
Computable Reducibility for Cantor Space

Russell Miller ∗

December 17, 2016

Abstract

We examine various versions of Borel reducibility on equivalence relations on the Cantor
space 2ω , using reductions given by Turing functionals on the inputs A ∈ 2ω . In some versions,
we vary the number of jumps of A which the functional is allowed to use. In others, we do
not require the reduction to succeed for all elements of the Cantor space at once, but only when
applied to arbitrary finite or countable subsets of 2ω . In others we allow an arbitrary oracle set in
addition to the inputs. All of these versions, inspired largely by work on computable reducibility
on equivalence relations on ω, combine to yield a rich set of options for evaluating the precise
level of difficulty of a Borel reduction, or the reasons why a Borel reduction may fail to exist.

1 Introduction to Reducibility

The subject of reducibility of equivalence relations has bifurcated in recent years. Much early
work was devoted to the topic of Borel reducibility, concerning equivalence relations on the Cantor
space 2ω of all subsets of the set ω of natural numbers. More recently, computability theorists
have adapted the notion in order to address equivalence relations on ω itself. The principal notion
here has borne several names, after being arrived at independently by several researchers; we find
computable reducibility to be the most natural of these. The purpose of this article is to hybridize
the two: we will present natural reducibilities on equivalence relations on 2ω, some stronger than
Borel reducibility and some weaker, through which the ideas cultivated by computability theorists
can be applied.

Suppose that E and F are equivalence relations on the domains S and T, respectively. A reduc-
tion of E to F is a function g : S→ T satisfying the property:

(∀x0, x1 ∈ S) [x0 E x1 ⇐⇒ g(x0) F g(x1)].

The point is that, if one has the ability to compute g and to decide the relation F, then one can
decide E as well. Thus E may be considered to be “no harder to decide” than F, at least modulo
the difficulty of computing g. In practice, the domains S and T are usually equal, with the cases
S = T = 2ω and S = T = ω being by far the most widely studied. (It is clear that, in order for a
reduction to exist, F must have at least as many equivalence classes as E, and so a situation where

∗The author was partially supported by Grant # DMS – 1362206 from the National Science Foundation, and by several
grants from The City University of New York PSC-CUNY Research Award Program.

1

T has lower cardinality than S, while allowed by the definition, would usually be uninteresting to
investigate.)

The crucial question in this definition is how much computational power one allows the func-
tion g to have. Of course, whenever F has at least as many equivalence classes as E, some reduction
g of E to F must exist, unless one refuses to allow use of the Axiom of Choice. In set theory, the
standard preference has been to require g to be a Borel function, in which case S and T should be
Polish spaces. We say that E is Borel-reducible to F, and write E ≤B F, if a Borel reduction from E to
F exists. Research here has focused on the situation S = T = 2ω. Computability theorists seized
on the same notion under the requirement that g : ω → ω be Turing-computable, in which case
one needs S = T = ω. In this situation, by analogy, we say that E is computably reducible to F, and
write E ≤0 F, if a Turing-computable reduction from E to F exists.

The notation E ≤T F seemed inadvisable here, as it already denotes the existence of a Turing re-
duction from the set E to the set F. One does have E ≤T F whenever E ≤0 F, but the converse fails.
In fact, E ≤0 F implies that there is a many-one reduction from E to F as sets, and for this reason≤0
has sometimes been called m-reducibility, as well as Fokina-Friedman reducibility. We prefer the
term which actually describes the complexity of the reduction involved: E is computably reducible
to F if there is a reduction which is a computable function, just as Borel-reducibility requires a re-
duction which is a Borel function. Certain other work, such as [13], has used generalizations such
as d-computable reductions, i.e., reductions that are d-computable functions on ω, for some Turing
degree d. Likewise, in [7], Fokina, Friedman, and Törnquist studied “effectively Borel” reductions
on equivalence relations on 2ω, by which they meant reductions which are ∆1

1.
The goal of this article is to enable the transfer of many of the computability-theoretic results

from articles such as [3] and [13] to the context of Borel reducibility, i.e., of equivalence relations
on Cantor space. We employ the very natural notion of a computable function on Cantor space,
which yields the following definition.

Definition 1.1 Let E and F be equivalence relations on 2ω. A computable reduction of E to F is a
reduction g : 2ω → 2ω given by a computable function Φ (that is, an oracle Turing functional) on the reals
involved:

(∀A ∈ 2ω)(∀x ∈ ω) χg(A)(x) = ΦA(x).

If such a reduction exists, then E is computably reducible to F, denoted E ≤0 F.

So we require, for all reals A0 and A1, that A0 E A1 if and only if ΦA0 F ΦA1 . It is implicit here that,
for every A, ΦA should be a total function from ω into {0, 1}, equal to the characteristic function
of g(A), hence regarded as the set g(A) itself.

The notion of a computable reduction on equivalence relations on Cantor space may be gener-
alized using the jump operator, which maps each set A ⊆ ω to its jump A′ = {〈e, x〉 : ΦA

e (x) halts}.
(Here 〈x, y〉 = (x+y+1)(x+y)+2y

2 is the standard pairing function on ω.) This is best seen as repre-
senting the Halting Problem relative to the set A.

Definition 1.2 Let E and F be equivalence relations on 2ω. A jump-reduction of E to F is a reduction
g : 2ω → 2ω given by a computable function Φ (that is, an oracle Turing functional) on the jumps of the
reals involved:

(∀A ∈ 2ω) g(A) = Φ(A′).

Likewise, if for some computable ordinal α and some Φ, we have g(A) = Φ(A(α)), then the reduction g is
said to be an α-jump reduction. We write E ≤α F if such a reduction exists, thus generalizing the notation
E ≤0 F above.

2

Another refinement of reducibilities on equivalence relations was introduced by Ng and the
author in [13]. Studying equivalence relations on ω, they defined finitary reducibilities. In the
context of Cantor space, it is natural to extend their notion to all cardinals µ < 2ω (as indeed was
suggested in their article), yielding the following definitions.

Definition 1.3 For equivalence relations E and F on domains S and T, and for any cardinal µ < |S|, we
say that a function g : Sµ → Tµ is a µ-ary reduction of E to F if, for every ~x = (xα)α∈µ ∈ Sµ, we have

(∀α < β < µ) [xα E xβ ⇐⇒ gα(~x) F gβ(~x)],

where gα : Sµ → T are the component functions of g = (gα)α<µ. For limit cardinals µ, a related notion
applies with <µ in place of µ: a function g : S<µ → T<µ which restricts to a ν-ary reduction of E to F
for every cardinal ν < µ is called a (<µ)-ary reduction. (For µ = ω, an ω-ary reduction is a countable
reduction, and a (<ω)-ary reduction is a finitary reduction.)

When S = T = 2ω and the µ-ary reduction g is computable, we write E ≤µ
0 F, with the natural

adaptation E ≤µ
α F for α-jump µ-ary reductions. Likewise, when a (< µ)-ary reduction g is α-jump

computable, we write E ≤<µ
α F, When α > 0, it is important to note that Φ((~x)(α)) is required to equal g(~x);

this allows more information in the oracle than it would if we had required Φ((x(α)0 ⊕x(α)1 ⊕···) = g(~x), with
the jumps of the individual inputs taken separately.

Notice that computable µ-ary reductions only make sense when µ ≤ ω, as we have no method for
running an oracle Turing machine with uncountably many reals in the oracle. For µ-ary reductions
with µ ≤ ω, the oracle is a single real whose columns are the µ-many inputs to the reduction. In
a (<ω)-ary reduction, with an input ~A ∈ (2ω)n, the oracle is officially equal to {n} ⊕ A0 ⊕ · · · ⊕
An−1 ⊕ ∅ ⊕ ∅ ⊕ · · · , meaning that the oracle does specify the size of its tuple. (However, we
usually gloss over this issue and just write A = A0 ⊕ · · · ⊕ An−1 as the oracle.)

Beyond the basic intention of introducing computable reductions on equivalence relations on
Cantor space, the principle goal of this article is to use these ideas to analyze the Borel reductions
and non-reductions at the lowest levels in the ≤B-hierarchy of Borel equivalence relations. Where
Borel reductions exist, we wish to determine whether they are computable, and, if not, how many
jumps away from computable they may be. Where no Borel reduction exists, we ask how close
we can come to a full Borel reduction, using the notions of finitary and countable reducibility, and
possibly allowing jump-reductions as well. Often our results here are based on existing results
from the context of equivalence relations on ω, from sources including [3, 7, 13], as well as the
relevant articles [1, 2, 5, 6, 8, 9, 12].

Intuitively, results in this direction suggest where the obstacles to Borel reductions lie. If E 6≤ω
0

F, then there is an obstruction at the level of computability, i.e., at a syntactic level. If, for all
α, E 6≤ω

α F, then this obstruction extends upwards through all possible quantifier complexities,
meaning that the reduction is stymied by extremely strong syntactic difficulties. On the other
hand, if E 6≤B F but E ≤ω

0 F, then the obstruction is not syntactic, but rather has to do with the size
of the continuum: it is simply not possible to perform the entire reduction uniformly on so many
elements of the field of E. If E 6≤B F and the best possible countable reduction is E ≤ω

4 F, say,
then 4-quantifier complexity is necessary, but beyond that the obstructions are cardinality-related
rather than syntactic. Later in this article, we will also encounter situations where E ≤<ω

0 F but
E 6≤ω

0 F. We will even meet natural cases where E ≤3
0 F but E 6≤4

0 F. These suggest more subtle
syntactic issues.

3

A future goal is to begin to transfer the large body of knowledge about computable structures
into the more general context of arbitrary countable structures on the domain ω. In particular,
equivalence relations such as isomorphism, bi-embeddability, and elementary equivalence have
been analyzed extensively for many classes of computable structures, and may be more broadly
considered as equivalence relations on the corresponding classes of countable structures, often
using jumps and/or finitary or countable reducibility.

