Hilbert’s Tenth Problem for Subrings of the Rationals

Russell Miller
Queens College & CUNY Graduate Center

Workshop on Sets and Computations
Institute for Mathematical Sciences
National University of Singapore
22 April 2015

(Joint work with Kirsten Eisenträger, Jennifer Park, & Alexandra Shlapentokh.)
Hilbert’s Tenth Problem

For a ring R, *Hilbert’s Tenth Problem for R* is the set

$$HTP(R) = \{ p \in R[X_0, X_1, \ldots] : (\exists \vec{a} \in R^{<\omega}) \ p(a_0, \ldots, a_n) = 0 \}$$

of all polynomials (in several variables) with solutions in R.

So $HTP(R)$ is c.e. relative to (the atomic diagram of) R.

Hilbert’s original formulation in 1900 demanded a decision procedure for $HTP(\mathbb{Z})$.

Theorem (PMRD, 1970)

$HTP(\mathbb{Z})$ is undecidable: indeed, $HTP(\mathbb{Z}) \equiv_1 \emptyset'$.

The most obvious open question is the Turing degree of $HTP(\mathbb{Q})$.
Subrings \(R_W \) of \(\mathbb{Q} \)

A subring \(R \) of \(\mathbb{Q} \) is characterized by the set of primes \(p \) such that \(\frac{1}{p} \in R \). For each \(W \subseteq \omega \), set

\[
R_W = \left\{ \frac{m}{n} \in \mathbb{Q} : \text{all prime factors } p_k \text{ of } n \text{ have } k \in W \right\}
\]

be the subring generated by inverting the \(k \)-th prime \(p_k \) for all \(k \in W \).

We often move effectively between \(W \) (a subset of \(\omega \)) and \(P = \{ p_n : n \in W \} \), the set of primes which \(W \) describes.

Notice that \(R_W \) is computably presentable precisely when \(W \) is c.e., while \(R_W \) is a computable subring of \(\mathbb{Q} \) iff \(W \) is computable.
Basic facts about $HTP(R_W)$

- $HTP(R_W) \leq_1 W'$.
- $W \leq_1 HTP(R_W)$. (Reason: $k \in W \iff (p_k X - 1) \in HTP(R_W)$.)
- $HTP(\mathbb{Q}) \leq_1 HTP(R_W)$:

$$p(X_1, \ldots, X_j) \in HTP(\mathbb{Q}) \implies (Y^d \cdot p\left(\frac{X_1}{Y}, \ldots, \frac{X_j}{Y}\right) \& Y > 0) \in HTP(\mathbb{Z})$$

$$\implies (Y^d \cdot p\left(\frac{X_1}{Y}, \ldots, \frac{X_j}{Y}\right) \& Y > 0) \in HTP(R_W)$$

$$\implies p(X_1, \ldots, X_j) \in HTP(\mathbb{Q}).$$

It is possible to have $W' \not\equiv_T HTP(R_W)$: let W be c.e. and nonlow, so that $W' >_T \emptyset' \geq_T HTP(R_W)$.
Explaining “$Y > 0$” as a polynomial

Four Squares Theorem
An integer is nonnegative iff it is the sum of four squares of integers.

Corollary
It follows that a rational y is positive iff the following equation has a solution in integers:

$$y(1 + V_1^2 + V_2^2 + V_3^2 + V_4^2) = 1 + U_1^2 + U_2^2 + U_3^2 + U_4^2.$$

Moreover, any solution in \mathbb{Q} shows that $y > 0$. So we have a polynomial in y, \vec{U}, \vec{V} which has a solution (in an arbitrary R_W) iff $y > 0$.

Russell Miller (CUNY)
A commutative ring is *local* if it has a unique maximal ideal, and *semilocal* if it has only finitely many maximal ideals. The semilocal subrings R_W are exactly those with W cofinite. If $\overline{W} = \{n_0, \ldots, n_j\}$, we write $\mathbb{Z}(p_{n_0}, \ldots, p_{n_j})$ for R_W.

Fact (Shlapentokh)

Every semilocal subring R_W has $HTP(R_W) \equiv_T HTP(\mathbb{Q})$. Both reductions are uniform in (a strong index for) \overline{W}.

Theorem (Eisenträger-M-Park-Shlapentokh)

There exist coinfinite sets W with $HTP(R_W) \equiv_T HTP(\mathbb{Q})$. Indeed, such a W can be computably enumerable, and so R_W can be computably presentable.
Strategy below an $HTP(\mathbb{Q})$-oracle

Each set $W \subseteq \omega$ corresponds effectively to a set $P \subseteq \{\text{primes}\}$.

Enumerate all polynomials in $\mathbb{Z}[\vec{X}]$ effectively as f_0, f_1, \ldots. Let $P_0 = \emptyset$. At stage $s + 1$, let $p_0 < \cdots < p_s$ be the least primes of P_s. With the oracle, determine whether $f_s \in HTP(R(p_0, \ldots, p_s))$. If not, do nothing. If so, find a solution of f_s here, and invert the primes needed (i.e. add new primes to P_{s+1}, and new elements to W_{s+1}) so as to put this solution in R_W.

