V has a transitive subrelation V ′ such that
V − V ′ is thin, we can use T = {V ′}.

If V is thin, then we can use T = ∅, making the transitivity width of V
0. (Note that the transitivity width is 0 iff V is thin.)

Theorem 9.7.6. Let V be a visibility relation on X. Suppose ‖A⊥‖ is
strictly greater than the transitivity width of V . Then, using A as the ac-
ceptability relation for each agent, there exists a pseudo-scattered-error pre-
dictor.
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As a slight refinement, one can see in the following proof that there is
no need to assign the same acceptability relation to each agent; we just
need each acceptability relation A to have ‖A⊥‖ strictly greater than the
transitivity width.

Proof. Let T be a family as in Definition 9.7.4, with

‖A⊥‖ > |T |. (9.1)

For each W ∈ T , let MW be the corresponding µ-predictor, and for any
coloring f , let 〈f〉Wx be like 〈f〉x but with visibility given by W instead of
V . We form the predictor P by choosing P (f)(x) ∈ A+ such that for every
W ∈ T , (MW (f)(x))A(P (f(x))); we can do so by (9.1).

Suppose the set of errors is not pseudo-scattered for some coloring f . Let
C be an infinite chain of wrong guessers in V . Let C ′ ⊆ C be infinite such
that C ′ is a chain in some V ′ ∈ T . Chose x ∈ C ′ such that 〈f〉V ′x is minimal
among { 〈f〉V ′y : y ∈ C ′ }. Let y ∈ C ′ be such that xV ′y. Then 〈f〉V ′y � 〈f〉V

′
x

(since, under V ′, y sees a subset of what x sees), so 〈f〉V ′y = 〈f〉V ′x by

the minimality of the latter, so MV ′f(y) = 〈f〉V ′y (y) = 〈f〉V ′x (y) = f(y).
We have (MV ′f(y))A(Sf(y)), so f(y)A(P (f)(y)), so y guessed correctly, a
contradiction.

Here is what goes wrong if one tries to show that P is a scattered-error
predictor: if Σ is a set of wrong guesses that is not scattered, it might still
be the case that Σ contains no infinite chain of V , and it would be that
infinite chain that we would use to get a contradiction.
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