2 Analyzing the Basic Borel Theory

The following diagram appeared in [3]. It shows all Borel reducibilities among the main Borel
equivalence relations at the base of the hierarchy of Borel reducibility. (Their definitions will be
given as we examine them in this section.)

u
u
=

E0

u u uE1 E2 E3

uuEset Z0

aa
aa

aa

!!
!!

!!
A
A
A

�
�
�

The surprising fact about this diagram is that E0 is the second-least Borel equivalence relation
under≤B, even when one includes relations not shown here. Indeed, the broader principle, known
as the Glimm-Effros dichotomy, is that for every Borel relation E on 2ω to which equality is Borel-
reducible, either E is Borel-equivalent to equality or else E0 ≤B E. That is, no Borel equivalence
relation sits strictly between = and E0 under ≤B. This has been extended in various ways, for
instance to other Polish spaces, but here we will content ourselves with this version. An excellent
description of the broader topic appears in Gao’s book [8, Ch. 6]. Glimm was the first to make
significant progress in this area, in [10]; Effros followed in [4] with work showing that E0 embeds
continuously into every non-smooth equivalence relation (on a Polish space) defined by the action
of a Polish group; and Harrington, Kechris, and Louveau gave the effective version that has come
to be the usual meaning of “Glimm-Effros dichotomy” in the present day (see [11]).

As a first example of our style of investigation, therefore, we start with the fact that =<B E0.
Of course, this is really two statements: there is a Borel reduction in one direction, but not in the
other. The Borel reduction is in fact a computable reduction, given immediately by the program

ΦA(〈n, k〉) =
{

1, if n ∈ A;
0, if not.

That is, each real A is transformed into the real whose columns are all just copies of A, so that any
difference between two sets A and B becomes an infinite difference between ΦA and ΦB.

Thus =<0 E0: the strictness is clear, since there is not even any Borel reduction in the reverse
direction. Nevertheless, we can analyze the reverse direction using finitary and countable reduc-
tions, and we find that there is a 2-jump countable reduction Γ from E0 to =, given as follows. Γ
has as its oracle the second jump of the join of countably many sets A0, A1, . . ., and needs to output

4

corresponding sets B0, B1, . . . for which Bi = Bj iff Ai E0 Aj. First it defines B0 = ∅. Next, with the
second jump of the join, Γ can ask whether A04A1 is finite; if so, it sets B1 = ∅ as well, while if
not, it makes B1 = {1}. In general, for each j, Γ asks its oracle whether Aj+1 has finite difference
with any of A0, . . . , Aj. If so, then it makes Bj+1 equal to that Bi (noting that if there is more than
one such i, then all such Bi are already equal); while if not, it makes Bj+1 = {j + 1}. Clearly this is
a countable reduction, as desired.

Of course, we also want to know whether this is the best we can do. There is no way to
address larger cardinalities than ω with a Turing functional, even if CH fails, but one might hope
for an n-ary or countable 1-jump or computable reduction. We now show that a 2-jump countable
reduction is the best possible. Let A be any 1-generic set, and Γ any Turing functional. Writing
A = A0 ⊕ A1, we know from 1-genericity that A0 and A1 have infinite symmetric difference, so
if Γ is to be a 1-jump binary reduction of E0 to =, then ΓA′ = Γ(A0⊕A1)

′
must be the characteristic

function of a set B0 ⊕ B1 with B0 6= B1. Fix an n in the difference, say with n ∈ B0 − B1, so 2n ∈ B
and (2n + 1) /∈ B. Then there is an initial segment σ ⊆ A′ such Γσ(2n) = 1 and Γσ(2n + 1) = 0.
For every i with σ(i) = 1, fix some ρi ⊆ A for which Φρi

i (i) ↓, and for every i with σ(i) = 0, fix
some ρi ⊆ A such that (∀τ ⊇ ρi) Φτ

i (i) ↑. (Such a ρi must exist, by the 1-genericity of A.) Now
let ρ = ∪i<|σ|ρi, which is a finite initial segment of A. By our choice of each ρi, we see that every
C ⊇ ρ will have C′� |σ| = σ, and hence ΓC′(2n) = Γσ(2n) = 1 and ΓC′(2n + 1) = Γσ(2n + 1) = 0.
However, there are many C ⊇ ρ such that, with C = C0 ⊕ C1, we will have C0 E0 C1: for instance,
just let C = ρ̂ 00000 · · · . But for these C we will still have ΓC′ = D0 ⊕ D1 with n ∈ D0 − D1, so
D0 6= D1, and thus Γ does not compute a 1-jump binary reduction from E0 to =.

E1 is the equivalence relation defined on 2ω by sets being equal on all but finitely many of their
columns:

A0 E1 A1 ⇐⇒ ∀∞m Am
0 = Am

1 ,

where Am represents the m-th column {k : 〈m, k〉 ∈ A} of A. From the Borel theory we know that
E0 <B E1. Indeed, the Borel reduction is a computable reduction: with ΦA = {〈m, 0〉 : m ∈ A},
we have A0 E0 A1 if and only if ΦA0 E1 ΦA1 . In the reverse direction, no Borel reduction exists, but
there is a computable countable reduction.

Proposition 2.1 E1 ≤ω
0 E0. That is, there is a computable countable reduction Γ from E1 to E0.

Proof. The input to Γ is a real A = ⊕n An, viewed as an ω-tuple of reals An, and the m-th column
of An is now written Am

n . (In fact, An itself is the n-th column of A, but this is not a concern.) The
real computed by ΓA will be B = ⊕nBn, so we need An E1 An′ if and only if Bn E0 Bn′ .

The idea behind Γ is that, if Am and An differ on a given column, that column should contribute
a single element to the symmetric difference Bm4Bn. The 〈m, n〉-th column B〈m,n〉

i of each set Bi is
devoted to collecting these single elements so as to satisfy the requirement

Rm,n : B〈m,n〉
m E0 B〈m,n〉

n ⇐⇒ Am E1 An,

On the sets Bi (for i /∈ {m, n}), Γ will try to keep B〈m,n〉
i equal to one of B〈m,n〉

m and B〈m,n〉
n , depending

on which of Am and An may be E1-equivalent to Ai. (For simplicity, all columns numbered 〈m, n〉
with m ≥ n are empty in every set Bi.)

At each stage s of the computation, for every c and i, Γ decides whether the s-th element 〈c, s〉
of the c-th column should belong to Bi. Suppose c = 〈m, n〉. If m ≥ n, or if c > s, the answer is

5

automatically no for all i, as noted above. Otherwise, we use the oracle to compare Am with An up
to s, looking for columns on which they have just now been discovered to differ, as defined here.

• For each i < s, if Ai
m� s = Ai

n� s but s ∈ Ai
m4Ai

n, then we say that on column i, Am and An
differ at s, meaning that s is the first stage at which it was established that these columns are
distinct.

• As
m� (s + 1) 6= As

n� (s + 1), then we say that on column s, Am and An differ at s.

So at stage s we “catch up” on one new column, and keep an eye on all previous ones.
Let s′ be the greatest stage < s at which we acted on behalf of the 〈m, n〉-th column. If there

exists a partition P t Q of the set {0, 1, . . . , n} with m ∈ P and n ∈ Q such that, for every p ∈ P
and q ∈ Q, there is some t with s′ < t ≤ s and some column ≤ s on which Ap and Aq differ at
stage t, then we fix such a partition and define 〈 〈m, n〉, s〉 to lie in every Ap with p ∈ P (including
Am), but not in any other Ai (hence not in An). Thus we have created a new difference (of one new
element) between A〈m,n〉

m and A〈m,n〉
n , and we say that we acted on behalf of Rm,n at this stage. If no

such partition exists, then 〈 〈m, n〉, s〉 does not lie in any set Ai.
As a matter of convention, we also deem ourselves to have acted (for the first time) on behalf of

Rs at stage s, although we did nothing specific to help satisfy it. This completes the construction.
To see that Γ is a countable reduction, consider any A and any c = 〈m, n〉 with m < n. If Am

and An lie in distinct E1-classes, then we can partition {0, . . . , n} into two classes P and Q, with
m ∈ P and n ∈ Q, so that if Ai E1 Aj, then (i ∈ P ⇐⇒ j ∈ P). Hence, if i ∈ P and j ∈ Q, there
will be infinitely many stages at which Ai and Aj differ on some column. Therefore, there will be
infinitely many stages at which we discover either this partition P t Q or some other one and act
on behalf of column c, putting an element into Bm but not into Bn. Thus Bm and Bn lie in distinct
E0-classes, as desired.

On the other hand, if Am E1 An, then these two sets differ on only finitely many columns.
Therefore there exists some s0 such that we never act on behalf of column c after that stage. Now
by stage s0 we have only defined Bm and Bn up to their s0-th element of the d-th column (that
is, up to 〈d, s0〉), and this only for d ≤ s0, so there are only finitely many differences between Bm
and Bn so far. After stage s0, we may add some further differences between them, on behalf of
columns d 6= c, but only if the previous action on behalf of column d was at a stage s′ ≤ s0, since
otherwise our m and n would have to lie either both in P or both in Q, according to the rules in
the construction. However, only finitely many columns (those ≤ s0) ever had an action taken on
their behalf before stage s0, and so only finitely many more differences will ever be added to Bm
and Bn. Hence Bm E0 Bn as desired.