So every p_s (for every s) lies in P. Moreover, $f_s \in HTP(R_W)$ iff it went in by stage $s + 1$, which we can check using an $HTP(\mathbb{Q})$-oracle.
Enumerating P with no oracle

We approximate $P = \{p_0 < p_1 < \cdots\}$ at each stage s.

Requirements for the finite-injury construction:

P_k: If $f_k \in HTP(\mathbb{Z}(p_0,\ldots,p_k))$, then $f_k \in HTP(R_W)$.

$N_e: p_e,s \notin P$.

At stage $s + 1 = \langle k, j \rangle$, we check whether any of the first j tuples from $\mathbb{Z}(p_0,s,\ldots,p_k,s)$ is a solution to $f_k = 0$. If so, we invert primes in R_W (i.e. add new elements to W) so as to put this solution in R_W, satisfying P_k.

$HTP(R_W) \leq_T HTP(\mathbb{Q})$:

Notice that $p_0 = 2$.

With an $HTP(\mathbb{Q})$-oracle, we can decide whether $f_0 \in HTP(\mathbb{Z}(p_0))$.

If so, find the stage s_0 at which a solution first entered R_W; else $s_0 = 0$.

Now we know p_1, so decide whether $f_1 \in HTP(\mathbb{Z}(p_0,p_1))$, etc.
Corollaries

Corollary (Eisenträger-M-Park-Shlapentokh)
For every c.e. set $U \geq_T \text{HTP}(\mathbb{Q})$, there exists a computably presentable subring $R \subseteq \mathbb{Q}$ with $\text{HTP}(R) \equiv_T U$.

The construction mixes the requirements above with coding requirements, which invert a certain specific prime in R whenever we see a new element enter U.

Open Question
For such a U, does there exist a computable subring $R \subseteq \mathbb{Q}$ with $\text{HTP}(R) \equiv_T U$?
Density of W

Definition

For each $W \subseteq \omega$, the *natural density of W* is the limit

$$\lim_{s \to \infty} \frac{|W \upharpoonright (s + 1)|}{s + 1}.$$

The *upper and lower densities* of W are the limsup and liminf here.

Corollary (Eisenträger-M-Park-Shlapentokh)

For every Δ^0_2 real number $r \in [0, 1]$, there exists a computably presentable subring $R_W \subseteq \mathbb{Q}$ with $HTP(\mathbb{Q}) \equiv_T HTP(R_W)$ for which W has lower density r and upper density 1.
Upper density of \mathcal{W}

Open Question (more number-theoretic)

Can we keep $HTP(R_\mathcal{W}) \equiv_T HTP(\mathbb{Q})$ and control the upper density of \mathcal{W}? Is there any infinite c.e. such \mathcal{W} with upper density < 1?

The danger is that a polynomial f may have solutions in $R_\mathcal{W}$ for every cofinite \mathcal{W}, but that each solution requires inverting at least ϵ-many of the first s primes (for various s, but with some fixed $\epsilon > 0$). So adding a solution of f to $R_\mathcal{W}$ will require bumping the density $\frac{|W(s+1)|}{s+1}$ up to ϵ, at least temporarily.

However, it seems hopeless to try to keep all solutions of f out of $R_\mathcal{W}$. Recall that $HTP(\mathbb{Z}) \equiv_T \emptyset'$. As long as $HTP(\mathbb{Q})$ says that we have not yet ruled out all solutions of f, there could still be a solution in \mathbb{Z}.

The real question is: do “spiky” polynomials such as these actually exist?
Maximal sets

Definition

A ring $R_W \subseteq \mathbb{Q}$ is *polymaximal* if, for every polynomial $f \notin HTP(R_W)$, there exists a finite set $S_0 \subseteq \overline{W}$ such that $f \notin HTP(\mathbb{Z}(S_0))$.

So, for each f, there is a finitary reason why it is or is not in $HTP(R_W)$. Notice that, whenever a c.e. set W is maximal, R_W is polymaximal.

Proposition

For every polymaximal subring R_W, we have

$$HTP(R_W) \equiv_T \mathcal{W} \oplus HTP(\mathbb{Q}).$$

To decide whether $f \in HTP(R_W)$, we search for either a solution to f in R_W (using the W-oracle) or a finite S_0 as above (using both oracles).
Polymaximality is not universal

Let $f(X, Y, \overline{U})$ be the polynomial:

$$f = (X^2 + Y^2 - 1)^2 + (X > 0)^2 + (Y > 0)^2.$$

Solutions $(\frac{a}{c}, \frac{b}{c})$ correspond to Pythagorean triples (a, b, c). Suppose a prime p divides c. Then $a^2 + b^2 \equiv 0 \mod p$, and so

$$-1 \equiv \left(\frac{a}{b}\right)^2 \mod p.$$

This forces either $p = 2$ or $p \equiv 1 \mod 4$. Therefore:

Proposition

Let R contain inverses of exactly those primes $\equiv 3 \mod 4$. Then $f \notin \text{HTP}(R)$.