Next we consider E3, the equivalence relation which holds of reals A and B if and only if, for
all k, the k-th columns of the two satisfy Ak E0 Bk. One quickly sees a computable reduction from
E0 to E3: just let ΦA = A ⊕ A ⊕ · · · . It is known that E1 6≤B E3, and in fact the two are Borel-
incomparable, but there is a countable computable reduction from E1 to E3, since Proposition 2.1
yields E1 ≤ω

0 E0 ≤0 E3. From E3 to E0, no Borel reduction exists, and the best we can do is to show
E3 ≤ω

2 E0. Indeed, we have E3 ≤ω
2 =, with the two-jump countable reduction to equality given by

the following functional Γ. With oracle A′′ = (⊕n An)′′, Γ makes every 〈m, n, k〉 /∈ Bm, and defines:

• if (Ak
n4Ak

m) is finite, then for all p, 〈m, n, k〉 /∈ Bp.

• if (Ak
n4Ak

m) is infinite, then 〈m, n, k〉 ∈ Bn. (Here we have found that An and Am are in
distinct E3-classes, so 〈m, n, k〉 establishes Bn 6= Bm.)

6

In this case, for each p /∈ {m, n}, we “do no harm.” Γ checks whether (Ak
n4Ak

p) is finite.
If it is, then Γ puts 〈m, n, k〉 ∈ Bp (since possibly Ap E3 An, while definitely Ap and Am are
in distinct E3-classes). If (Ak

n4Ak
p) is infinite, then Γ defines 〈m, n, k〉 /∈ Bp (since here the

reverse holds). Notice that if Ap0 E3 Ap1 for some p0 < p1, then either the columns Ak
pi

both
have finite difference with Ak

n, or else both have infinite difference with it. Thus no harm has
been done.

So we have E3 ≤ω
2 =≤0 E0 ≤0 E1. It remains to show that there is no 1-jump reduction (not even a

binary reduction) from E3 to E1. (This will imply E3 6≤2
1 E0 as well, since E0 ≤0 E1.)

Here we introduce a new technique: the complexity argument. Relative to reals A and B,
the relation E3 is Π3, whereas E1 is only Σ2. This immediately suggests that there should be no
computable reduction of E3 to E1, and since one is Π and the other is Σ, there should not even be
a 1-jump reduction, although the indices (in “Σ2” and “Π3”) differ by only one.

To formalize this, let D be the set of pairs {(i, j) ∈ ω2 : Wi = Wj}. D itself is only a Π2 subset
of ω2, and complete at that level under 1-reducibility, but it serves our purpose, when we think of
(i, j) as not just representing a decidable set Wi, but actually providing a decision procedure for Wi.
We abuse notation by writing (i0, j0) E1 (i1, j1) to denote Wi0 E1 Wi1 , viewing this as the restriction
of E1 to the class of decidable sets; similarly for E3. As noted above, this makes E1 a Σ2 relation on
D, and E3 a Π3 relation there. We now show that E3 is Π3-complete there, using the Σ3-complete
set Cof = {e ∈ ω : We is cofinite}, by giving a computable function f : ω → ω2 such that, for
all inputs e, we have e /∈ Cof if and only if f (e) = (i, j) gives the D-index of a set E3-equivalent
to ∅ (that is, just if (i, j) E3 (i0, j0), for some fixed indices with Wi0 = ∅ and Wj0 = ω). This is a
simple movable-marker construction: on input e, write We,s = {a0,s < a1,s < · · · } for each stage
s, and say as usual that the n-th marker “moves” whenever an,s+1 6= an,s. We enumerate the n-th
column of Wi by watching this marker. If it moves at stage s, then 〈n, s〉 ∈ Wi, while if not, then
〈n, s〉 ∈ Wj. So, if We is coinfinite, every marker moves only finitely often, and every column of
Wi is finite, making Wi E3 ∅; while if e ∈ Cof, then some marker moves infinitely often, and some
column of Wi is infinite, destroying this E3-equivalence.

Now suppose there were a 1-jump binary reduction Γ of E3 to E1. Then, for every e, we have
e /∈ Cof if and only if f (e) = (i, j) E3 (i0, j0), which holds if and only if Γ(Wi⊕Wi0)

′
outputs two sets

which are E1-equivalent. So, using a ∅′-oracle, we can take any e, give a decision procedure for
Wi (where (i, j) = f (e)), use our oracle to produce a decision procedure for (Wi ⊕Wi0)

′, and thus

run Γ(W ′i⊕Wi0)
′

on any natural-number input. This enables us to compute (below our ∅′-oracle),
uniformly in (i, j), a set (B0 ⊕ B1), the output of Γ(W ′i⊕Wi0)

′
, with the property that B0 E1 B1 if

and only if e /∈ Cof. However, this E1-equivalence is ΣB0⊕B1
2 , hence Σ∅′

2 , hence Σ3, and thus the
property of being coinfinite would be Σ0

3. Since this property is known to be Π0
3-complete, no such

reduction can exist.
The preceding argument easily adapts to prove the following theorem.

Theorem 2.2 Suppose E is an equivalence relation on 2ω whose restriction ED defined on the set D =
{(i, j) ∈ ω2 : Wi = Wj} by

(i, j) ED (p, q) ⇐⇒ Wi E Wp

is Π0
k-complete within D as a set under 1-reducibility. (That is, ED is Π0

k-definable, and every Π0
k-definable

subset T ⊆ D has T ≤1 ED.) Let F be any Σ0
n-definable equivalence relation on 2ω, with n ≤ k. Then

E 6≤2
k−n F.

7

It is important here to bear in mind that elements of D are given by pairs (i, j), (p, q), etc., not just
by i or p. Hence, when one addresses the question whether Wi E Wp, the statement (x ∈ Wi ⇐⇒
x ∈ Wp) is decidable, not just ∅′-decidable, although it might appear to be the latter. We enlarge
on this comment in Section 4.

3 Completeness Results

As we continue with our analysis of the basic Borel equivalence relations, we come next to E2. For
this it will be useful to have a notion of completeness. We give a definition which is semantical
rather than syntactical.

Definition 3.1 A (finitary) formula ϕ(~x, ~A) with free number variables x0, . . . , xk and free set variables
A0, . . . , Am is said to be ∆0

1 if there is a Turing functional Φ such that for all sets A0, . . . , Am ⊆ ω, the
truth of ϕ(~x, ~A) is decided, uniformly in ~x ∈ ωk, by the function ΦA0⊕···⊕Am .

This is then extended through the computable ordinals in the usual way. If ϕ(~x, y, ~A) is Σ0
α, then its

negation is Π0
α. A computable (possibly infinitary) disjunction of Π0

α formulas is Σ0
α+1. For limit ordinals

λ < ωCK
1 , the Σ0

λ formulas are the computable (possibly infinitary) disjunctions
∨∨

i ϕi, where each ϕi is
Σ0

αi
for some αi < λ. A formula is ∆0

α if it is equivalent to both a Σ0
α and a Π0

α formula.

It is not difficult to give an equivalent syntactical formulation for ∆0
1, in which atomic formulas of

the form xi ∈ Aj are allowed. If we allowed quantification over set variables, then we would use
the symbols Σ1

n and Π1
n, but in this article we have no need of them.

The next definition is standard, and it too has been used in the preceding sections.

Definition 3.2 A Π0
α equivalence relation E on 2ω is Π0

α-complete under a reducibility ≤ if every Π0
α-

definable equivalence relation F satisfies F ≤ E. Here ≤ is usually of the form ≤κ
β, where β is a computable

ordinal (most often 0) and κ a cardinal (or possibly κ can be replaced by < κ, as in finitary reducibility).

In the Borel theory, the equivalence relation known as E2 is defined using the harmonic series:

A E2 B ⇐⇒ ∑
n∈A4B

1
n + 1

< ∞.

This relation is known to be Borel-incomparable with both E1 and E3, but it is Σ0
2, and so the next

result is not surprising.

Proposition 3.3 E2 ≡ω
0 E1. That is, there are countable computable reductions in both directions.

Indeed, each of E0, E1, and E2 is complete under ≤ω
0 among Σ0

2-definable equivalence relations on 2ω.

Proof. We first prove the Σ2-completeness statement for E1. Let E be any Σ0
2-definable equivalence

relation on 2ω. Standard methods allow us to collapse like quantifiers, so that we may take E to be
defined by using a quantifier-free formula ϕ with two number variables and two set variables:

A E B ⇐⇒ (∃x ∈ ω∀y ∈ ω) ϕ(x, y, A, B).

Our reduction Γ accepts A = ⊕n An as its oracle and outputs B = ⊕nBn. For each m < n,
the columns numbered 〈m, n, c〉 of each Bi are used to distinguish Bm and Bn under E1 if neces-
sary. At stage s, consider each m < n < s in turn, and suppose that Γ has aleady made each of

8

B〈m,n,0〉
m , . . . , B〈m,n,c−1〉

m distinct from the corresponding Bn-column. This will hold just if Γ has al-
ready found witnesses y0, . . . , yc−1 such that (∀i < c)¬ϕ(i, yi, Am, An), but has not yet found such
a witness yc for c. At this stage, we use the oracle set to check whether ϕ(c, y, Am, An) holds, where
y is the least possible witness which has not yet been checked. If indeed ϕ(c, y, Am, An) holds, then
we define s /∈ B〈m,n,d〉

i for every i and every d. If ¬ϕ(c, y, Am, An) holds, then we define s ∈ B〈m,n,c〉
m

but s /∈ B〈m,n,c〉
n . Thus Bm and Bn now differ on their 〈m, n, c〉-th column (and at the next stage, the

value of c for this 〈m, n〉 will be incremented by 1). We also define s /∈ B〈m,n,d〉
i for every d 6= c and

every i. It remains to decide whether s ∈ B〈m,n,c〉
i for i /∈ {m, n}. Consider such an i, and find the

greatest xm ≤ s and the greatest xn ≤ s such that

(∀x < xm)(∃y ≤ s) ¬ϕ(x, y, Ai, Am) & (∀x < xn)(∃y ≤ s) ¬ϕ(x, y, Ai, An).

Then Γ defines s ∈ B〈m,n,c〉
i if and only if xm < xn. (With xm < xn, we have “more” evidence that

Ai and An lie in distinct E-classes than that Ai and Am do, and so Γ makes Bi look like Bm on this
column. If the evidence so far points the other way, Γ makes Bi look like Bn instead.)

For each 〈m, n〉 with m ≥ n or n ≥ s, we define s /∈ B〈m,n,d〉
i for every i and d. This completes

the construction at stage s.
The reduction E1 ≤ω

0 E0, from Proposition 2.1, now shows E0 to be Σ0
2-complete as well. To

complete the proof of Proposition 3.3, we prove that E0 ≤0 E2. This is easy, and was already
known (if never actually stated) from the existing Borel reduction. We know that, for every n,

1
2n+1 + 1

2n+2 + · + 1
2n+1 ≥ 1. So, given A, define {2n + 1, 2n + 2, . . . , 2n+1} ⊆ ΦA if and only if

n ∈ A, with {2n + 1, 2n + 2, . . . , 2n+1} ∩ ΦA = ∅ otherwise. Then Φ is the desired computable
reduction of E0 to E1.

To finish our analysis of E2, we state the more general lemma established above.

Lemma 3.4 E0 ≤0 E2.

Proposition 3.5 E3 ≤ω
2 =.

Proof. The reduction Γ has as its oracle A = (⊕n An)′′. It simply defines 〈m, c〉 ∈ Bn if and only if
the columns Ac

m and Ac
n have finite symmetric difference. This works.

For those accustomed to the Borel theory, this could be a surprise. The strict inequalities

= <B E0 <B E3

both hold, and for each of them, 2-jump countable reducibility was the best possible reducibility
for the reverse. So it might seem that E3 should be farther away from equality than E0 is. Never-
theless, there is no contradiction here: while Borel reducibility is far stronger than any countable
reducibility, its absence does not stop us from composing the reductions in the reverse direction.
(In general, however, for α > 0, the composition of two α-jump computable reductions need not
itself be α-jump computable.)

The equivalence relation Eset compares the columns of the two reals involved:

A Eset B ⇐⇒ (∀n∃m) An = Bm.

9

(Notice that a given column of A or B is not required to appear exactly the same number of times
as a column of each. Eset simply says that every column of A is equal to some column of B and vice
versa.) In the Borel hierarchy, we have E3 <B Eset, and both of these two relations are defined
by Π0

3 formulas in A and B. We can readily give a binary computable reduction in the reverse
direction.

Lemma 3.6 Eset ≤2
0 E3.

Proof. The reduction Γ, with oracle A0⊕ A1, defines the (2m)-th column of B0 and B1 by searching
for a column of A1 equal to Am

0 . To begin with, it sets x /∈ B2m
0 ∪ B2m

1 for every x such that
(∀y ≤ x)[y ∈ A0

0 ⇐⇒ y ∈ A0
1]. If it ever finds an x0 with [x0 ∈ A0

0 ⇐⇒ x0 /∈ A0
1], then

it makes x0 ∈ B2m
0 but x0 /∈ B2m

1 , creating a difference between the two columns. Starting with
x0 + 1, it then compares A0

0 with A1
1 (starting from 0), the same way, and keeps making B2m

0 and
B2m

1 the same until it finds a difference between A0
0 and A1

1. If it ever finds a difference here, then
it begins comparing A0

0 with A2
1, and so on. Thus B2m

0 4B2m
1 will be finite if and only if A0

0 is equal
to some column in A1. Each column numbered (2m + 1) in B0 and B1 is used likewise to check
whether the column Am

1 appears as a column in A0.

Since Eset and E3 are Π0
3 relations, however, it is more difficult to extend the idea of Lemma 3.6

beyond a binary computable reduction. To explain our approach, we now describe a ternary com-
putable reduction.

Lemma 3.7 Eset ≤3
0 E3.

Proof. Consider an oracle A = A0 ⊕ A1 ⊕ A2. For each (c, m, n) with c ∈ ω, m ≤ 2, n ≤ 2, and
m 6= n, the following procedure builds the 〈m, n, c, d〉-th columns of the output B0, B1, and B2, for
every d. (For all other triples (c, m, n), these columns are all empty.) Pick p so that {m, n, p} =
{0, 1, 2}. The 〈m, n, c, 0〉-th column is the base column, and we begin with the 〈m, n, c, 1〉-th column
as the first working column; subsequently this may switch to 〈m, n, c, k + 1〉 for k = 1, 2, As in
Lemma 3.6, we watch first for a difference between Ac

m and A0
n; if we ever find one, then we watch

for a difference between Ac
m and A1

n, then A2
n, etc. As long as no new difference appears at a stage

s, we make all these columns of B0, B1, and B2 agree, of course. Suppose that at stage s we find a
difference between Ac

m and the current Ai
n; in this case we call s an 〈m, n, c〉-stage and write s′ < s

for the previous 〈m, n, c〉-stage (or 0). Check whether Ac
m and the current column Ak

p of Ap show
any difference up to s.

1. If Ac
m� s = Ak

p� s, then we make s ∈ B〈m,n,c,k+1〉
m , s /∈ B〈m,n,c,k+1〉

n and s ∈ B〈m,n,c,k+1〉
p where k is

the number of the current working column; we keep this number k fixed, but increment i by
1. (Since Ap appears as though its k-th column might be a copy of Ac

m, we aim here to keep
Bp E3-equivalent to Bm, while taking a step towards making Bm and Bn E3-inequivalent.)

2. If Ac
m� s 6= Ak

p� s, then we make s ∈ B〈m,n,c,0〉
m , s /∈ B〈m,n,c,0〉

n and s /∈ B〈m,n,c,0〉
p , and increment

each of i and k by 1, thus moving to a new working column for the next stage. (Here again
we take a step towards making Bm and Bn E3-inequivalent, by adding one more distinction
between them in the base column. Now we try to keep Bp E3-equivalent to Bn, since Ak

p has
turned out not to match Ac

m)

10

If Ac
m = Ai

n for some i, then there are only finitely many 〈m, n, c〉-stages in all, and none of the
columns numbered 〈m, n, c, k〉 makes any two of Bm, Bn, or Bp E3-inequivalent. If this fails for ev-

ery i, there are two cases. If some k exists with Ac
m = Aj

p, then we will have reached the least such
k and then stayed in Step (1) at all subsequent 〈m, n, c〉-stages, thus making Bp E3-inequivalent to
Bn but allowing it still to be E3-equivalent to Bm. (With Ak

p = Ac
m, which does not appear as a

column of An, this case has An and Ap Eset-inequivalent, so this outcome is acceptable.) If no such
k exists, then we executed Step (2) at infinitely many 〈m, n, c〉-stages. Each time we did, we created
a further difference between B〈m,n,c,0〉

p and B〈m,n,c,0〉
m , and also between B〈m,n,c,0〉

n and B〈m,n,c,0〉
m , so the

base column shows Bm to be E3-inequivalent to both the others. However, B〈m,n,c,0〉
p = B〈m,n,c,0〉

n ,

and on each working column, B〈m,n,c,k+1〉
p and B〈m,n,c,k+1〉

m have only a finite difference, since even-
tually the construction reached Step (2) again and incremented k. So in this case we have not done
anything to make Bp E3-inequivalent to Bn.

This completes the construction, and the argument above makes it clear that for any column
c which appears in any Am but not in some other An, the outputs Bm and Bn will have infinite
difference on their 〈m, n, c, d〉-th column, for some d. On the other hand, if Am Eset An, then no in-
finite difference between corresponding columns of Bm and Bn will ever have been created, leaving
Bm E3 Bn. Thus we have a computable ternary reduction from Eset to E3.

To make this into a finitary reduction (say a (j + 2)-ary reduction), one does a similar process
for each 〈m, n, c〉, assessing whether Ac

m appears as a column of An. Let {0, 1, . . . , j+ 1} = {m, n}t
{p0 < p1 < · · · < pj−1}. We have in each Bi, for each 〈m, n, c〉, one column Cσ for each σ ∈ ω j.
The column Cσ will be the column which distinguishes Bm from Bn under E3 (unless Am Eset An)
in the situation where

(∀i < j) [σ(i) = 0 ⇐⇒ Ac
m does not appear as a column in Api]

and where σ(i) = k + 1 if and only if Ak
pi

= Ac
m (with k minimal). At an 〈m, n, c〉-stage s, the

construction chooses the lexicographically-least σ which agrees with the situation at s, in the sense
that there exists an 〈m, n, c〉-stage s′ < s satisfying:

• σ(i) = k + 1 =⇒ Ac
m agreed with the column Ak

pi
at stage s′ and still agrees with it; and

• σ(i) = 0 =⇒ Ac
m no longer agrees with the column of Api with which it appeared to agree

at stage s′; and

• σ has not been chosen since stage s′.

We then add a difference between Bm and Bn on the column Cσ, by making s ∈ Bpσqm but s /∈ Bpσqn .
Each Bpi with σ(i) = k + 1 gets s ∈ Bpσqpi

, while each Bpi with σ(i) = 0 has s /∈ Bpσqpi
. The only σ for

which any of the columns Bpσqm , Bpσqn , or Bpσqpi
(for any i) can be infinite is the “true” σ, for which

σ(i) = k + 1 when k is least with Ak
pi
= Ac

m and σ(i) = 0 if there is no such k. On this column, each
Api with σ(i) = 0 has Bpσqn E0 Bpσqpi

, and the other i all have Bpσqm E0 Bpσqpi
. The reader can check,

using the method from Lemma 3.7, that this does give a (j + 2)-ary reduction, uniformly in j, and
so we have proven our next result.