Maximality is not universal

However, $f \in \text{HTP}(R_W)$ for all 1-generic W, since, for each product n of finitely many primes,

$$
\left(\frac{n^2 - 1}{n^2 + 1} \right)^2 + \left(\frac{2n}{n^2 + 1} \right)^2 = 1.
$$

So the subring R (inverting all primes $\equiv 3 \mod 4$) is not polymaximal.

Similar tricks with polynomials $X^2 + qY^2 - 1$, for other primes q, allow similar results with other subrings (inverting all primes $\equiv k \mod q$).
Definition

Fix any $f \in \mathbb{Z}[\tilde{X}]$. The **solvability set** of f is the set

$$\text{Sol}(f) = \{ W \subseteq \omega : f \in \text{HTP}(R_W) \}.$$

This is an effectively open subset of Cantor space. The **measure** $\mu(f)$ of this polynomial is the measure of Sol(f).

As yet we only know that all 2-adic rationals can be $\mu(f)$. We conjecture that $\mu(X^2 + qY^2 - 1 \& X > 0 \& Y > 0) = 1$ as well.

To get any other value as $\mu(f)$ would require f to be spiky, in somewhat the same sense as described earlier.
Guessing at the measure of f

Locally open question

For our f above, saying $X^2 + Y^2 = 1$ & $X > 0$ & $Y > 0$, what is $\mu(f)$? (Also for $X^2 + qY^2 = 1$.)

As noted, whenever $\frac{1}{n^2+1} \in R_W$ (for any n), we have $f \in HTP(R_W)$.

Bunyakovsky Conjecture (1857), roughly stated

For every irreducible $g \in \mathbb{Z}[X]$, if there exist $m, n \in \omega$ with $g(m)$ prime to $g(n)$, then the image of \mathbb{Z} under g contains infinitely many primes.

This is known to hold for all g of degree 1 (Dirichlet's Theorem). However, it apparently remains open for each individual nonlinear g!
Guessing at the measure of f

Locally open question

For our f above, saying $X^2 + Y^2 = 1 \& X > 0 \& Y > 0$, what is $\mu(f)$? (Also for $X^2 + qY^2 = 1$.)

As noted, whenever $\frac{1}{n^2+1} \in R_W$ (for any n), we have $f \in HTP(R_W)$.

Bunyakovsky Conjecture (1857), roughly stated

For every irreducible $g \in \mathbb{Z}[X]$, if there exist $m, n \in \omega$ with $g(m)$ prime to $g(n)$, then the image of \mathbb{Z} under g contains infinitely many primes.

This is known to hold for all g of degree 1 (Dirichlet’s Theorem). However, it apparently remains open for each individual nonlinear g!

Notice that, for our f to have $\mu(f) = 1$, it would suffice to have arbitrarily large pairs (p, q) of primes with some power $p^j q^k$ of the form $n^2 + 1$. Likewise for triples, etc.
Theorem
TFAE:

- $HTP(R_W) \leq_T W \oplus HTP(\mathbb{Q})$ uniformly on a measure-1 set of W.
- For all $f \in \mathbb{Z}[\vec{X}]$, the complement $\overline{\text{Sol}(f)}$ is an almost-open set.

If these hold, then some functional Φ has $\Phi^{HTP(\mathbb{Q})}(f) = \mu(f)$ for all f.

Fact (see Nies, *Computability and Randomness*, e.g.)
The class of all generalized low 1 sets, i.e. those W satisfying $W' \leq_T W \oplus \emptyset'$, has measure 1. However, there is no single Turing reduction which works uniformly on a set of measure 1. So, under the equivalent conditions above, no single Turing reduction $W' = \Phi^{HTP(R_W)}$ could hold uniformly on a set of measure 1.

Russell Miller (CUNY)
Theorem

TFAE:

- $\text{HTP}(R_W) \leq_T W \oplus \text{HTP}(\mathbb{Q})$ uniformly on a measure-1 set of W.
- For all $f \in \mathbb{Z}[\vec{X}]$, the complement $\overline{\text{Sol}(f)}$ is an almost-open set.

If these hold, then some functional Φ has $\Phi^{\text{HTP}(\mathbb{Q})}(f) = \mu(f)$ for all f.

Fact (see Nies, *Computability and Randomness*, e.g.)

The class of all generalized low$_1$ sets, i.e. those W satisfying

$$W' \leq_T W \oplus \emptyset',$$

has measure 1. However, there is no single Turing reduction which works uniformly on a set of measure 1.

So, under the equivalent conditions above, no single Turing reduction $W' = \Phi_e^{\text{HTP}(R_W)}$ could hold uniformly on a set of measure 1.