Proposition 3.8 Eset ≤<ω
0 E3.

11

However, this method does not generalize to a countable collection A = ⊕n∈ω An of sets. Hav-
ing a column Cσ for every σ ∈ ω j worked perfectly well for finite j, but with ω in place of j we
would need uncountably many columns. So this is our first example where finitary reducibility
has come into focus; until now, every finitary reduction could readily be made into a countable
reduction, whereas here, imitating the proof from [13, Theorem 2.6], we show that no computable
countable reduction exists.

Theorem 3.9 Eset 6≤ω
0 E3.

Proof. We will show that no Turing functional Γ can be a computable countable reduction. Fix
such a functional Γ, which accepts any oracle A = ⊕n∈ω An and outputs B = ⊕nBn.

Let A0
0 = ω and Am+1

0 = Am
1 = [0, m] for each m, so A0 and A1 are Eset-inequivalent. Also set

A2m+1
n = [0, m] for each n > 1 and each m. It remains to define the elements of the even-numbered

columns A2m
n for n > 1. We intend for each of these columns to be an initial segment of ω (possibly

all of ω) at the end of the construction; so far, each A2m
n is an initial segment of length 0, and is

allowed to be extended further. We proceed according to an ω-ordering ≺ of the pairs 〈i, j〉 with
〈i, j〉 ≺ 〈i, j + 1〉 for all i and j. For each such pair, in order, we ask whether it is possible to extend
the (currently uncapped) columns A2m

n (for n > 1) further so as to make ΓA output a set B with
(Bi

14Bi
i+2)∩ {j, j + 1, . . .} 6= ∅. If so, then we extend these columns (finitely far) so as to make this

happen, and “cap” the columns A2k
i+2 with k ≤ j, decreeing these columns to equal the finite initial

segments of ω to which they have already been extended. If not, then we extend every currently
uncapped column A2k

i+2 with k ≤ j by one more element.
The key feature of this construction is that, at every step 〈i, j〉, every column A2k

i+2 with k ≤ j
either is capped or receives another element. Therefore, this process defines, for each x, whether
or not x lies in each even-numbered column of Ai+2, for each i. Thus we have now defined the
entire set A. Moreover, for a fixed i, either every column A2k

i+2 (for all k) was eventually capped –
if at every step 〈i, j〉 it was always possible to extend A and create one more difference between Bi

1
and Bi

i+2 – or else some column of Ai+2 is infinite, which occurs if we reached a step at which it
was no longer possible for any extension of A to create such a difference.

Suppose that, for some i, A1 Eset Ai+2. Then every column of Ai+2 is finite, which happens just
if, for every j, the construction always extended A so as to make Bi

1 and Bi
i+2 differ on some number

≥ j. If this happened, then B1 and Bi+2 are E3-inequivalent, and therefore Γ was not a reduction
from Eset to E3. On the other hand, suppose that, for every i, A1 and Ai+2 are Eset-inequivalent.
Since every column of Ai+2 is an iniital segment of ω, and every finite initial segment occurs there,
each Ai+2 must have an infinite column A2j

i+2, and therefore Ai+2 Eset A0 for every i. If Γ were
a reduction, we would then have Bi+2 E3 B0 for all i, so that Bi

i+2 E0 Bi
0 for all i. But the infinite

column of Ai+2 arose because Bi
14Bi

i+2 is finite, and so Bi
1 E0 Bi

0 for every i. This ensures B1 E3 B0,
which again shows Γ not to be a reduction, proving the theorem.

Finally, we consider the standard Borel equivalence relation Z0. For a real A, the upper density
of A is defined to equal

lim sup
k→∞

|A ∩ {0, . . . , k}|
k + 1

,

found by asking what fraction of the first k elements of ω lie in A, as k → ∞. The lower density
is defined similarly, using the liminf, and if these two are equal, then their common value is the

12

density of A. This allows us to define

A Z0 B ⇐⇒ A4B has density 0.

Z0 is another Π0
3 equivalence relation on 2ω, strictly above E3 and incomparable with Eset under

Borel reducibility. The usual Borel reduction from E3 to Z0 is computable, and all other ques-
tions about Z0 within our various hierarchies in this article are then answered by the following
proposition.

Proposition 3.10 Z0 is computably countably bireducible with E3: Z0 ≡ω
0 E3. Hence Z0 <ω

0 Eset and
Z0 ≡<ω

0 Eset.

Proof. As we mentioned, the usual Borel reduction from E3 to Z0 is computable: essentially, one
converts each element 〈m, n〉 of A into a finite block of elements Em,n in the output B, in such a
way that every output B has lower density 0 (since many elements do not belong to any block
Em,n, hence do not lie in B), and has upper density ≥ 1

n if and only if An was infinite. (The latter
condition is ensured by the blocks 〈m, n〉, for all m.)

To show that Z0 ≤ω
0 E3, we give a functional Γ, which as usual accepts an oracle A = ⊕n An

and outputs B = ⊕nBn. For each triple 〈m, n, c〉 ∈ ω3 with m > n and c > 0, we use column
number 〈m, n, c〉 in Bm and Bn. For those s such that (Am4An)∩{0,1,...,k}

k+1 ≥ 1
c , we place s ∈ B〈0,1,c〉

m

but not in B〈0,1,c〉
n , while the remaining s belong to neither set. Thus all these columns in Bn

(for all c) are finite, while Bm has an infinite column B〈m,n,c〉
m if and only if there exists c with

lim infs
(Am4An)∩{0,1,...,s}

s+1 ≥ 1
c . It follows that, whenever Am and An are Z0-inequivalent, Bm and

Bn will be E3-inequivalent.
Next, setting p0 = m, p1 = n, and {p2 < p3 < · · · } = ω − {m, n}, we decide, for each i ≥ 2

in turn, whether to add the number s to the corresponding column B〈m,n,c〉
pi of Bpi . Of course, if

(Am4An)∩{0,1,...,s}
s+1 < 1

c , we leave s out of every such column, so that if lim inft
(Am4An)∩{0,1,...,t}

t+1 < 1
c ,

every column B〈m,n,c〉
p will be finite. If (Am4An)∩{0,1,...,s}

s+1 ≥ 1
c , then we go through i = 2, 3, . . . in

turn. For each i and each j < i, find the least number dj,s ≤ s such that

(∀d ∈ {dj,s, dj,s + 1, . . . , s})
(Api4Apj) ∩ {0, 1, . . . , d}

d + 1
≤ 1

c · 2i .

Not all of these values d0,s, d1,s, . . . , di−1,s need exist. If none of them exist, then s /∈ B〈m,n,c〉
pi . If there

is at least one such value, then find the least value among them: say dj0,s (for the least j0,s, in case
some dj,s = dj′ ,s), and set

s ∈ B〈m,n,c〉
pi ⇐⇒ s ∈ B〈m,n,c〉

pj0,s
,

noticing that since j0,s < i, the right-hand side here has already been defined. This completes the
construction.

The goal of the second part of the construction is to ensure that, if Api Z0 Apj for one or more

j < i, then B〈m,n,c〉
pi =∗ B〈m,n,c〉

pj for each such j. (By an induction on i separate from the following,
one can then see that this holds for every j < i.) To see this, we induct on i. The claim we prove
inductively is slightly stronger: for every j < i such that Apj4Api has upper density < 1

c·2i , we

13

show that B〈m,n,c〉
pj =∗ B〈m,n,c〉

pi . This is clearly enough to ensure the goal stated above. When j = 0
and i = 1, the claim is clear, so we consider i ≥ 2, assuming inductively that the claim holds for all
smaller values of i. For each j (if any) such that Apj4Api has upper density < 1

c·2i , let dj = lims dj,s,
which must exist. (For all other j < i, no such number dj exists, and there is nothing to prove about
such a j.) Fix the j for which dj is least; if this does not uniquely define j, fix the least such j. Then
there exists a number s0 such that, for all s ≥ s0, every j′ 6= j with j < i will have dj′ ,s > dj,s in

the construction for B〈m,n,c〉
pi at step s and every j′ > j will have dj′ ,s ≥ dj,s. So, for s ≥ s0, the

construction ensures that s ∈ B〈m,n,c〉
pi if and only if s ∈ B〈m,n,c〉

pj , leaving these two columns to differ
only finitely, as required.

Now consider any other j′ < i such that Apj′4Api has upper density < 1
c·2i . It follows that

Apj′4Apj has upper density < 1
c·2i−1 ≤ 1

c·2max(j,j′) . By induction, the greater of j and j′ will have

ensured that B〈m,n,c〉
pj′

=∗ B〈m,n,c〉
pj , and hence B〈m,n,c〉

pj′
=∗ B〈m,n,c〉

pi . This completes the induction for i.
It now follows that, if Am Z0 An, then every column of Bm has only finite difference with

the corresponding column of Bn, and so Bm E3 Bn. The first part of the construction established
the converse, and so this Γ is a countable computable reduction from Z0 to E3. The remaining
statements in Proposition 3.10 now follow from Proposition 3.8 and Theorem 3.9.

Under computable countable reduction, therefore, the equivalence relations discussed here
realize the following much simpler diagram:

u
u
=

E0, E1, E2

uE3, Z0

uEset

Under finitary computable reduction (that is, ≤<ω
0), Eset joins the class of E3 and Z0.

4 Equivalence Relations Respecting Enumerations

The reader familiar with the works [3] and [13] will see similarities between the constructions
there and those here, but also some differences. Our proofs of Theorem 3.9 and Proposition 3.10
will strike most readers as significantly less difficult than the proofs of the corresponding results
(Theorems 2.5, 2.6, and 3.3) of [13]. We now explain these differences.

Both [3] and [13] focused on Turing-computable reductions among equivalence relations on ω.
They converted each standard Borel equivalence relation E into a relation Ece on ω using indices
of computably enumerable sets We (from any standard enumeration of the c.e. sets), under the
following definition:

(∀i, j ∈ ω) [i Ece j ⇐⇒ Wi E Wj].

14

This defines =ce, Ece
0 , Ece

1 , Ece
2 , Ece

3 , Ece
set, and Zce

0 , and the combined results of [3] and [13] show that
the results of Section 2 here largely hold for the c.e. versions of these relations under computable
reducibility ≤T . Indeed, [13] shows that Ece

set ≡<ω
T Zce

0 but also that Ece
set <ω

T Zce
0 , mirroring our

results above for Eset and Z0 on 2ω.
The differences in proofs arise from the fact that for relations Ece, one has only enumerations

of sets to work with, rather than oracles for the sets themselves. The main reason why the authors
of [3] and [13] worked this way is that there is no effective enumeration of the decidable subsets of
ω, while there are natural effective enumerations of the c.e. subsets. Our use of oracles overcomes
this difficulty, and ≤ω

0 in particular can be restricted to the decidable sets if one likes, or to the X-
decidable sets for any fixed X, giving exactly the context one might have hoped for. Here, however,
we go in the other direction, adapting our definitions from Section 1 to the context of sets which
are enumerated for us, rather than decided.

Definition 4.1 Let π1 : ω → ω be the projection map π1(〈x, y〉) = x, using the standard pairing
function 〈x, y〉 = (x+y+1)(x+y)+2y

2 . An enumeration of a set S ⊆ ω is a set A ⊆ ω which projects onto
S, i.e., π1(A) = S.

An equivalence relation E on 2ω respects enumerations if

(∀A, B ∈ 2ω) [π1(A) = π1(B) =⇒ A E B].

For each equivalence relation E on 2ω, we define its enumeration analogue Ee to be the following
equivalence relation on 2ω, which respects enumerations:

A Ee B ⇐⇒ π1(A) E π1(B).

It is immediately seen, for every E, that E ≤0 Ee, via the reduction A 7→ {〈n, 0〉 : n ∈ A}. In
the opposite direction, we have a full 1-jump reduction from Ee to E via A 7→ π1(A), of course,
but a quick diagonalization argument shows that in general there need not exist even a binary
computable reduction. For a more specific example, we invite the reader to show that the equality
relation = is Π0

1-complete under computable countable reducibility ≤ω
0 , whereas its enumera-

tion analogue =e is Π0
2-complete under computable finitary reducibility ≤<ω

0 , but not under com-
putable countable reducibility. Results in [13] are relevant here, using the relation =ce on ω, which
is defined by setting i =ce j if and only if Wi = Wj, and which was shown there to be complete
under computable finitary reducibility among Π0

2 equivalence relations on ω.
Enumerations of sets of natural numbers are ubiquitous in mathematics and logic, and so we

believe that Definition 4.1 will prove extremely useful. Moreover, it allows us to adapt the existing
results in [3] and [13] to prove the following theorems. (Since the ideas of these proofs are essen-
tially identical to those of the original proofs for the Ece versions, we leave them to the reader.)

Theorem 4.2 For countable computable reducibility on the enumeration analogues of the usual Borel equiv-
alence relations, we have

=e <ω
0 Ee

0 <ω
0 Ee

3 <ω
0 Ze

0,

with Ee
1 ≡ω

0 Ee
0. Under finitary computable reducibility, the last of these two merge:

=e <<ω
0 Ee

0 <<ω
0 Ee

3 ≡<ω
0 Ze

0,

15

It was shown in [13] that 3-ary and 4-ary reducibility are distinguished by the equivalence
relations Ece

max and Ece
card, which are the c.e. versions of the relations here.

Definition 4.3 For sets A, B ⊆ ω, we define:

(A Emax B ⇐⇒ max(A) = max(B)) (A Ecard B ⇐⇒ |A| = |B|).

Here we interpret max(∅) = −∞, and max(A) = +∞ for infinite sets A. Thus all infinite sets are
Emax-equivalent, and also Ecard-equivalent, while ∅ forms a singleton class for each of these relations.

Emax and Ecard have some properties we have not seen before in Borel equivalence relations: each
has only countably many classes, including one singleton class and just one uncountable class.
(Indeed Emax has just one infinite class.) It was shown in [13] that Ece

max and Ece
card are equiva-

lent under computable reducibility (on equivalence relations on ω), and that Ece
max is complete

among Π0
2 equivalence relations on ω under 3-ary computable reducibility, but not under 4-ary

computable reducibility.

Proposition 4.4 The relations Emax, Ecard, Ee
max and Ee

card are all Π0
2-definable, and Ee

max ≡0 Ee
card.

Proof. The Π0
2 definability is quick. First, A Emax B if and only if

(∀n) [(∃x ∈ A)x ≥ n ⇐⇒ (∃y ∈ B)y ≥ n],

and one readily converts this to a definition of Ee
max as well. Likewise, A Ecard B if and only if

(∀n) [(∃x1 < x2 < · · · < xn)[all xi ∈ A] ⇐⇒ (∃y1 < y2 < · · · < yn)[all yi ∈ B]],

and similarly for Ee
card. Notice that, while this second formula certainly defines a Π0

2 relation on A
and B, it is not so easy to make the defining formula strictly finitary in the usual sense, unless one
allows the use of an iterated pairing function.

To see that Ee
max ≤0 Ee

card, given A, let ΓA = {〈x, 〈y, z〉〉 : y ≥ x & 〈y, z〉 ∈ A}. Thus π1(ΓA) =
{x : (∃y ≥ x) y ∈ A}. For the reverse reduction, given B, use the extended pairing function
ω<ω → ω and let

ΦB = {〈n, 〈x0, y0, . . . , xn, yn〉〉 : 〈x0, y0〉, . . . , 〈xn, yn〉 ∈ B & x0 < · · · < xn}.

So n ∈ π1(ΦB) if and only if |π1(B)| > n. For Ee
max and Ee

card, this Γ and this Φ both work.

Proposition 4.5 Emax is Π0
2-complete under computable ternary reducibility: every Π0

2-definable equiva-
lence relation E on 2ω has E ≤3

0 Emax. However, Ee
max is not complete (in this same sense) for ≤4

0: there do
exist Π0

2-definable equivalence relations E on 2ω with E 6≤4
0 Ee

max.
Since Emax ≤0 Ee

max, it follows that Ee
max is also Π0

2-complete under ≤3
0 and that Emax is not Π0

2-
complete under ≤4

0.

In light of Proposition 4.6 below, one could prove Π0
2-completeness under≤3

0 for either Emax or
Ee

max, and it would follow for the other. We will imitate the work in [13], but adjust it to the context
of decidable sets. That work dealt with enumerations of sets rather than with the sets themselves,
but the essence of the construction is the same, and our reason for doing the proof here for Emax
is to demonstrate the essential similarity. Roughly speaking, the similarity reflects the fact that the

16

replacement of a positive subformula (∃x ∈ A R(x)) by a subformula (∃〈x, y〉 ∈ A R(x)) does not
change the complexity. A subformula (∃x /∈ A R(x), with R quantifier-free, would usually cause
the complexity to increase when one passed from the decidable case to the case of enumerations. In
Proposition 4.6 below, we will see a more subtle difference between the situations for decidability
and enumerability.

Proof. Let E be any Π0
2 equivalence relation on 2ω, given by a formula

A E B ⇐⇒ ∀x∃y R(A, B, x, y)

with R(A, B, x, y) decidable by a functional ΓA⊕B(x, y). We give a computable ternary reduction Φ
from E to Ee

max, with oracle A = A0⊕ A1⊕ A2, outputting B0⊕ B1⊕ B2. First, we fit the relation E
into the standard Π0

2 framework. For each i < j and each s, we can use Γ to determine the greatest
xi,j,s ≤ s such that

(∀x ≤ xi,j,s)(∃y ≤ s) R(A, B, x, y).

If xi,j,s+1 > xi,j,s, we say that the pair (i, j) receives a chip at stage s + 1. Thus Ai E Aj if and only
if the pair (i, j) receives a chip at infinitely many different stages s. For convenience we consider
each of the three pairs to receive a chip at stage 0.

ΦA uses this idea to build its outputs Bi. At stage 0, it sets 0 ∈ B0 only, 1 ∈ B1 only, and 2 ∈ B2
only. Thus all three sets currently have distinct maxima. Similarly, at each stage s ≥ 1, if none
of the three pairs (0, 1), (0, 2) and (1, 2) receives a chip at stage s, then ΦA specifies that none of
the numbers 2s, 2s + 1, 2s + 2 lies in any of B0, B1, and B2, thus preserving the three maxima (all
distinct, by induction) from the preceding stage. If one pair (i, j) with i < j ≤ 2 did receive a chip,
then for the least such pair, it defines 2s + 1 to lie in Bi and 2s + 2 to lie in Bj. If neither of the
other two pairs among the three received a chip at stage s, then the third output set Bk receives
no new elements. If at least one of the other two pairs did receive a chip, then it defines 2s to lie
in Bk. None of the elements 2s, 2s + 1, 2s + 2 will be put into any of the three output sets at any
subsequent stage, so this constitutes a decision procedure for B0 ⊕ B1 ⊕ B2.

Now if A0, A1, and A2 lie in three distinct E-classes, then there is a stage after which no pair
received any more chips. At the end of that stage, all three output sets had distinct maxima, and
no further elements were ever added, so B0, B1, and B2 lie in distinct Emax-classes as required. If
all three of the input sets are E-equivalent, then all three pairs received infinitely many chips, and
so each of the three output sets has maximum +∞. Finally, if Ai E Aj but Ak lies in a different
E-class than these two, then after some stage Bk never receives any more elements, hence has a
finite maximum, whereas Bi and Bj each get new elements at infinitely many stages, hence both
have maximum +∞. Thus ΦA is a ternary reduction from E to Emax.

To address 4-ary reducibility, we apply [13, Theorems 3.4 & 4.2], which together show that =ce

has no computable reduction to Ece
max (that is, under Turing-computable functions from ω to ω).

The proof is a nice illustration of the connections between that topic and this one. Suppose Emax
were complete under ≤4

0 among Π0
2-definable equivalence relations on 2ω. We “extend” =ce to an

E on Cantor space, by setting

A E B ⇐⇒ [A = B or [A 6= ∅ 6= B & (∀i ∈ A)(∀j ∈ B) Wi = Wj].

Note that this E is Π0
2-definable: A = B is a Π0

1 property, nonemptiness is Σ0
1, and equality of c.e.

sets is Π0
2. By assumption, then, there is a computable 4-ary reduction Γ of E to Emax. But now we

could use this Γ to define a computable reduction of =ce to Ece
max, as follows. Given any indices

17

e0, e1, e2, e3 ∈ ω, we run Γ{e0}⊕···⊕{e3}, which computes a set B = B0⊕ · · · ⊕ B3 such that Bi Emax Bj
if and only if {ei} E {ej}, which holds just if Wei = Wej . Let pi be the code number of the program

which enumerates Bi by running Γ{e0}⊕···⊕{e3}, so that Bi = Wpi . (In fact, we can also enumerate
the complement Bi, but this is unnecessary.) Then, for each i < j ≤ 3, we have

pi Ece
max pj ⇐⇒ Wpi Emax Wpj ⇐⇒ Bi Emax Bj ⇐⇒ {ei} E {ej} ⇐⇒ Wei = Wej ,

and so the map~e 7→ ~p is a computable 4-ary reduction of =ce to Ece
max, which is impossible.

The main point of the next proposition is its contrast with Proposition 4.4. The behavior of
Emax and Ecard relative to each other is not the same as that of Ee

max and Ee
card.

Proposition 4.6 The best reductions that hold are Emax ≤0 Ecard and Ecard ≤<ω
0 Emax (and Ecard ≤1

Emax).

Proof. The goal of the functional Γ giving the reduction Emax ≤0 Ecard is to ensure that, for all n,

max(A) ≥ n ⇐⇒ |B| ≥ n + 1 (where B = ΓA).

To this end, Γ checks whether 0 ∈ A, 1 ∈ A, Each time it finds a new n ∈ A, it extends its
current approximation σn−1 of B by setting σn = σn−1̂ 1k, where k is chosen so that |σ−1

n (1)| =
n + 1. Each time n /∈ A, it sets σn = σn−1̂ 0. This yields B = ∪nσn of cardinality exactly n + 1 if
max(A) = n, or B = ∅ if A = ∅, or B infinite if A is infinite.

In the opposite direction, we show first that no Φ can be a countable computable reduction
from Ecard to Emax. Given Φ, we choose A0 = {0} and A1 = {0, 1}, with no elements yet in any
of A2, A3, As usual we run ΦA with A = ⊕n An. If Φ is to succeed, then at some stage s some
finite portion of this oracle must yield a partial output B = ⊕nBn with some k for which either

• k ∈ B0 and k /∈ B2 and (∀j > k)(∀i = 0, 2) [j /∈ Bi or ΦA
s (〈i, j〉)↑]; or

• the same with B0 and B2 reversed.

We freeze that finite portion of the oracle, and now add one new element (larger than the frozen
part) to A2. Now running ΦA still yields k ∈ B04B2, but must eventually give B0 and B2 the same
maximum (possibly +∞), and so eventually we find some j > k with j ∈ B0. We now freeze the
finite portion of A which has been used so far in these computations. No further changes will be
made to A2.

Next we do the same process with A1 and A3: with A3 = ∅, wait until ΦA produces B1 and B3
with distinct maxima, then freeze A on the use of that computation, add two new large elements
to A3 (so that now |A3| = |A1| = 2), and wait until ΦA evens up the maxima of B1 and B3, which
must involve adding a larger element to B1. After that, no further changes will be made to A3.

We continue recursively, using each A2i to force B0 to include a new larger element, and using
each A2i+1 to force B1 to do so. Therefore max(B0) = max(B1) = +∞, yet |A0| = 1 6= 2 = |A1|.
Therefore Φ was not a countable computable reduction.

The full 1-jump reduction from Ecard to Emax is easy: let n ∈ ΓA′ if and only if |A| ≥ n.
It remains to give a finitary computable reduction Ψ from Ecard to Emax, using an oracle A =
A0 ⊕ · · · ⊕ An. For this, ΨA goes through s = 0, 1, 2, . . ., one at a time, starting with mi,−1 = −∞
for all i ≤ n For each s, Ψ determines which numbers among s(n + 1), . . . , (s + 1)(n + 1)− 1 are to

18

be added to which sets Bi. To do so, it determines the size mi,s = |Ai ∩ {0, . . . , n}| for each i. For
those i with mi,s−1 = min{mj,s−1 : j ≤ n}, it checks whether mi,s = mi,s−1: if so, then it adds no
new elements to Bi; while if not, then it adds s(n + 1) to Bi (and possibly more elements later in
this step).

If this process added no elements to any Bi, then it determines the second-smallest value in
{mj,s−1 : j ≤ n}. For those i such that mi,s−1 has this value, it again adds no elements to Bi
provided mi,s = mi,s−1, buts adds s(n + 1) to Bi otherwise. Again, if this process still has not
added any elements to any Bi, then it proceeds with the third-smallest value in {mj,s−1 : j ≤ n},
and so on until either some Bi is enlarged or until the values in {mj,s−1 : j ≤ n} run out. (Notice
that, if every Ai is finite, then there will be a stage after which no more elements are ever added to
any Bi.)

Now suppose that we reached a step at which s(n + 1) was added to some Bi. By this point,
some sets Bj have been assured that no elements will be added to them at this stage. For the
remaining Bk (including those Bi to which n(s + 1) was added, as well as all Bk with mk,s−1 >
mi,s−1 for those i), we determine anew the order among the maxima mk,s. For those k such that mk,s
is least, we add s(n+ 1) to Bk (if it was not already there). For those k for which mk,s has the second-
smallest value, we add s(n + 1) + 1 to Bk. Those with the third-smallest value have s(n + 1) + 2
added to Bk, and so on. Now there are at most (n + 1) different indices k involved, so the greatest
number that can possibly be added to any Bk at stage s is s(n + 1) + n = (s + 1)(n + 1)− 1. No
number ≤ s(n + 1) + n will be added to any set Bi at any subsequent stage, so this is a decision
procedure for the Bi. Moreover, we have ensured that that order of the maxima of the sets Bi (so
far) corresponds to the order of the sizes mi,s.

It is clear that whenever a set Ai is finite, the corresponding Bi will eventually stop receiving
new elements (once the mj,s have reached their limiting values mj for all j ≤ n with Aj finite, and
once the mk,s with Ak infinite have all surpassed these limiting values). Moreover, we will have
mi = mj if and only if Bi and Bj have the same maximum. The infinite sets Ak will all have Bk
infinite as well, and so they all satisfy max(Bk) = +∞ (and |Ak| = +∞). Therefore, this is indeed
a finitary computable reduction.

Corollary 4.7 Emax ≡<ω
0 Ee

max and Ecard ≡<ω
0 Ee

card. Hence Ecard is Π0
2-complete under computable

ternary reducibility ≤3
0, but not under ≤4

0.

Proof. The general reduction E ≤0 Ee was described after Definition 4.1. The reduction Γ for
Ee

max ≤<ω
0 Emax is given an oracle A = A0 ⊕ · · · ⊕ An, and proceeds much like the finitary reduc-

tion Ψ from Ecard to Emax in Proposition 4.6. It measures the maximum mi,s of π1(Ai ∩ {0, . . . , s})
at each stage s, and orders the sets A0, . . . , An according to their current maxima, noting which
maxima have changed since the previous stage. For those sets at the bottom of the list (with
lowest maxima) whose maxima have not changed, it does not add any new elements to Bi. Start-
ing with the least Aj in this order whose current maximum has mj,s 6= mj,s−1, it adds a new
element, larger than any previously seen, to Bj and to each Bk with mk,s−1 > mj,s−1 (or with
mj,s−1 = mk,s−1 6= mk,s). Then it adds further new elements to these sets Bk to make sure that the
current order of the Bk by maxima matches the current order of the Ak by their maxima mk,s. This
works, just as Ψ did in the proposition.

The reduction Ee
card ≤

<ω
0 Ecard now follows from

Ee
card ≤0 Ee

max ≤<ω
0 Emax ≤0 Ecard,

and the rest of the corollary is the result of Proposition 4.5.

19

5 Noncomputable Reductions

We present here an idea for further discussion, without any immediate results. It is simple to
define X-computable reductions on 2ω, and to extend the notion to jump reductions and to finitary
and countable reductions as well.

Definition 5.1 Let E and F be equivalence relations on 2ω, fix X ⊆ ω, and choose any X-computable
ordinal α. We say that E is α-jump X-reducible to F, written E ≤α,X F, if there exists a Turing
functional Φ such that the map

A 7→ ΦX⊕A(α)

is a reduction of E to F. Likewise, if the map

A = ⊕i Ai 7→ ΦX⊕A(α)
= ⊕jBj,

is a k-ary, finitary, or countable reduction of E to F (where the joins⊕i Ai and⊕jBj are over the appropriate
number of sets), then E is k-arily, finitarily, or countably α-jump X-reducible to F, written E ≤k

α,X F
or E ≤<ω

α,X F or E ≤ω
α,X F.

As a natural example of an equivalence relation to which this can be applied, let X be any set
which is not c.e. Then the equivalence relation

A =X B ⇐⇒ (∀n ∈ X)[n ∈ A ⇐⇒ n ∈ B]

is computably X-reducible to the equality relation on 2ω: just write X = {x0 < x1 < · · · } and let
n ∈ ΓX⊕A precisely when xn ∈ A. Indeed, any enumeration of X would suffice for this purpose.
However, if Φ were a computable binary reduction of =X to equality, then we would be able to
enumerate X, since then

n ∈ X ⇐⇒ ∃y ∈ B04B1, where B0 ⊕ B1 = Φ∅⊕{n}.

We consider the notion of X-computable reducibility to be natural for further study, especially
since it allows the notion of jump-reductions to be extended to arbitrary countable ordinals α (by
taking an X which can compute a copy of α). However, we will not elaborate on this notion any
further here.

6 The Glimm-Effros Dichotomy

Now we examine the analogue of the Glimm-Effros dichotomy for computable reducibility. Un-
surprisingly, the strict analogue fails to hold. To prove this, we use the equivalence relation =Y
defined in Section 5, for a set Y whose complement X is computably enumerable.

Here we build the set X, along with a partial computable injective function ψ : ω2 → ω
satisfying the following well-known requirements, for all e:

Ne : |X| ≥ e;

Pe : X 6= We;
Re : (∃n ≥ 0) ψ(e, n)↓/∈ X;
Se : defined below.

20

The N - and P-requirements are completely standard for finite-injury constructions. In our con-
struction,Re first chooses a large value ψ(e, 0) and protects it from entering X. If a higher-priority
requirement puts ψ(e, 0) into X at a stage s, then Re defines ψ(e, 1) to be a new large number,
greater than s and protects that number instead, and so on. A standard finite-injury construction
builds a computably enumerable set X satisfying all these requirements. Notice that the image
of ψ is decidable, since y can only enter it at stages ≤ y. Building X this way (without the S-
requirements) will give us a contradiction to Glimm-Effros for computable reducibility on 2ω; we
will explain the S-requirements below when we wish to strengthen the contradiction.

For the complement Y = X, we define =Y on 2ω, the equality relation on Y, as in the previous
section:

A =Y B ⇐⇒ (∀n ∈ Y)[n ∈ A ⇐⇒ n ∈ B].

It was noted there that =X ≤2
0 = if and only if X is a computably enumerable set. Our construction

makes Y properly Π0
1, and therefore =Y 6≤2

0 =. On the other hand, we do have a computable
reduction Γ from = to =Y. For each (e, n) ∈ range(ψ), Γ defines ψ(e, n) ∈ ΓA if and only if
e ∈ A, with ΓA disjoint from the (decidable) complement of range(ψ). By construction, if any e has
e ∈ A4B, then every ψ(e, n) defined will lie in ΓA4ΓB, and at least one of these (finitely many)
values ψ(e, n) will lie in Y. Thus = ≤0 =Y via Γ, and so = <0 =Y.

However, we also claim that E0 is incomparable with =Y under even binary computable re-
ducibility, and that therefore =Y reveals the failure of the Glimm-Effros dichotomy for computable
reducibility on 2ω. The essence of this claim is that E0 is a Σ0

2 relation, whereas =Y is Π0
2:

A =Y B ⇐⇒ (∀n)(∃s)[n ∈ Xs or [n ∈ A ⇐⇒ n ∈ B]].

In particular, if Φ were a binary computable reduction from E0 to =Y, then, given any pair 〈i, j〉
with Wi = Wj, we would have

i ∈ Fin ⇐⇒ Wi E0 ∅ ⇐⇒ (∀n)(∃s)[n ∈ Xs or [n ∈ B0 ⇐⇒ n ∈ B1]],

where ΦWi⊕∅ = B0 ⊕ B1. But given the pair (i, j), one could compute the function ΦWi⊕∅ (which
is total, by assumption), making the right-hand side a Π0

2 predicate of i and j, which is impossible.
(The pair (Fin, Inf) has a natural 1-reduction to (Fin ∩ D, Inf ∩ D), with D = {(i, j) : Wi = Wj} as
before: just map each e to an index of the c.e. set {s : We,s+1 6= We,s}. The argument above then
gives a 1-reduction from (Fin∩ D) to a Π0

2 set, for a contradiction.)
The S requirements are used to ensure that =Y 6≤2

0 E0, completing the proof of incomparabil-
ity. Se requires that, if the e-th oracle Turing functional Φe is total on all oracles, then there should
be a decidable set De = Wi = Wj (for some i and j) such that

De ∩Y 6= ∅ ⇐⇒ ΦDe⊕∅
e consists of two E0-inequivalent columns.

Of course, the left-hand side just means that De 6=Y ∅, so the requirements together will show that
=Y 6≤2

0 E0.
We break up Se into countably many subrequirements, so as to preserve the finite-injury nature

of the construction. Each Se,n+1 inherits from Se,n an element xe,n of De, at a stage s at which Se,n
has completed its action (if it ever does). We write De,s = De � s for the portion of De so far
decided. This xe,n does not lie in Xs, so it currently appears to establish the left-hand side of
Se. Se,n+1 waits until the symmetric difference between the columns of Φ(De,sˆ000000···)⊕∅

e contains

21

≥ n+ 1 elements, extending De,s by a zero at each step to encourage convergence. If the symmetric
difference ever reaches this size, then Se,n adjoins xe,n to X (so that it no longer establishes the left-
hand side), and defines a new xe,n+1, larger than the current stage, to hand off to Se,n+2. If the
symmetric difference contains ≤ n elements in total at the end of the construction, then Se,n+1

has satisfied Se all by itself; whereas if the symmetric difference between the columns of ΦDe⊕∅
e

is infinite, then every element xe,n of De is eventually enumerated into X (hence out of Y) by its
Se,n+1. Either way, Se holds.

A given Se,n+1 may be injured if a higher-priority P-requirement adds xe,n to X. If so, Se,n+1
simply chooses a new large x′e,n, places it in De, and continues with it. This wil only happen finitely
often (for a given e and n), so Se,n does accomplish its goal, possibly with finitely many false starts.
All the other requirements fit together according to a standard finite-injury priority construction,
and so for the set Y = X, the equivalence relation =Y on 2ω lies strictly above equality under
computable reducibility, is is incomparable with E0 even under binary computable reducibility.

It is hardly surprising that, in the far more exacting context of computable reducibility, the
Glimm-Effros dichotomy should fail. The surprise, after all, was that it held for Borel reducibility
in the first place. Nevertheless, the arguments here, simple though they be, demonstrate that there
is much more to investigate in this topic. For example, while Glimm-Effros fails for equality and
E0 under computable reducibility, it remains open whether there might be some two other equiv-
alence relations which would be (respectively) the least and the second-least among all smooth
equivalence relations on 2ω under computable reducibility. Alternatively, it seems a bit more plau-
sible that Glimm-Effros might hold for ω-jump reducibility, or λ-jump reducibility for some limit
ordinals λ. The notions from Section 5 would even allow one to address λ-jump reducibility for
admissible ordinals λ, which appears to be the most promising ground of all.

References

[1] U. Andrews, S. Lempp, J.S. Miller, K.M. Ng, L. San Mauro, and A. Sorbi. Universal com-
putably enumerable equivalence relations. Technical Report 504, Department of Mathematics
and Computer Science “Roberto Magari”, University of Siena, 2012.

[2] C. Bernardi and A. Sorbi. Classifying positive equivalence relations. J. Symbolic Logic,
48(3):529–538, 1983.

[3] S. Coskey, J.D. Hamkins, and R. Miller. The hierarchy of equivalence relations on the natural
numbers under computable reducibility. Computability, 1(1):15–38, 2012.

[4] E.G. Effros. Transformation groups and c∗-algebras. Annals of Mathematics (2), 81(1):38–55,
1965.

[5] Yu.L. Eršov. Teoriya numeratsii. “Nauka”, Moscow, 1977. Matematicheskaya Logika i Osno-
vaniya Matematiki. [Monographs in Mathematical Logic and Foundations of Mathematics].

[6] E.B. Fokina and S.-D. Friedman. On Σ1
1 equivalence relations over the natural numbers. Math-

ematical Logic Quarterly, 2011.

[7] E.B. Fokina, S.-D. Friedman, and A. Törnquist. The effective theory of Borel equivalence
relations. Ann. Pure Appl. Logic, 161(7):837–850, 2010.

22

[8] S. Gao. Invariant descriptive set theory. Pure and Applied Mathematics (Boca Raton). CRC
Press, Boca Raton, FL, 2009.

[9] S. Gao and P. Gerdes. Computably enumerable equivalence relations. Studia Logica, 67(1):27–
59, 2001.

[10] J. Glimm. Locally compact transformation groups. Transactions of the American Mathematical
Society, 101:124–138, 1961.

[11] L.A. Harrington, A.S. Kechris, and A. Louveau. A glimm-effros dichotomy for borel equiva-
lence relations. Journal of the American Mathematical Society, 3(4):903–928, 1990.

[12] I. Ianovski, R. Miller, K.M. Ng, and A. Nies. Complexity of equivalence relations and pre-
orders from computability theory. J. Symbolic Logic, 79(3):859–881, 2014.

[13] R. Miller and K.M. Ng. Finitary reducibility on equivalence relations. J. Symbolic Logic.

23

